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ABSTRACT. Inspired by a result of Chuprunov and Fazekas, we prove sharp inequalities be-
tween centered moments of the same order, but with respect to different probability measures.
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1. I NTRODUCTION

The following inequality was proved by A. Chuprunov and I. Fazekas [3].
Consider the probability measureP and the conditional probability measurePA with respect

to the fixed eventA. LetEA denote the expectation with respect toPA. Then

(1.1) EA|S − EAS|p ≤ 22p−1 E|S − ES|p

P(A)
.

There are several inequalities involving centered moments known in the literature. Most of
them are between different moments of the same random variable, like Lyapunov’s classical
result (

E|S|q
)r−p ≤

(
E|S|p

)r−q(E|S|r
)q−p

for 0 < p < q < r. A new inequality of the same taste for centered-like moments is presented in
[6], and generalized in [1]. There exist moment inequalities in particular cases, where additional
conditions, such as unimodality or boundedness, are imposed on the distributions, see e.g. [2]
and [4], also the monograph [5].

In the Chuprunov–Fazekas inequality the order of the moment is the same on both sides.
What differs is the underlying probability measure. In that case centering cannot be considered
as a special case of the general (uncentered) problem; it needs further attention.
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2 TAMÁS F. MÓRI

In this note we extend, generalize and sharpen inequality (1.1). We start from the observation
thatPA � P, and d PA

d P = IA

P(A)
, whereIA stands for the indicator of eventA. First we extend

inequality (1.1), with a rather simple proof.

Theorem 1.1. Let P1 andP2 be probability measures defined on the same measurable space.
Let E1 andE2, resp., denote the corresponding expectations. AssumeP1 � P2, andsup dP1

dP2
=

C < ∞. Letp ≥ 1 and suppose thatE1|S|p < ∞, then

(1.2) E1|S − E1S|p ≤ C 2p E2|S − E2S|p.

Proof. Let S ′ = S − E2S, then

E1|S − E1S|p = E1|S ′ − E1S
′|p

≤ 2p−1 (E1|S ′|p + |E1S
′|p)

≤ 2p E1|S ′|p ≤ C 2p E2|S ′|p = C 2p E2|S − E2S|p.
�

In particular, whenP2 = P andP1 = PA, we obtain the Chuprunov–Fazekas inequality with
2p in place of22p−1 on the right-hand side.

In Section 2 we derive sharp inequalities between centeredp th moments of the same random
variable with respect to different probability measures. In Section 3 we return to the original
problem of Chuprunov and Fazekas, comparing conditional and unconditional moments.

2. COMPARISON OF CENTERED M OMENTS WITH RESPECT TO DIFFERENT

PROBABILITY M EASURES

In this section we investigate to what extent the constant2p can be decreased in inequality
(1.2). From the proof of Theorem 1.1 it is clear that we are looking for the minimal positive
numberCp with which the inequalityE|S − ES|p ≤ Cp E|S|p holds for every random variable
S having finitep th moment. That is,

(2.1) Cp = max
S

E|S − ES|p

E|S|p
.

First we determineCp, then we set bounds for it, and analyze its asymptotic behaviour as
p →∞.

Theorem 2.1.C1 = 2, and forp > 1

(2.2) Cp = max
0<α<1

(
αp−1 + (1− α)p−1

)(
α

1
p−1 + (1− α)

1
p−1

)p−1

.

Proof. For the sake of convenience introduceq = p− 1.
Suppose first thatp > 1, that is,q > 0.
Let the distribution ofS be the following:P(S = −x) = 1− α, P(S = 1− x) = α, where

(2.3) x =
α1/q

α1/q + (1− α)1/q
.

It follows that

(2.4) ES =
α(1− α)1/q − (1− α)α1/q

α1/q + (1− α)1/q
, E|S|p =

α(1− α)(
α1/q + (1− α)1/q

)q .

In addition,P(S − ES = −α) = 1− α andP(S − ES = 1− α) = α, hence

(2.5) E|S − ES|p = α(1− α)
(
αq + (1− α)q

)
.
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SHARP INEQUALITIES BETWEEN CENTEREDMOMENTS 3

By (2.4) and (2.5) it follows thatCp is not less than the maximum on the right-hand side of
(2.2).

