Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 6, Issue 4, Article 115, 2005

A NOTE ON ABSOLUTE NÖRLUND SUMMABILITY

HÜSEYİN BOR
Department of Mathematics
Erciyes University
38039 Kayseri, Turkey
bor@erciyes.edu.tr
URL:http://fef.erciyes.edu.tr/math/hbor.htm

Received 26 September, 2005; accepted 17 October, 2005
Communicated by L. Leindler

Abstract. In this paper a main theorem on $\left|N, p_{n}\right|_{k}$ summability factors, which generalizes a result of Bor [2] on $\left|N, p_{n}\right|$ summability factors, has been proved.

Key words and phrases: Nörlund summability, summability factors, power increasing sequences.
2000 Mathematics Subject Classification 40D15, 40F05, 40G05.

1. Introduction

A positive sequence $\left(b_{n}\right)$ is said to be almost increasing if there exist a positive increasing sequence $\left(c_{n}\right)$ and two positive constants A and B such that $A c_{n} \leq b_{n} \leq B c_{n}$ (see [1]). A positive sequence $\left(\gamma_{n}\right)$ is said to be a quasi β-power increasing sequence if there exists a constant $K=K(\beta, \gamma) \geq 1$ such that

$$
\begin{equation*}
K n^{\beta} \gamma_{n} \geq m^{\beta} \gamma_{m} \tag{1.1}
\end{equation*}
$$

holds for all $n \geq m \geq 1$. It should be noted that every almost increasing sequence is a quasi β-power increasing sequence for any nonnegative β, but the converse need not be true as can be seen by taking the example, say $\gamma_{n}=n^{-\beta}$ for $\beta>0$. We denote by $\mathcal{B} \mathcal{V}_{\mathcal{O}}$ the $\mathcal{B} \mathcal{V} \cap \mathcal{C}_{\mathcal{O}}$, where $\mathcal{C}_{\mathcal{O}}$ and $\mathcal{B V}$ are the null sequences and sequences with bounded variation, respectively.
Let $\sum a_{n}$ be a given infinite series with the sequence of partial sums $\left(s_{n}\right)$ and $w_{n}=n a_{n}$. By u_{n}^{α} and t_{n}^{α} we denote the n-th Cesàro means of order α, with $\alpha>-1$, of the sequences $\left(s_{n}\right)$ and $\left(w_{n}\right)$, respectively.

The series $\sum a_{n}$ is said to be summable $|C, \alpha|_{k}, k \geq 1$, if (see [4])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|u_{n}^{\alpha}-u_{n-1}^{\alpha}\right|^{k}=\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}^{\alpha}\right|^{k}<\infty . \tag{1.2}
\end{equation*}
$$

[^0]Let $\left(p_{n}\right)$ be a sequence of constants, real or complex, and let us write

$$
\begin{equation*}
P_{n}=p_{0}+p_{1}+p_{2}+\cdots+p_{n} \neq 0, \quad(n \geq 0) \tag{1.3}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
\sigma_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{n-v} s_{v} \tag{1.4}
\end{equation*}
$$

defines the sequence $\left(\sigma_{n}\right)$ of the Nörlund mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$. The series $\sum a_{n}$ is said to be summable $\left|N, p_{n}\right|_{k}, k \geq 1$, if (see [3])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|\sigma_{n}-\sigma_{n-1}\right|^{k}<\infty \tag{1.5}
\end{equation*}
$$

In the special case when

$$
\begin{equation*}
p_{n}=\frac{\Gamma(n+\alpha)}{\Gamma(\alpha) \Gamma(n+1)}, \alpha \geq 0 \tag{1.6}
\end{equation*}
$$

the Nörlund mean reduces to the (C, α) mean and $\left|N, p_{n}\right|_{k}$ summability becomes $|C, \alpha|_{k}$ summability. For $p_{n}=1$ and $P_{n}=n$, we get the $(C, 1)$ mean and then $\left|N, p_{n}\right|_{k}$ summability becomes $|C, 1|_{k}$ summability. For any sequence $\left(\lambda_{n}\right)$, we write $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}$.

The known results. Concerning the $|C, 1|_{k}$ and $\left|N, p_{n}\right|_{k}$ summabilities Varma [6] has proved the following theorem.

Theorem A. Let $p_{0}>0, p_{n} \geq 0$ and $\left(p_{n}\right)$ be a non-increasing sequence. If $\sum a_{n}$ is summable $|C, 1|_{k}$, then the series $\sum a_{n} P_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|_{k}, k \geq 1$.

