

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 6, Issue 4, Article 115, 2005

A NOTE ON ABSOLUTE NÖRLUND SUMMABILITY

HÜSEYİN BOR

DEPARTMENT OF MATHEMATICS ERCIYES UNIVERSITY 38039 KAYSERI, TURKEY bor@erciyes.edu.tr URL: http://fef.erciyes.edu.tr/math/hbor.htm

Received 26 September, 2005; accepted 17 October, 2005 Communicated by L. Leindler

ABSTRACT. In this paper a main theorem on $|N, p_n|_k$ summability factors, which generalizes a result of Bor [2] on $|N, p_n|$ summability factors, has been proved.

Key words and phrases: Nörlund summability, summability factors, power increasing sequences.

2000 Mathematics Subject Classification. 40D15, 40F05, 40G05.

1. INTRODUCTION

A positive sequence (b_n) is said to be almost increasing if there exist a positive increasing sequence (c_n) and two positive constants A and B such that $Ac_n \leq b_n \leq Bc_n$ (see [1]). A positive sequence (γ_n) is said to be a quasi β -power increasing sequence if there exists a constant $K = K(\beta, \gamma) \geq 1$ such that

(1.1)
$$Kn^{\beta}\gamma_n \ge m^{\beta}\gamma_m$$

holds for all $n \ge m \ge 1$. It should be noted that every almost increasing sequence is a quasi β -power increasing sequence for any nonnegative β , but the converse need not be true as can be seen by taking the example, say $\gamma_n = n^{-\beta}$ for $\beta > 0$. We denote by $\mathcal{BV}_{\mathcal{O}}$ the $\mathcal{BV} \cap \mathcal{C}_{\mathcal{O}}$, where $\mathcal{C}_{\mathcal{O}}$ and \mathcal{BV} are the null sequences and sequences with bounded variation, respectively.

Let $\sum a_n$ be a given infinite series with the sequence of partial sums (s_n) and $w_n = na_n$. By u_n^{α} and t_n^{α} we denote the *n*-th Cesàro means of order α , with $\alpha > -1$, of the sequences (s_n) and (w_n) , respectively.

The series $\sum a_n$ is said to be summable $|C, \alpha|_k, k \ge 1$, if (see [4])

(1.2)
$$\sum_{n=1}^{\infty} n^{k-1} \left| u_n^{\alpha} - u_{n-1}^{\alpha} \right|^k = \sum_{n=1}^{\infty} \frac{1}{n} \left| t_n^{\alpha} \right|^k < \infty.$$

ISSN (electronic): 1443-5756

^{© 2005} Victoria University. All rights reserved.

The author is grateful to the referee for his valuable suggestions for the improvement of this paper. 287-05

Let (p_n) be a sequence of constants, real or complex, and let us write

(1.3)
$$P_n = p_0 + p_1 + p_2 + \dots + p_n \neq 0, \ (n \ge 0).$$

The sequence-to-sequence transformation

(1.4)
$$\sigma_n = \frac{1}{P_n} \sum_{v=0}^n p_{n-v} s_v$$

defines the sequence (σ_n) of the Nörlund mean of the sequence (s_n) , generated by the sequence of coefficients (p_n) . The series $\sum a_n$ is said to be summable $|N, p_n|_k$, $k \ge 1$, if (see [3])

(1.5)
$$\sum_{n=1}^{\infty} n^{k-1} \left| \sigma_n - \sigma_{n-1} \right|^k < \infty.$$

In the special case when

(1.6)
$$p_n = \frac{\Gamma(n+\alpha)}{\Gamma(\alpha)\Gamma(n+1)}, \ \alpha \ge 0$$

the Nörlund mean reduces to the (C, α) mean and $|N, p_n|_k$ summability becomes $|C, \alpha|_k$ summability. For $p_n = 1$ and $P_n = n$, we get the (C, 1) mean and then $|N, p_n|_k$ summability becomes $|C, 1|_k$ summability. For any sequence (λ_n) , we write $\Delta \lambda_n = \lambda_n - \lambda_{n+1}$.

The known results. Concerning the $|C, 1|_k$ and $|N, p_n|_k$ summabilities Varma [6] has proved the following theorem.

Theorem A. Let $p_0 > 0$, $p_n \ge 0$ and (p_n) be a non-increasing sequence. If $\sum a_n$ is summable $|C, 1|_k$, then the series $\sum a_n P_n(n+1)^{-1}$ is summable $|N, p_n|_k$, $k \ge 1$.

Quite recently Bor [2] has proved the following theorem.

Theorem B. Let (p_n) be as in Theorem A, and let (X_n) be a quasi β -power increasing sequence with some $0 < \beta < 1$. If

(1.7)
$$\sum_{v=1}^{n} \frac{1}{v} |t_v| = O(X_n) \quad \text{as } n \to \infty,$$

and the sequences (λ_n) and (β_n) satisfy the following conditions

(1.8)
$$X_n \lambda_n = O(1),$$

$$(1.9) |\Delta\lambda_n| \le \beta_n,$$

$$(1.10) \qquad \qquad \beta_n \to 0,$$

(1.11)
$$\sum nX_n \left| \Delta \beta_n \right| < \infty,$$

then the series $\sum a_n P_n \lambda_n (n+1)^{-1}$ is summable $|N, p_n|$.