On the other hand, ifES = c andY = S − c, then

(2.6) Cp = max

{
E|Y |p

E|Y + c|p
: c ∈ R, EY = 0, P(Y + c = 0) < 1

}
.

Every zero mean probability distribution is a mixture of distributions concentrated on two
points and having zero mean. Thus the maximum does not change if we only consider random
variables with not more than two possible values. We can also assume that these two values are
−α and1− α, where0 < α < 1; in that caseP(Y = −α) = 1− α andP(Y = 1− α) = α.

We now fixα and find ac that maximizes the fraction in (2.6). To do this one has to minimize
the expression

E|Y + c|p = (1− α) | − α + c|p + α |1− α + c|p

in c. This is increasing forc ≥ α, and decreasing forc ≤ α − 1. We can, therefore, suppose
thatα− 1 ≤ c ≤ α, so

(2.7) E|Y + c|p = (1− α) (α− c)p + α (c + 1− α)p.

Differentiating this with respect toc we getp
(
−(1 − α) (α− c)q + α (c + 1− α)q), from

which

c = α− α1/q

α1/q + (1− α)1/q
= α− x,

with x defined in (2.3). ThusP(Y + c = −x) = 1− α, P(Y + c = 1− x) = α, and, following
the calculations that led to (2.4), we arrive at

E|Y |p

E|Y + c|p
=

(
αq + (1− α)q

)(
α1/q + (1− α)1/q

)q

.

This proves (2.2).
If we next letp = 1 then, on the one hand,E|S −ES| ≤ E|S|+ |ES| ≤ 2E|S|, thusC1 ≤ 2.

On the other hand, ifP(S = 1) = α, P(S = 0) = 1−α, thenE|S| = α, E|S−ES| = 2α(1−α),
implying thatC1 ≥ 2(1− α) for arbitrary0 < α < 1. �

Theorem 2.2.

C3/2 =

√
17 + 7

√
7

27
= 1,1469 . . . , C2 = 1, C3 =

17 + 7
√

7

27
= 1,3155 . . . ,(2.8)

1 ≤ Cp ≤ 2|p−2|,(2.9)

and if 1
p

+ 1
r

= 1, then

(2.10) Cr = C r−1
p .

Proof. The value ofC2 follows obviously from Theorem 2.1, while gettingC3 requires more
extensive but straightforward calculations. From this the value ofC3/2 follows by (2.10), since
3 and3/2 are conjugate numbers. Equation (2.10) itself is an obvious corollary to (2.2), because
(p− 1)(r − 1) = 1.

For an arbitrary positive exponents one can writeαs +(1−α)s ≤ 2(1−s)+ , therefore we have

Cp ≤ 2(2−p)+ 2(p−2)+ = 2|p−2|.

The lower bound in (2.9) is obvious. �

Since2 ≤ p < ∞⇔ 1 < r ≤ 2, by (2.10) it suffices to focus on the casep ≥ 2.
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4 TAMÁS F. MÓRI

Theorem 2.3. If p ≥ 2 thenCp ≥ 2p−1
√

2ep
, andCp ∼ 2p−1

√
2ep

, asp →∞.

Proof. Introduce the notationf(α) =
(
αq + (1−α)q

)(
α1/q + (1−α)1/q

)q
. First we show that

(2.11) Cp ≥ f

(
1

2p

)
≥ 2p−1

√
2ep

.

Indeed, since (
α

1− α

) 1
2q

+

(
1− α

α

) 1
2q

≥ 2,

thereforeα1/q + (1− α)1/q ≥ 2
(
α(1− α)

)1/2q
, from which

f(α) ≥ 2q(1− α)q+
1
2
√

α.