Quite recently Bor [2] has proved the following theorem.
Theorem B. Let $\left(p_{n}\right)$ be as in Theorem A and let $\left(X_{n}\right)$ be a quasi β-power increasing sequence with some $0<\beta<1$. If

$$
\begin{equation*}
\sum_{v=1}^{n} \frac{1}{v}\left|t_{v}\right|=O\left(X_{n}\right) \quad \text { as } n \rightarrow \infty \tag{1.7}
\end{equation*}
$$

and the sequences $\left(\lambda_{n}\right)$ and $\left(\beta_{n}\right)$ satisfy the following conditions

$$
\begin{equation*}
X_{n} \lambda_{n}=O(1) \tag{1.8}
\end{equation*}
$$

$$
\begin{equation*}
\left|\Delta \lambda_{n}\right| \leq \beta_{n} \tag{1.9}
\end{equation*}
$$

$$
\begin{equation*}
\beta_{n} \rightarrow 0 \tag{1.10}
\end{equation*}
$$

$$
\begin{equation*}
\sum n X_{n}\left|\Delta \beta_{n}\right|<\infty \tag{1.11}
\end{equation*}
$$

then the series $\sum a_{n} P_{n} \lambda_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|$.

2. Main Result

The aim of this paper is to generalize Theorem \mathbf{B} for $\left|N, p_{n}\right|_{k}$ summability. Now we shall prove the following theorem.

Theorem 2.1. Let $\left(p_{n}\right)$ be as in Theorem A, and let $\left(X_{n}\right)$ be a quasi β-power increasing sequence with some $0<\beta<1$. If

$$
\begin{equation*}
\sum_{v=1}^{n} \frac{1}{v}\left|t_{v}\right|^{k}=O\left(X_{n}\right) \quad \text { as } n \rightarrow \infty \tag{2.1}
\end{equation*}
$$

and the sequences $\left(\lambda_{n}\right)$ and $\left(\beta_{n}\right)$ satisfy the conditions from (1.8) to (1.11) of Theorem B; further suppose that

$$
\begin{equation*}
\left(\lambda_{n}\right) \in \mathcal{B} \mathcal{V}_{\mathcal{O}}, \tag{2.2}
\end{equation*}
$$

then the series $\sum a_{n} P_{n} \lambda_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|_{k}, k \geq 1$.
Remark 2.2. It should be noted that if we take $k=1$, then we get Theorem B. In this case condition (2.2) is not needed.

We need the following lemma for the proof of our theorem.
Lemma 2.3 ([5]). Except for the condition (2.2), under the conditions on $\left(X_{n}\right),\left(\lambda_{n}\right)$ and $\left(\beta_{n}\right)$ as taken in the statement of the theorem, the following conditions hold when (1.11) is satisfied:

$$
\begin{equation*}
n \beta_{n} X_{n}=O(1) \text { as } n \rightarrow \infty, \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=1}^{\infty} \beta_{n} X_{n}<\infty \tag{2.4}
\end{equation*}
$$

3. Proof of Theorem 2.1

In order to prove the theorem, we need consider only the special case in which $\left(N, p_{n}\right)$ is $(C, 1)$, that is, we shall prove that $\sum a_{n} \lambda_{n}$ is summable $|C, 1|_{k}$. Our theorem will then follow by means of Theorem A Let T_{n} be the n-th $(C, 1)$ mean of the sequence $\left(n a_{n} \lambda_{n}\right)$, that is,

$$
\begin{equation*}
T_{n}=\frac{1}{n+1} \sum_{v=1}^{n} v a_{v} \lambda_{v} . \tag{3.1}
\end{equation*}
$$

Using Abel's transformation, we have

$$
\begin{aligned}
T_{n} & =\frac{1}{n+1} \sum_{v=1}^{n} v a_{v} \lambda_{v}=\frac{1}{n+1} \sum_{v=1}^{n-1} \Delta \lambda_{v}(v+1) t_{v}+\lambda_{n} t_{n} \\
& =T_{n, 1}+T_{n, 2}, \text { say }
\end{aligned}
$$

To complete the proof of the theorem, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|T_{n, r}\right|^{k}<\infty \quad \text { for } r=1,2, \text { by (1.2). } \tag{3.2}
\end{equation*}
$$

