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Abstract

This paper collects together known inequalities relating the area, perimeter,
width, diameter, inradius and circumradius of planar convex sets. Also, a tech-
nique for finding new inequalities is stated and illustrated.
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1. Introduction
Let K be a convex set in the plane. Associated withK are a number of well-
known functionals: the areaA = A(K), the perimeterp = p(K), the diameter
d = d(K), the widthw = w(K), the inradiusr = r(K) and the circumradius
R = R(K). For many years we have been interested in inequalities involving
these functionals. As the literature is extensive and spans more than 80 years, it
will be helpful to summarize the known inequalities. This is done in sections2
and3. Then in section4 we explore a technique for suggesting new inequalities,
and give a number of conjectured new inequalities, mostly obtained by this
method.
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2. Inequalities Involving Two Functionals
Table2.1 lists the known inequalities involving two functionals. Theextremal
setsreferred to in the table are described below the table. These demonstrate
that the inequalities are best possible. All the proofs of the results in this table
can be found in the indicated sections of Yaglom and Boltyanskiı̆’s book [17].
The (d,R) and (w, r) results are respectively known as Jung’s Theorem and
Blaschke’s Theorem. Where a dagger (†) appears in the reference column, the
result is trivial.
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Parameters Inequality Extremal Set Reference
A, d 4A ≤ πd2 © p. 239, ex. 610a
A, p 4πA ≤ p2 © p. 207, ex. 5.8
A, r πr2 ≤ A © †
A, R A ≤ πR2 © †
A, w w2 ≤

√
3A 4E p. 221, ex. 6.4

d, p 2d < p ≤ πd |, W †; p. 257, ex. 7.17a
d, r 2r ≤ d © †
d,R

√
3R ≤ d ≤ 2R 4E,© p. 213, ex. 6.1;†

d, w w ≤ d W †
p, r 2πr ≤ p © †
p, R 4R < p ≤ 2πR |, W †
p, w πw ≤ p W p. 258, ex. 7.18a
r, R r ≤ R © †
r, w 2r ≤ w ≤ 3r ©,4E †; p. 215, ex. 6.2
R,w w ≤ 2R © †

Table 2.1: Inequalities involving two functionals.

The extremal sets
| line segment
© circle
4E equilateral triangle
W sets of constant width
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3. Inequalities Involving Three Functionals
Table3.1 lists the known inequalities involving three functionals. Extra infor-
mation, signified in theNotescolumn, appears after the table. Theextremal sets
referred to in the table are also listed after the table. These demonstrate that the
inequalities are best possible. Some of the results in the table are established
in [17]. These are indicated by a number in the References column, and details
appear after the table. No inequalities appear to be known relating(p, r, R) or
(p, R,w).

Param. Condition Inequality Note
Ext.
Set

Ref.

1. A, d, p
2d ≤ p ≤ 3d
3d ≤ p ≤ πd

8φA ≤ p (p− 2d cos φ)
d (p− 2d) ≤ 4A ≤ pd

4A ≥ (p− 2d)
√

4pd− p2

4A ≥
√

3d (p− 2d)

1a

1b

()
|,©
4I

4E

[8]1

[5]
[8, 9] 2

[9]
2. A, d, r A < 2dr ‖ [6]

3. A, d, R
(2R− d) A

≤ π
(
3
√

3− 5
)

R3 3a [15]

4. A, d, w
2w ≤

√
3d√

3 < 2w < 2d

A < wd

2A ≤ w
√

d2 − w2

+2d2 arcsin (w/d)
2A ≥ wd

2A > πw2 −
√

3d2

+6w2 (tan δ − δ)

2A ≥ 3dw −
√

3d2

2A ≥ πw2 −
√

3d2

4a

‖
‖©

4
4Y

4E

4R

[8]
[8]3

[8]4

[16]

[16]
[16]

5. A, p, r
A ≤ r (p− πr)

2A ≥ pr
©
4

[2]
[3]

6. A, p, R
A ≤ R (p− πR)
A < 2R (p− 2R)
A > R (p− 4R)

6a
©

|

[2]
[6]
[4]

http://jipam.vu.edu.au/
mailto:pscott@maths.adelaide.edu.au
mailto:awyongpw@nievax.nie.ac.sg
http://jipam.vu.edu.au/


Inequalities for Convex Sets

Paul R. Scott and
Poh Wah Awyong

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 7 of 13

J. Ineq. Pure and Appl. Math. 1(1) Art. 6, 2000

http://jipam.vu.edu.au

7. A, p, w

2
√

3w ≤ p

πw < p < 2
√

3w
πw = p

2A ≤ w
(
p− 1

2
πw

)
A ≥ A∗1

2A ≥ w
(
p−

√
3w sec2 γ

)
2A ≥

(
π −

√
3
)

w2

6A ≥ 4
√

3w2 − pw
4A ≥ pw − 2√

3
w2

6A ≥ pw

7a
7b

◦≡◦
4I

4Y

4R

4E

4E

4E

[8]5

[18]6

[18]
[10, 11]7

[16]
[7]
[16]

8. A, r, R
A < 4rR
A > 2rR

‖
|

[6]
[6]

9. A, r, w

4 (w − 2r) A < w3
√

3 (w − 2r) A ≤ w2r

(w − 2r) A ≤
√

3wr2

≤ 3
√

3r3

t
4E

4E

[14]
[14]
[14]

10. A, R, w
A < 4Rw

A >
√

3Rw
‖
4E

[6]
[6]

