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ABSTRACT. Inspired by a result of Chuprunov and Fazekas, we prove sharp inequalities be-
tween centered moments of the same order, but with respect to different probability measures.
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1. INTRODUCTION

The following inequality was proved by A. Chuprunov and I. Fazekas [3].
Consider the probability measuieand the conditional probability measuf with respect
to the fixed eventl. LetE4 denote the expectation with respecitd. Then

E|S — ES|P
P(A)
There are several inequalities involving centered moments known in the literature. Most of

them are between different moments of the same random variable, like Lyapunov’s classical
result

(1.1) EA|S — EAS|P < 227!

(EIS|9)"" < (E|S|P)(E[S|")"

for0 < p < ¢ < r. Anew inequality of the same taste for centered-like moments is presented in
[6], and generalized in[1]. There exist momentinequalities in particular cases, where additional
conditions, such as unimodality or boundedness, are imposed on the distributions, see e.g. [2]
and [4], also the monographl[5].

In the Chuprunov—Fazekas inequality the order of the moment is the same on both sides.
What differs is the underlying probability measure. In that case centering cannot be considered
as a special case of the general (uncentered) problem; it needs further attention.
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2 TAMAS F. MORI

In this note we extend, generalize and sharpen inequility (1.1). We start from the observation
thatP4 < P, and%f = ﬁ, wherel 4 stands for the indicator of evert. First we extend
inequality [I.1), with a rather simple proof.

Theorem 1.1.LetP; and P, be probability measures defined on the same measurable space.
LetE; andE,, resp., denote the corresponding expectations. As®jnee P,, andsup % =
C < . Letp > 1 and suppose that, |S|? < oo, then

(1.2) E.|S —E; S|P < C2° Ey|S — EoS)P.
Proof. Let S = S — E,S, then
E1|S — E1 S|P = E|S" — E 5P
< 27H(E S + [ES'P)
< PRSP < C2P Ey|S'|P = O 2P Kol S — EyS|P.
O
In particular, wher?, = P andP; = P4, we obtain the Chuprunov—Fazekas inequality with
27 in place of2??~! on the right-hand side.
In Sectior] 2 we derive sharp inequalities between centetiedhoments of the same random

variable with respect to different probability measures. In Se¢fjon 3 we return to the original
problem of Chuprunov and Fazekas, comparing conditional and unconditional moments.

2. COMPARISON OF CENTERED MOMENTS WITH RESPECT TO DIFFERENT
PROBABILITY MEASURES

In this section we investigate to what extent the cons?arttan be decreased in inequality
(1.7). From the proof of Theorem 1.1 it is clear that we are looking for the minimal positive
numberC,, with which the inequalityt|S — ES|” < C, E|S|” holds for every random variable
S having finitep th moment. That is,

E|S —ES|”

E[S]”

First we determine”,, then we set bounds for it, and analyze its asymptotic behaviour as
p — Q.

(2.2) Cp, = max

Theorem 2.1.C; = 2, and forp > 1

1 p-1

(2.2) C, = max <ap_1 +(1- a)p_1> (oulﬁ + (1 — a)ﬁ)

O<a<1

Proof. For the sake of convenience introduce- p — 1.
Suppose first that > 1, that is,q > 0.
Let the distribution ofS be the following:P(S = —z) =1 — «,P(S = 1 — x) = «, where
al/q

(2.3) - at/i4+ (1 —a)l/e

It follows that
a(l — )1 — (1 —a)al/ a(l —a)

al/a + (1 —a)la ’ (al/q + (1 — a)l/q)q ’
In addition,P(S —ES = —a) =1 —aandP(S —ES =1 — a) = a, hence
(2.5) E|S —ES[" = a(l — o) (a? + (1 — a)?).

(2.4) ES =

E[S|” =
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By (2.4) and [(2.p) it follows thaC’, is not less than the maximum on the right-hand side of

2.2).

On the other hand, I[ES = candY = S — ¢, then

(2.6) C,=m _ENF ER,EY =0, P(Y +c=0) < 1

. p = mMax E]Y—i—c]p'c , =0, c= .

Every zero mean probability distribution is a mixture of distributions concentrated on two
points and having zero mean. Thus the maximum does not change if we only consider random
variables with not more than two possible values. We can also assume that these two values are
—aandl — o, whered < a < 1;inthatcas@®(Y = —a) =1—aandP(Y =1 —«a) = a.