By substitutingα = 1
2p

, and using the fact that(
1− 1

2p

)q+
1
2

=
(2p− 1

2p

)2p−1
2 ≥ e−1/2,

we immediately obtain (2.11), as needed.
We now turn our attention to the upper estimation. By symmetry we may suppose that0 <

α ≤ 1/2. We will show thatα ∼ 1
2q

holds for the argument of the maximum.
First, letα ≤ (cq)−1, wherec is sufficiently large (specified later), we then have

f(α) ≤
(
1 + α1/q

)q

= 2q
(
1− 1

2

(
1− α1/q

))q

< 2q exp
(
−q

2

(
1− α1/q

))
≤ 2q exp

(
−q

2

(
1−

( 1

cq

)1/q))
.

Here the Taylor expansion gives

(2.12) α1/q = exp
(1

q
log α

)
= 1 +

1

q
log α +

θ

2

(
log α

q

)2

,

where0 ≤ θ ≤ 1. Thus, ifq ≥ c,

f(α) ≤ 2q exp

(
−1

2
log(cq) +

log2(cq)

4q

)
≤ 2q

√
cq

exp

(
log2 c

c

)
;

this is still less than the lower estimation we derived for the maximum in (2.11); for instance,
whenc = 16.

Secondly, letα > 1
q
log q, then, applying the trivial estimation2q to the second term off(α)

we get

f(α) ≤ 2q
(
2−q +

(
1− 1

q
log q

)q)
≤ 1 +

2q

q
;

which is still less than the lower bound ifp ≥ 8.
Finally, let 1

cq
< α < 1

q
log q, then, by (2.12),

α1/q = 1 +
log α

q
+ O

(
(log q)2

q2

)
,

J. Inequal. Pure and Appl. Math., 10(4) (2009), Art. 99, 9 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


SHARP INEQUALITIES BETWEEN CENTEREDMOMENTS 5

uniformly in α. Moreover,

1− (1− α)1/q ≤ α

q(1− α)
= O

(
log q

q2

)
,

hence

α1/q + (1− α)1/q

2
= 1 +

log α

2q
+ O

(
(log q)2

q2

)
= exp

(
log α

2q
+ O

(
(log q)2

q2

))
.

Consequently,

(2.13)
(
α1/q + (1− α)1/q

)q
= 2q

√
α

(
1 + O

(
(log q)2

q

))
,

uniformly in α.
The first term off(α) can be estimated in the following way. The functioneα(1 − α) is

decreasing, hence in the considered domain we have1 ≥ eα(1 − α) = 1 + O(q−2). Thus
1− α = e−α

(
1 + O(q−2)

)
, therefore(1− α)q = e−qα

(
1 + O(q−1)

)
. In the end we obtain that

(2.14) αq + (1− α)q = e−qα
(
1 + O(q−1)

)
.

Considering both (2.13) and (2.14) we conclude that, uniformly in the domain under consider-
ation,

f(α) = 2q
√

α e−qα
(
1 + O(q−1)

)
.

Let arg max f(α) = xq

q
. For everyq large enough we have1/c ≤ xq ≤ log q, hence

max f(α) =
2q

√
q
· x1/2

q e−xq
(
1 + O(q−1)

)
.

By virtue of all these it is clear thatxq → arg max x1/2e−x = 1/2, andmax f(α) ∼ 2q
√

2eq
, as

stated. �

By applying (2.10) to Theorem 2.3 we can derive similar results for the case1 < p ≤ 2.

Corollary 2.4. Let0 < ε ≤ 1. ThenC1+ε ≥ 2
(

ε
2e(1+ε)

)ε/2

, and

C1+ε = 2− ε log(1/ε)− ε(1 + log 2) + o(ε),

asε → 0.

3. COMPARISON OF CONDITIONAL AND UNCONDITIONAL M OMENTS

Returning to the special case of Chuprunov and Fazekas, we fixP(A) > 0, and look for the
minimal positive constantK = K(p, P(A)), for which the inequality

(3.1) EA|S − EAS|p ≤ K

P(A)
E|S − ES|p

holds for every random variableS having finitep th moment. Then it follows that

(3.2) 1 ≤ K ≤ Cp.

The upper bound is obvious, while the lower bound can be seen from the example whereS = 0
on the complement ofA, andES = 0.