Now, we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \frac{1}{n}\left|T_{n, 1}\right|^{k} \leq \sum_{n=2}^{m+1} \frac{1}{n(n+1)^{k}}\left\{\sum_{v=1}^{n-1} \frac{v+1}{v} v\left|\Delta \lambda_{v}\right|\left|t_{v}\right|\right\}^{k} \\
&=O(1) \sum_{n=2}^{m+1} \frac{1}{n^{k+1}}\left\{\sum_{v=1}^{n-1} v\left|\Delta \lambda_{v}\right|\left|t_{v}\right|\right\}^{k} \\
&=O(1) \sum_{n=2}^{m+1} \frac{1}{n^{2}}\left\{\sum_{v=1}^{n-1} v\left|\Delta \lambda_{v}\right|\left|t_{v}\right|^{k}\right\} \times\left\{\frac{1}{n} \sum_{v=1}^{n-1} v\left|\Delta \lambda_{v}\right|\right\}^{k-1} \\
&\left.=O(1) \sum_{n=2}^{m+1} \frac{1}{n^{2}} \sum_{v=1}^{n-1} v\left|\Delta \lambda_{v}\right|\left|t_{v}\right|^{k} \quad \text { (by (2.2) }\right) \\
&=O(1) \sum_{n=2}^{m+1} \frac{1}{n^{2}}\left\{\sum_{v=1}^{n-1} v \beta_{v}\left|t_{v}\right|^{k}\right\} \quad(\text { by }(\underline{1.9)}) \\
&=O(1) \sum_{v=1}^{m} v \beta_{v}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{1}{n^{2}}=O(1) \sum_{v=1}^{m} v \beta_{v} \frac{\left|t_{v}\right|^{k}}{v} \\
&=O(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) \sum_{r=1}^{v} \frac{\left|t_{r}\right|^{k}}{r}+O(1) m \beta_{m} \sum_{v=1}^{m} \frac{\left|t_{v}\right|^{k}}{v} \\
&=O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v \beta_{v}\right)\right| X_{v}+O(1) m \beta_{m} X_{m} \quad(\text { by (2.1) }) \\
&=O(1) \sum_{v=1}^{m-1}\left|(v+1) \Delta \beta_{v}-\beta_{v}\right| X_{v}+O(1) m \beta_{m} X_{m} \\
&=O(1) \sum_{v=1}^{m-1} v\left|\Delta \beta_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1}\left|\beta_{v}\right| X_{v}+O(1) m \beta_{m} X_{m} \\
& \text { as } m \rightarrow \infty,
\end{aligned}
$$

in view of (1.11), (2.3) and (2.4).
Again

$$
\begin{aligned}
\sum_{n=1}^{m} \frac{1}{n}\left|T_{n, 2}\right|^{k} & =\sum_{n=1}^{m}\left|\lambda_{n}\right|^{k} \frac{\left|t_{n}\right|^{k}}{n} \\
& =\sum_{n=1}^{m}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right| \frac{\left|t_{n}\right|^{k}}{n}=O(1) \sum_{n=1}^{m}\left|\lambda_{n}\right| \frac{\left|t_{n}\right|^{k}}{n} \quad \text { (by (2.2)) } \\
& =O(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{v=1}^{n} \frac{\left|t_{v}\right|^{k}}{v}+O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m} \frac{\left|t_{n}\right|^{k}}{n} \\
& =O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m} \quad \text { (by (2.1) } \\
& =O(1) \sum_{n=1}^{m-1} \beta_{n} X_{n}+O(1)\left|\lambda_{m}\right| X_{m}=O(1) \quad \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of (1.8) and (2.4). This completes the proof of the theorem.

References

[1] S. ALJANČIĆ and D. ARANDELOVIĆ, O-regularly varying functions, Publ. Inst. Math., 22 (1977), 5-22.
[2] H. BOR, Absolute Nörlund summability factors, J. Inequal. Pure Appl. Math., 6(3) (2005), Art. 62. [ONLINE http://jipam.vu.edu.au/article.php?sid=535].
[3] D. BORWEIN AND F.P. CASS, Strong Nörlund summability, Math. Zeith., 103 (1968), 94-111.
[4] T.M. FLETT, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7 (1957), 113-141.
[5] L. LEINDLER, A new application of quasi power increasing sequences, Publ. Math. Debrecen, 58 (2001), 791-796.
[6] R.S. VARMA, On the absolute Nörlund summability factors, Riv. Math. Univ. Parma (4), 3 (1977), 27-33.

[^0]: ISSN (electronic): 1443-5756
 (C) 2005 Victoria University. All rights reserved.

 The author is grateful to the referee for his valuable suggestions for the improvement of this paper.
 287-05