We now fixa: and find ac that maximizes the fraction in (2.6). To do this one has to minimize
the expression

ElY+cff=(1-a)|—a+cf+a|]l —a+cff
in c. This is increasing for > «, and decreasing far < o — 1. We can, therefore, suppose
thatao — 1 < ¢ < q, SO

(2.7 EY +¢ff=(1-a)(a—c)+a(c+1—a).

Differentiating this with respect to we getp(—(1 — a) (a — ¢)? + a(c+ 1 — a)?), from
which
al/q
=«
/a4 (1— @)I/q
with z defined in[(2.8). ThuB(Y +c= —z) =1—a, P(Y +¢=1—-1z) = «, and, following
the calculations that led tp (2.4), we arrive at

‘E@—Tiw = (a7 + (-] (@04 (0 -yt

This proves[(2.2).
If we next letp = 1 then, on the one hantl|S — ES| < E|S| + |[ES| < 2E|S|, thusC; < 2.

Onthe other hand, P(S = 1) = o, P(S = 0) = 1—q, thenE|S| = o, E|S-ES| = 2a(1—a),

_LU,

implying thatC; > 2(1 — «) for arbitrary0 < o < 1. O
Theorem 2.2.
17+ 77 17+ 77
(2.8)  Cypp = +—\/_:1,1469..., Cy =1, 03:+—\/_:1,3155...,
27 27
(2.9) 1<C, <22l

and if% + 1 =1, then
(2.10) C, =yt

Proof. The value ofC; follows obviously from Theorer 2.1, while gettin@; requires more
extensive but straightforward calculations. From this the valug;of follows by (2.10), since
3 and3/2 are conjugate numbers. Equatipn (2.10) itself is an obvious corolldry {o (2.2), because

(p—1)(r—1)=1.
For an arbitrary positive exponesnbne can writex® + (1 —a)® < 2(1-9)" therefore we have

C, < 9(2=p)* o(p-2)" _ 9lp—2|
The lower bound in(2]9) is obvious. O
Since2 < p < oo & 1 <r <2, by (2.10) it suffices to focus on the cgse- 2.
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Theorem 2.3.1f p > 2 thenC,, > % andC, ~ \2/’% , asp — 00.
Proof. Introduce the notatiorfi(a) = (a?+ (1 — a)?) (/7 + (1 — a)"/7)". First we show that
2.11 C L), 2
: >f—] > :
- =1(5) > 7

Indeed, since

1 1
a \2 1—a\2
l1—«a e’

thereforen/? + (1 — a)'/4 > 2(a(1 — a))l/zq, from which

1
fla) > 21(1 - a)™"2/a,
By substitutingy = 2ip and using the fact that

1 2p-1
(1_i>q4r2: <2p—1> 2 >6_1/2,
2p 2p
we immediately obtairf (2.11), as needed.
We now turn our attention to the upper estimation. By symmetry we may supposge ¢hat
a < 1/2. We will show that ~ 2iq holds for the argument of the maximum.

First, leta < (cq) ™!, wherec is sufficiently large (specified later), we then have
fla) < (1 + al/q)q

- 2‘1<1 - %(1 - al/Q))q

< 21 exp(—g(l - al/q)>
1\
<ron(-3(1- (1))
2 cq
Here the Taylor expansion gives
1 1 0 /(1 ’
(2.12) al/q:exp<—loga>:1+—loga+—(oga),
q q 2\ ¢

where0 < 6 < 1. Thus, ifg > ¢,

1 1 2 24 1 2
fla) <27 exp (—§log(cq) + _Og4c(]cq)) < - eXp( ogi c>;

this is still less than the lower estimation we derived for the maximurp in(2.11); for instance,
whenc = 16.

Secondly, letv > %log q, then, applying the trivial estimatiatf to the second term of («)
we get

q

1 q 2
< 21( 279 S < —
fla) <2 (2 —|—<1 qlogq) > <1+ 7
which is still less than the lower boundif> 8.
Finally, let ;. < a < _logg, then, by((2.1p),

2
al/q:Hlogam(aogq) )
q
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uniformly in . Moreover,

L—O—af”<——g—§=0<byv’

Tql-a ¢
hence
1/q _ o)/ 2
a4+ (1 —a) :1+loga+0 (log q)
2 2q q2
1 1 2
= exp( 02ga +O(( Og;]) ))
q q
Consequently,
2
e sy oo o5
q

uniformly in a.