How much can this be improved, however?
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6 TAMÁS F. MÓRI

Theorem 3.1.RepresentingP(A)/(1− P(A)) byR,

(3.3) K = sup
x,y>0

yxp + xyp

y(x + 1)p + x|y − 1|p + R p−1(x + y)
.

If p = 1 or p = 2, thenK = 1.
Suppose thatp < 2, then

(3.4) K ≤ 2

1 + P(A)p−1 .

Suppose thatp > 2, then

(3.5) K ≤



(
1− P(A)

)p−1
Cp(

1− P(A)
)p−1

+ P(A)p−1(C1/p
p − 1

)p , if P(A) ≤ C−1/p
p ,

1

P(A)p−1 ≤ C
1− 1

p
p , if P(A) > C−1/p

p .

Remark 1. For arbitraryP(A) we have

(3.6)
Cp

P(A)
·

(
1− P(A)

)p−1(
1− P(A)

)p−1
+ P(A)p−1(C1/p

p − 1
)p ≤

1

P(A)p ,

and equality holds if and only ifP(A) = C
−1/p
p .

In order to show this, let
(
C

1/p
p − 1

)
be denoted byx, then the left-hand side of (3.6) can be

rewritten in the form
(x + 1)p

1 + R p−1xp
.

By differentiating, one can easily verify that

max
x≥0

(x + 1)p

1 + R p−1xp
=

(
R + 1

R

)p−1

=
1

P(A)p−1 ,

and the maximum is attained atx = 1/R.

Remark 2. WhenCp is not explicitly known, we can substituteCp by its upper estimate2p−2

everywhere in (3.5), including the conditions of the cases. This is justified, because

(x + 1)p

1 + R p−1xp

is an increasing function ofx for x ≤ 1/R, that is, wheneverP(A) ≤ C
−1/p
p .

Proof of Theorem 3.1.From (3.1) it follows that

(3.7) K = sup
S

P(A) EA
∣∣S − EAS

∣∣p
E |S − ES|p

.

We may assume thatEAS = 0. Let B denote the complement of eventA. In the denominator
of (3.7)ES = P(B) EBS, and

E |S − ES|p = P(A) EA
∣∣S − P(B) EBS

∣∣p + P(B) EB
∣∣S − P(B) EBS

∣∣p
≥ P(A) EA

∣∣S − P(B) EBS
∣∣p + P(B)

∣∣EBS − P(B) EBS
∣∣p

= P(A) EA
∣∣S − P(B) EBS

∣∣p + P(A)R p−1
∣∣P(B) EBS

∣∣p .

Equality holds, for example, ifS is constant on the eventB. At this point we remark that the
conditional distributions ofS givenA, or B, resp., can be prescribed arbitrarily, provided that
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EAS = 0, andEA|S|p < ∞, EB|S|p < ∞. In a sufficiently rich probability space one can
construct a random variableS and an eventA in such a way thatP(A) and the conditional dis-
tributions ofS givenA and its complementB meet the specifications. IfX andY are arbitrary
random variables and the eventA is independent of them, then the conditional distribution of
S = IA X + IB Y givenA, resp.B, is equal to the distribution ofX, resp.Y . Hence we can
suppose thatS is constant onB and focus on the conditional distribution givenA.

If EBS = 0, thenE |S − ES|p = P(A)EA|S|p. In what follows we assumeEBS 6= 0. The
right-hand side of (3.7) is homogeneous inS, thus we may also suppose thatP(B) EBS = 1.
Consequently, we have to find

(3.8) K = sup

{
EA|S|p

EA|S − 1|p + R p−1 : EAS = 0

}
.

From (2.1) it follows that

(3.9) sup

{
EA|S|p

EA|S − 1|p
: EAS = 0

}
= Cp.