11. d, p, r p < 2d + 4r ‖ [6]

12. d, p, R
(2R− d) p

≤
(
2
√

3− 3
)

πR2 W [15]

13. d, p, w

p ≤ 2
√

d2 − w2

+ 2d arcsin (w/d)

p ≥ 2
√

d2 − w2

+2w arcsin (w/d)

‖©

<©>

[8]8

[8]9

14.d, r, R (2R− d) r ≤
(
3
√

3− 5
)

R2 4R [15]

15. d, r, w

√
3 (w − 2r) d ≤ 2wr ≤ 6r2

2 (w − 2r) d ≤ w2
4E

t
[13, 14]

[14]

16. d, R, w

(2R− d) w

≤
√

3
(
2−

√
3
)

R2

3 (2R− d)

≤ 2
(
2−

√
3
)

w

4R

4E

[15]

[1]

17. p, r, R
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18. p, r, W

√
3 (w − 2r) p ≤ 2w2

(w − 2r) p ≤ 2
√

3wr

≤ 6
√

3r2

4E

4E

[14]

[14]

19. p, R, w

20. r, R, w
4 (w − 2r) R ≤ w2

3 (w − 2r) R ≤ 2wr
≤ 6r2

t

4E

[14]

[14]

Table 3.1: Inequalities involving three functionals

The extremal sets
| line segment © circle
() lens: the intersection of two con-

gruent circular disks
<©> convex hull of a disk and two sym-

metrically placed points
◦≡◦ convex hull of two congruent cir-

cles
‖© intersection of a disk and a sym-

metrically placed strip
4 triangle 4E equilateral triangle
4I isoceles triangle 4R Reuleaux triangle
4Y equilateral Yamanouti triarc,

bounded by three circular arcs of
radiusw whose centres lie at the
vertices of an equilateral triangle
of side lengthd, and by the six
tangents drawn from the vertices
of this triangle to these arcs

t half strip, occuring as the limit of
an isoceles triangle with increasing
altitude on a given base

W sets of constant width ‖ infinite strip bounded by two par-
allel lines
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Notes

1. A, p, d Note 1a:2φd = p sinφ.
Note 1b: This is not best possible unlessp = 3d.

3. A, d,R Note 3a: This bound is not best possible. See Conjecture4.7below.

4. A, d,w Note 4a: Hereδ = arccos (w/d).

6. A, p, r Note 6a: This bound is not best possible.

7. A, d,w Note 7a: HereA∗1 is the middle root of the equation

128px3 − 16w
(
5p2 + w2

)
x2 + 16w2p3x− w3p4 = 0.

Note 7b:6w (tan γ − γ) = p− πw.

References
The precise references to the proofs in Yaglom and Boltyanskiı̆ [17] are:

1p. 240, ex. 6.11(a) 2p. 229, ex. 6.8(a) 3p. 240, ex. 6.10(b)
4p. 227, ex. 6.7 5p. 241, ex. 6.11(b) 6 p. 231, ex. 6.8(b)
7p. 260, ex. 7.20 8p. 257, ex. 7.17(b) 9 p. 258, ex. 7.18(b).
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4. Obtaining New Inequalities
Osserman [12] takes the classical isoperimetric inequality

(4.1) p2 ≥ 4πA

and from it derives the new inequality

(4.2) p2 − 4πA ≥ π2(R− r)2.

We can think of this in the following way. The functionf(K) = π2(R − r)2

takes the value0 for the extremal set (the circle) of (4.1). Hence for the circle,
(4.2) and (4.1) are identical. Osserman shows that in fact (4.2) is satisfied for
all other setsK.

Let us see if we can adapt this method to find other new inequalities. The
method will become clear by an example. From Table2.1we have Jung’s The-
orem:d ≥

√
3R, with equality when and only when the setK is an equilateral

triangle. For an equilateral triangle, we know that2A = dw or d = 2A
w

. Substi-
tuting into Jung’s inequalitysuggeststhe inequality2A ≥

√
3Rw, which is in

fact true and was discovered by Henk (see [6]). So the technique is as follows:

• Consider a known inequality and its extremal set.

• Take an equality relating functionals of the extremal set which includes a
functional in the chosen inequality.

• Substitute for this functional in the chosen inequality to obtain a new in-
equality.
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Of course the new inequality may be incorrect; it is then quickly discarded.
Again, the new inequality may be trivial, in the sense that it is a combination of
known simpler inequalities. For example, the technique gives

(w − 2r)p ≤ 2A, with extremal set 4E;

this occurs as a combination of(w−2r)p ≤ 2w2/
√

3 (Table3.1) andw2 ≤
√

3A
(Table2.1). Similarly,

4πr2 ≤ pd, with extremal set ©,

occurs as a combination of2πr ≤ p and2r ≤ d (Table2.1). However, the
following more interesting conjectures have been obtained by this method.

Conjecture 4.1. 2w2 ≤
√

3pr with extremal set4E.

Conjecture 4.2.
√

3wR ≤ pr,4E.

Conjecture 4.3. (p− 2d)w ≤ 2A,4E.

Conjecture 4.4. wp ≤ 9dr,4.

Conjecture 4.5. 3(w − 2r)(p− 2d) ≤ 2A,4E.

Conjecture 4.6. dw ≤ pr,4.

Finally we have the older [15]

Conjecture 4.7. 2(2R− d)A ≤ 3(2−
√

3)(π −
√

3)R3,4R.
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