The first term of f(«)) can be estimated in the following way. The functieh(1 — «) is
decreasing, hence in the considered domain we havee*(1 — o) = 1 + O(¢~?). Thus
l—a=e¢(1+0(q?)), thereforeg(l1 — )’ = e7%(1 + O(¢™")). In the end we obtain that

(2.14) al+(1—a)=e"(1+0(q").

Considering both (2.13) and (2114) we conclude that, uniformly in the domain under consider-
ation,

fla) =2%ae ™ (1+0(¢ ).
Letarg max f(a) = %‘1 For everyy large enough we have/c < z, < log ¢, hence
29 i - -1
max f(a) = —-x./%e (1 + O(q )
By virtue of all these it is clear that, — arg max z'/2¢~* = 1/2, andmax f(a) ~ \/22—%1 , as
stated.

By applying [2.1D) to Theoreim 3.3 we can derive similar results for the casp < 2.

€/2
Corollary 2.4. Let0 < e < 1. ThenC},. > 2 (m) , and

Ciie =2 —clog(1l/e) — (1 +1og2) + o(e),
ase — 0.

3. COMPARISON OF CONDITIONAL AND UNCONDITIONAL MOMENTS

Returning to the special case of Chuprunov and Fazekas, i fix > 0, and look for the
minimal positive constank” = K (p, P(A)), for which the inequality

K
. A _ mAQP < _ p
(3.1) E*S —E2S|” < —]P(A) E|S — ES]|
holds for every random variable having finitep th moment. Then it follows that
(3.2) 1<K <G,

The upper bound is obvious, while the lower bound can be seen from the exampleSvadre
on the complement of,, andES = 0.
How much can this be improved, however?
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Theorem 3.1. Representin@’(A) /(1 — P(A)) by R,
yxP + xyP
3.3 K= .
&) R Y D T aly— 1P + BT @+ )
If p=1orp=2,thenkK = 1.
Suppose that < 2, then

2
3.4
(34) 1+ P(A)P!
Suppose thgt > 2, then
(1-PA)'C,

(3.5) K <
! ol if P(A) > U/
P(AP T P
Remark 1. For arbitraryP(A) we have
1—P(A)

P(A) (1— P(A)" "+ BAY ' (CIP — 1) BA)"

and equality holds if and only iP(A) = (Jp_l/p.
In order to show this, Ie((];/p — 1) be denoted by, then the left-hand side .6) can be

rewritten in the form
(z+1)P
14 RP lgr’
By differentiating, one can easily verify that

(z +1)P _<R+1Y1 1

P(A)

Y

01+ RPr \ R -
and the maximum is attained at= 1/ R.

Remark 2. WhenC,, is not explicitly known, we can substitutg, by its upper estimate?—>
everywhere in[(3]5), including the conditions of the cases. This is justified, because

(z+1)
1+ RP'gp
is an increasing function af for = < 1/R, that is, wheneveP(A) < C;, /7.
Proof of Theorem 3]1From (3.1) it follows that
(3.7) K — sup P(A)E4|S — EAS|?
5 E|S —ES}

We may assume tha@*S = 0. Let B denote the complement of evest In the denominator
of 3. 7)) ES = P(B)EPS, and

E|S —ES| =P(A)E* |S —P(B)E”S|" + P(B)E” |S — P(B)E"S|"
> P(A)E* |S — P(B)E?S|” + P(B) |[E?S — P(B)EPS|"
=P(A)E* |S —P(B)E"S|" + P(A) R"" |P(B)E"S|".