As in the proof of Theorem 2.1, it suffices to deal with random variables with just two possible
values. Let these be−x andy, with positivex andy, then

PA(S = −x) =
y

x + y
, PA(S = y) =

x

x + y
,

because of the vanishing conditional expectation. Thus we have

(3.10)
EA|S|p

EA|S − 1|p + R p−1 =
yxp + xyp

y(x + 1)p + x|y − 1|p + R p−1(x + y)
,

which, together with (3.8), imply (3.3).
SupposeK > 1. If eitherx or y tends to infinity, the right-hand side of (3.10) converges to

1, thus the supremum is attained at somex andy.
First we show that1 ≤ y. Suppose, to the contrary, that0 < y < 1. Let z = 2 − y, then

z > y, |z − 1| = |y − 1|, and

zxp + xzp

z(x + 1)p + x|z − 1|p + R p−1(x + z)
=

xp + xzp−1

(x + 1)p + x|y − 1|p/z + R p−1(1 + x/z)

>
xp + xyp−1

(x + 1)p + x|y − 1|p/y + R p−1(1 + x/y)

=
yxp + xyp

y(x + 1)p + x|y − 1|p + R p−1(x + y)
.

At this point, the case ofp = 1 follows immediately, since the right-hand side of (3.10) is
always less than1,

K = sup
x>0, y≥1

yx + xy

y(x + 1) + x(y − 1) + (x + y)
= sup

x>0

x

x + 1
= 1.

The case ofp = 2 is implied by (3.2), sinceC2 = 2.
Next we show thatx ≤ y or x ≥ y, according to whetherp > 2 or p < 2.
Indeed, sinceyxp + xyp > y(x + 1)p + x(y − 1)p must hold, we have

0 < yxp + xyp − y(x + 1)p + x(y − 1)p

< −ypxp−1 + xpyp−1 = pxy
(
yp−2 − xp−2

)
.
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Let p < 2. Then

1 < K =
xyp + yxp

y(x + 1)p + x(y − 1)p + R p−1(x + y)
(3.11)

≤ xyp + yxp

yxp + x(y − 1)p + R p−1x

=
yp + yxp−1

yxp−1 + (y − 1)p + R p−1 .

If x is increased, the same positive quantity is added to the numerator and the denominator of
the fraction on the right-hand side. As a result, the value of the fraction decreases. Thus we can
obtain an upper estimate by changingx to y, namely,

K ≤ 2yp

yp + (y − 1)p + R p−1 .

One can easily verify that the maximum of the right-hand side is attained aty = R + 1. Thus

K ≤ 2(R + 1)p

(R + 1)p + R p + R p−1 =
2

1 + P(A)p−1 .

Finally, let us turn to the casep > 2. Applying the trivial inequality

a + b

c + d
≤ max

{a

c
,

b

d

}
, a, b, c, d ≥ 0,

to the right-hand side of (3.10) we get

K ≤ max

{
xp

(x + 1)p + R p−1 ,
yp

(y − 1)p + R p−1

}
(3.12)

=
yp

(y − 1)p + R p−1 ,

which has to be greater than 1.
Another estimate can be obtained by applying the inequality

yxp + xyp ≤ Cp

(
y(x + 1)p + x|y − 1|p

)
,

which comes from (3.9), to the denominator on the right-hand side of (3.10). It follows that

K ≤ Cp

1 + Cp R p−1 x+y
xyp+yxp

.

The right-hand side is an increasing function of bothx andy. Hence we can increasex to its
upper boundy, obtaining

(3.13) K ≤ Cp yp

yp + Cp R p−1 .

From (3.12) and (3.13) it follows that

(3.14) K ≤ max
y≥1

min

{
yp

(y − 1)p + R p−1 ,
Cp yp

yp + Cp R p−1

}
.

The second function on the right-hand side is increasing; the first one is increasing at the begin-
ning, then decreasing. Its maximum is aty = R + 1. At y = 1 the first function is greater than
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the second one, while the converse is true for every sufficiently largey. The two functions are
equal at

y0 =
C

1/p
p

C
1/p
p − 1

,

thus fory < y0 the first one, and fory > y0 the second one is greater. Therefore, in (3.14) the
maximum is equal to the maximum of the first function ifR+1 ≤ y0, while in the complemen-
tary case it is the common value aty0. Elementary calculations lead to (3.5). �
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