2. MAIN RESULT

The aim of this paper is to generalize Theorem B for $|N, p_n|_k$ summability. Now we shall prove the following theorem.

Theorem 2.1. Let (p_n) be as in Theorem A, and let (X_n) be a quasi β -power increasing sequence with some $0 < \beta < 1$. If

(2.1)
$$\sum_{v=1}^{n} \frac{1}{v} \left| t_v \right|^k = O(X_n) \quad \text{as } n \to \infty,$$

and the sequences (λ_n) and (β_n) satisfy the conditions from (1.8) to (1.11) of Theorem B; further suppose that

$$(2.2) (\lambda_n) \in \mathcal{BV}_{\mathcal{O}}$$

then the series $\sum a_n P_n \lambda_n (n+1)^{-1}$ is summable $|N, p_n|_k$, $k \ge 1$.

Remark 2.2. It should be noted that if we take k = 1, then we get Theorem B. In this case condition (2.2) is not needed.

We need the following lemma for the proof of our theorem.

Lemma 2.3 ([5]). Except for the condition (2.2), under the conditions on (X_n) , (λ_n) and (β_n) as taken in the statement of the theorem, the following conditions hold when (1.11) is satisfied:

(2.3)
$$n\beta_n X_n = O(1) \text{ as } n \to \infty,$$

(2.4)
$$\sum_{n=1}^{\infty} \beta_n X_n < \infty.$$

3. PROOF OF THEOREM 2.1

In order to prove the theorem, we need consider only the special case in which (N, p_n) is (C, 1), that is, we shall prove that $\sum a_n \lambda_n$ is summable $|C, 1|_k$. Our theorem will then follow by means of Theorem A. Let T_n be the n-th (C, 1) mean of the sequence $(na_n\lambda_n)$, that is,

(3.1)
$$T_n = \frac{1}{n+1} \sum_{v=1}^n v a_v \lambda_v.$$

Using Abel's transformation, we have

$$T_n = \frac{1}{n+1} \sum_{v=1}^n v a_v \lambda_v = \frac{1}{n+1} \sum_{v=1}^{n-1} \Delta \lambda_v (v+1) t_v + \lambda_n t_n$$

= $T_{n,1} + T_{n,2}$, say.

To complete the proof of the theorem, it is sufficient to show that

(3.2)
$$\sum_{n=1}^{\infty} \frac{1}{n} |T_{n,r}|^k < \infty \quad \text{for } r = 1, 2, \text{ by (1.2)}.$$