Equality holds, for example, if is constant on the ever?. At this point we remark that the
conditional distributions of' given A, or B, resp., can be prescribed arbitrarily, provided that
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EAS = 0, andE4|S|? < oo, EB|S|P < oo. In a sufficiently rich probability space one can
construct a random variabkand an event! in such a way thaP(A) and the conditional dis-
tributions of S given A and its complemenB meet the specifications. K andY are arbitrary
random variables and the evestis independent of them, then the conditional distribution of
S =1,X+1IgY givenA, resp.B, is equal to the distribution ok, resp.Y. Hence we can
suppose that' is constant orB and focus on the conditional distribution given

If EBS = 0, thenE |S — ES|” = P(A)E4|S[’. In what follows we assumB®S # 0. The
right-hand side 07) is homogeneousdnthus we may also suppose thigtB) EZS = 1.
Consequently, we have to find

(3.8) K =su { E7|Sp -E&S—o}
' IR ST T e
From [2.]) it follows that
EASP 4

As in the proof of Theorein 2.1, it suffices to deal with random variables with just two possible
values. Let these bex andy, with positivex andy, then

X

PAS = —2)= —2—, PYS=y) =

T4y’ T4y’

because of the vanishing conditional expectation. Thus we have
EA|S[P B yaP + xyP
EAIS — 11"+ R"™Y yle+ 1D +aly — 1 + RP ' (z+y)
which, together with[(3]8), imply (3] 3).
Supposek” > 1. If either z or y tends to infinity, the right-hand side ¢f (3]10) converges to
1, thus the supremum is attained at somandy.

First we show that < y. Suppose, to the contrary, that< y < 1. Letz = 2 — y, then
z>y,|z—1] = |y — 1], and

(3.10)

zaP + x2P B 2P + x2Pt
2+ 1P +x|lz—1FP+ R Yz 42) (c+1)P +zly—11"/2+ RP11+1/z2)
- 2P + zyP?
(z+ 1) +zly — 1 /y + R (1 +2/y)
yaP + ryP

Cyr 4+ D aly— 1P+ R (@ +y)

At this point, the case g = 1 follows immediately, since the right-hand side pf (3.10) is

always less that,
% yxr + 2y T
= su = su =
oot Y+ )+ oy — 1)+ (@ +y) 507 +1

The case op = 2 is implied by [3.2), sinc&’;, = 2.

Next we show that < y or z > y, according to whether > 2 orp < 2.

Indeed, sincez? + zy? > y(z + 1)? + z(y — 1)? must hold, we have

0 <y’ +ay’ —ylz+ 1) +2(y—1)
< —ypa? Tt +apy?™t = pry(yP? — 2P7?).
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Letp < 2. Then
xyP + yaP
y(o + 1 +a(y —1)" + R* ' (z +y)
ry” + yaP
“yrr +a(y — 1P+ RP
yP +yat!
yz =+ (y = 1)+ RPTH
If = is increased, the same positive quantity is added to the numerator and the denominator of

the fraction on the right-hand side. As a result, the value of the fraction decreases. Thus we can
obtain an upper estimate by changingp y, namely,

p
R —231/)” + R
One can easily verify that the maximum of the right-hand side is attainge-ak + 1. Thus
2(R+ 1) B 2
T (R+1P+ RP+ RPN 14 PAPTY
Finally, let us turn to the cage> 2. Applying the trivial inequality

(3.11) 1< K=

a+b a b
C—I—dgmaX{E’ }7 aubac7d207
to the right-hand side of (3.1.0) we get
3.12 K <
(542 - max{ @+ 1P+ R (y—1) + R“}
yp
IUESVE

which has to be greater than 1.
Another estimate can be obtained by applying the inequality

ya? +ay” < Cp(y(x + 1) + zly — 1),
which comes from[(3]9), to the denominator on the right-hand side of|(3.10). It follows that
< Cr :
T 1+ C, RV L

xyP+yxP

The right-hand side is an increasing function of betandy. Hence we can increaseto its
upper bound;, obtaining
Cpy?

3.13 .
(313) Ty + C, R

From (3.12) and (3.13) it follows that

P P
(3.14) K < max min{ J — Cry — }
y=1 (y—1)"+ R? y? + C, RP

The second function on the right-hand side is increasing; the first one is increasing at the begin-
ning, then decreasing. Its maximum igjat R + 1. At y = 1 the first function is greater than
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the second one, while the converse is true for every sufficiently largée two functions are
equal at
1
Cp/p
cr—1
thus fory < y, the first one, and foy > y, the second one is greater. Therefore[in (3.14) the

maximum is equal to the maximum of the first functiorkif- 1 < y,, while in the complemen-
tary case it is the common valuewat Elementary calculations lead {o (B.5). O

Yo =

9
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