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Abstract: We establish a general result for estimating the upper average of a continuous
and bounded function over an infinite interval. As an application, we show that a
previously studied model of microbial growth in a chemostat with time—varying
nutrient input admits solutions (populations) that exhibit weak persistence but
not weak average persistence.
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1. Introduction

For a fixed real numbér, and a functionz : [by,c0) — R that is continuous and
bounded onby, ), theupper averagef x is defined as

1 t
AT (x) = lim sup / x (u) du
t—o00 t— bO bo

Estimation of Averages
and thelower averageof =, denoted byA~ (), is defined as above using the limit Sean Ellermeyer
inferior instead of the limit superior. Sineeis continuous and bounded;" (z) and vol. 10, iss. 4, art. 93, 2009
A~ (z) both exist, are finite, and their definitions do not depend on the nubglier
the sense that f, > b, then

Title Page
t 1 t
lim sup / z (u) du = lim sup / z (u) du, Contents
t—oo b — by bo t—oo b = Cp co
. . . . . 44 >
and likewise when the limit inferior is used. Furthermore, it is clear that
< >
T <A () < AT (z) <zt
Page 3 of 18
where Go Back
z* = lim sup z ()
feo Full Screen
and
z” =lim inf » (t). Close
Our purpose is to establish a general result, Theoteinthat can be used to es- journal of inequalities
timate A™ (z) and to then apply the theorem to a problem involving the question in pure and applied

of persistence in a non—autonomous model of microbial growth in a chemostat. In =~ mathematics
particular, we use the theorem to show that a single species chemostat model with =~ #ssn: 1443=5756

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:sellerme@kennesaw.edu
http://jipam.vu.edu.au

time—varying nutrient input that was studied B pdmits solutionsy, that satisfy

AT (z) = 0 < 2. Such solutions are said to exhibit weak persistence but not weak
average persistence. Although Theorgmis motivated by questions that arise in
studies of persistence of solutions of non—autonomous differential equations, the
general nature of the threorem suggests that it might be a useful tool in many other
applications that require the estimation of time averages over infinite intervals.

The term “persistence” is used in population modelling to describe the idea that
a population is in some sense able to survive for an indefinitely long period of time.
A function z : [by, 00) — [0, 00) that describes the evolution of a population over
time is said to exhibiextinctionif x* = 0 and is said to exhibipersistencether-
wise. This basic concept of persistence is adequate for the study of autonomous
population models in which it is generally the case that the population (or each
of the interacting populations) being modelled either becomes extinct or satisfies
x~ > 0. However, this is not always the case in non—autonomous population mod-
els. Such models require consideration of a more explicit hierarchy of persistence
defined astrong persistencé€SP) meaning that~ > 0, strong average persistence
(SAP) meaning thati~ (x) > 0, weak average persisten¢&/AP) meaning that
AT (x) > 0, andweak persistenc@P) meaning that™ > 0. It can easily be seen
that SP=SAP=WAP=-WP.

For models that take the form of autonomous dynamical systems satisfying cer-
tain general conditions that are likely to be present in population models (such as
dissipativity and isolated boundary flow), it has been showrjriat SP and WP
(and consequently all four types of persistence defined above) are equivalent. A
similar result given in ] shows thatuniformweak and strong persistence are also
equivalent in autonomous models. (Uniform weak persistence requires that there
exist M > 0 such thatz™ > M for all non—trivial solutions;, of a given system
and uniform strong persistence requires that there exist0 such thate™ > m for
all non—trivialz.) The equivalence of uniform strong and weak persistence was ex-
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tended, under certain additional assumptions, to non—autonomous systeifis in [

In [9], criteria for the equivalence of all four types of persistence (without refer-
ence to uniformity) were obtained for a non—autonomous single species chemostat
model. Similar criteria were obtained for non—autonomous Kolmogorov—-type sys-
tems in fl, 8, 12]. However, it is not generally true for non—autonomous systems
that the various different types of persistence are equivalent. This is shown to be the
case, for example, for the non—autonomous systems studi@d3ng, 7]. The ap-
plication of Theoren?.4that we provide in Sectiof verifies a claim (that WP does

not imply WAP) made in%, page 143] in reference to a model of a single species in

a chemostat with a time—varying nutrient environment.
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2. Estimation of Upper Averages

Throughout, we will assume without loss of generality that x () < 1 for all
t € [by, 00) and hence that

0<z <A (z) <At (z) <zt <1

Our main result, Theorem.4, provides sufficient conditions fot* (z) < k for

prescribed: € (0,1). The proof of Theoren.4is accomplished via three lemmas.