Now, we have that

$$\begin{split} \sum_{n=2}^{m+1} \frac{1}{n} |T_{n,1}|^k &\leq \sum_{n=2}^{m+1} \frac{1}{n(n+1)^k} \left\{ \sum_{v=1}^{n-1} \frac{v+1}{v} v |\Delta\lambda_v| |t_v| \right\}^k \\ &= O(1) \sum_{n=2}^{m+1} \frac{1}{n^{k+1}} \left\{ \sum_{v=1}^{n-1} v |\Delta\lambda_v| |t_v|^k \right\} \times \left\{ \frac{1}{n} \sum_{v=1}^{n-1} v |\Delta\lambda_v| \right\}^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} \frac{1}{n^2} \left\{ \sum_{v=1}^{n-1} v |\Delta\lambda_v| |t_v|^k \right\} \times \left\{ \frac{1}{n} \sum_{v=1}^{n-1} v |\Delta\lambda_v| \right\}^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} \frac{1}{n^2} \sum_{v=1}^{n-1} v |\Delta\lambda_v| |t_v|^k \quad (by (2.2)) \\ &= O(1) \sum_{n=2}^{m+1} \frac{1}{n^2} \left\{ \sum_{v=1}^{n-1} v \beta_v |t_v|^k \right\} \quad (by (1.9)) \\ &= O(1) \sum_{v=1}^{m} v \beta_v |t_v|^k \sum_{n=v+1}^{m+1} \frac{1}{n^2} = O(1) \sum_{v=1}^m v \beta_v \frac{|t_v|^k}{v} \\ &= O(1) \sum_{v=1}^{m-1} \Delta(v\beta_v) \sum_{r=1}^v \frac{|t_r|^k}{r} + O(1)m\beta_m \sum_{v=1}^m \frac{|t_v|^k}{v} \\ &= O(1) \sum_{v=1}^{m-1} |\Delta(v\beta_v)| X_v + O(1)m\beta_m X_m \quad (by (2.1)) \\ &= O(1) \sum_{v=1}^{m-1} |(v+1)\Delta\beta_v - \beta_v| X_v + O(1)m\beta_m X_m \\ &= O(1) \sum_{v=1}^{m-1} v |\Delta\beta_v| X_v + O(1) \sum_{v=1}^{m-1} |\beta_v| X_v + O(1)m\beta_m X_m \\ &= O(1) \sum_{v=1}^{m-1} v |\Delta\beta_v| X_v + O(1) \sum_{v=1}^{m-1} |\beta_v| X_v + O(1)m\beta_m X_m \\ &= O(1) \sum_{v=1}^{m-1} v |\Delta\beta_v| X_v + O(1) \sum_{v=1}^{m-1} |\beta_v| X_v + O(1)m\beta_m X_m \\ &= O(1) \sum_{v=1}^{m-1} v |\Delta\beta_v| X_v + O(1) \sum_{v=1}^{m-1} |\beta_v| X_v + O(1)m\beta_m X_m \\ &= O(1) \sum_{v=1}^{m-1} v |\Delta\beta_v| X_v + O(1) \sum_{v=1}^{m-1} |\beta_v| X_v + O(1)m\beta_m X_m \\ &= O(1) \sum_{v=1}^{m-1} v |\Delta\beta_v| X_v + O(1) \sum_{v=1}^{m-1} |\beta_v| X_v + O(1)m\beta_m X_m \\ &= O(1) \sum_{v=1}^{m-1} v |\Delta\beta_v| X_v + O(1) \sum_{v=1}^{m-1} |\beta_v| X_v + O(1)m\beta_m X_m \\ &= O(1) \sum_{v=1}^{m-1} v |\Delta\beta_v| X_v + O(1) \sum_{v=1}^{m-1} |\beta_v| X_v + O(1)m\beta_m X_m \\ &= O(1) \sum_{v=1}^{m-1} v |\Delta\beta_v| X_v + O(1) \sum_{v=1}^{m-1} |\beta_v| X_v + O(1)m\beta_m X_m \\ &= O(1) \sum_{v=1}^{m-1} v |\Delta\beta_v| X_v + O(1) \sum_{v=1}^{m-1} |\beta_v| X_v + O(1)m\beta_m X_m \\ &= O(1) \sum_{v=1}^{m-1} v |\Delta\beta_v| X_v + O(1) \sum_{v=1}^{m-1} |\beta_v| X_v + O(1)m\beta_m X_m \\ &= O(1) \sum_{v=1}^{m-1} v |\Delta\beta_v| X_v + O(1) \sum_{v=1}^{m-1} |\beta_v| X_v + O(1)m\beta_m X_m \\ &= O(1) \sum_{v=1}^{m-1} v |\Delta\beta_v| X_v + O(1) \sum_{v=1}^{m-1} |\beta_v| X_v + O(1)m\beta_m X_m \\ &= O(1) \sum_{v=1}^{m-1} v |A\beta_v| X_v + O(1) \sum_{v=1}^{m-1} |\beta_v| X_v + O(1)m\beta_v X_m \\ &= O(1) \sum_{v=1}^{m-1} v |A\beta_v| X_v + O(1) \sum_{v=1}^{m-$$

in view of (1.11), (2.3) and (2.4).

Again

$$\begin{split} \sum_{n=1}^{m} \frac{1}{n} |T_{n,2}|^k &= \sum_{n=1}^{m} |\lambda_n|^k \frac{|t_n|^k}{n} \\ &= \sum_{n=1}^{m} |\lambda_n|^{k-1} |\lambda_n| \frac{|t_n|^k}{n} = O(1) \sum_{n=1}^{m} |\lambda_n| \frac{|t_n|^k}{n} \quad \text{(by (2.2))} \\ &= O(1) \sum_{n=1}^{m-1} \Delta |\lambda_n| \sum_{v=1}^{n} \frac{|t_v|^k}{v} + O(1) |\lambda_m| \sum_{n=1}^{m} \frac{|t_n|^k}{n} \\ &= O(1) \sum_{n=1}^{m-1} |\Delta\lambda_n| X_n + O(1) |\lambda_m| X_m \quad \text{(by (2.1))} \\ &= O(1) \sum_{n=1}^{m-1} \beta_n X_n + O(1) |\lambda_m| X_m = O(1) \quad \text{as } m \to \infty, \end{split}$$

by virtue of (1.8) and (2.4). This completes the proof of the theorem.

REFERENCES

- [1] S. ALJANČIĆ AND D. ARANDELOVIĆ, O-regularly varying functions, Publ. Inst. Math., 22 (1977), 5–22.
- [2] H. BOR, Absolute Nörlund summability factors, J. Inequal. Pure Appl. Math., 6(3) (2005), Art. 62.
 [ONLINE http://jipam.vu.edu.au/article.php?sid=535].
- [3] D. BORWEIN AND F.P. CASS, Strong Nörlund summability, Math. Zeith., 103 (1968), 94–111.
- [4] T.M. FLETT, On an extension of absolute summability and some theorems of Littlewood and Paley, *Proc. London Math. Soc.*, **7** (1957), 113–141.
- [5] L. LEINDLER, A new application of quasi power increasing sequences, *Publ. Math. Debrecen*, **58** (2001), 791–796.
- [6] R.S. VARMA, On the absolute Nörlund summability factors, *Riv. Math. Univ. Parma* (4), **3** (1977), 27–33.

5