Lemma 2.1. Suppose thatl < k£ < 1, and suppose that, — oo andb,, — oo are
sequences such that
b0<a1<b1<a2<b2<---

and

x(t) > kforallt € (a,,b,), n=12,...
xz(t) <kforalteb,_1,a,), n=1,2,...

Also, suppose that

n

(2.1) lim > (b —a;) =0.

1
1=

ThenA™ (z) < k.

Proof. Lete > 0 be fixed but arbitrary.
Since conditionZ.1) is satisfied and since

n

b, — a, 1
0 < b; — a;
S e DICE

i=1
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forall n > 1, then
b, — an,

li =0.

Thus, there exists an integar > 1 such that both

n

(1_k)'bnib02(bi_ai)<%

=1
and
b, —a, ¢
b —by 2
foralln > N.

LetT = by. Then, clearly, for each> T there exists: > N such thab, <t <
b..1. We will consider the three cases- b, b, <t < a,,1, anda, 1 <t < b,q1
separately. (Note that the result of Case 1 is used in proving Case 2 and that the
result of Case 2 is used in proving Case 3.)

Case 1If t = b,, then

t_lbo /b::c(u) du = bnibo (Z::/b z () du+2n:/:i:c(u) du>
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Case 2If b, <t < a,41, then

1 t 1 bn 1 t
z (u)du = z (u) du + /a:udu
t—bo/bo (u) t—b()/bo (u) t —bo (u)

bn

b, — bo 1 bn 1 ¢
= . d d
— bn_b()/bo x (u) u+t—b0/ x (u) du

bn
< bn=bo (kz+5)+k-t_b”

S > —
bn_bO t—bn bn_bO €

—k L
(t—b0+t—b0>+t—b0 >
15

-

<k+ 3

Case 3If a1 <t < b,.1, then

1 t 1 A1 1 t
z(u) du = / z (u) du+ / z (u) du
t_bO/bo () t—bo bo <> ZS_bO an+1 ()

1 An+1 t—a,
< —/ x(u) du + L= Onil
a’n-l—l_b()

bo t — by
€ bp1 — Angt
<k+-+—7"-—7-—
- 2 bny1 — bo
<k+e.

We have shown that for arbitraey> 0 there existd’ > by such that

1 t
t—bg/ z(u)du<k+e

bo

for all ¢ > T'. This establishes the stated result. O
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Lemma 2.2. Let ¢, andd,, be sequences such thak ¢, < d, for all n and such
thatc, /d,, — 0. Also, suppose that there exists- 0 such that

dpe1>n» d; foralln
=1

and letr, be the sequence
D i1 Ci
Zi:l d;

Tn =

Thenr, — 0.

Proof. First we note that < L = limsup,, ,,, 7, < 1.
Also, for eachh > 1 we have

Z?ill & < Z?:l & Cn+1 _ Tn + Cn+1
Z?ill di i ditdey dpp 1+ % py1
which shows that r Coit
Tyl < T+ + e
for eachn > 1. Taking the limit superior a8 — oo yields L < L/ (1 +n) from
which we conclude that = 0 and hence that, — 0. O

Lemma 2.3. Leta,, andb,, be sequences such that
b0<a1<b1<a2<b2<---

and such that
b, — a,

bn - bn—l

— 0.
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Also suppose that there exists> 0 such that
bpi1 — by > n (b, —by)  forall n.

Then

n

1

n—oo b, — by

=1

Proof. If we definec,, = b,, — a,, andd,, = b,, — b,,_1, then the stated result follows

immediately from Lemma.2. O
By combining Lemmag.1and2.3, we obtain our main result.

Theorem 2.4. Suppose thdl < k& < 1 and suppose that, — oo andb,, — oo are
sequences such that
b0<a1<b1<a2<b2<---

and

xz(t)>kforallt € (an,b,), n=12,...
x(t)<kforallte [b,—1,a,], n=12...
Also suppose that
b, — an,
by, — b1
and that there existsa > 0 such that

— 0

bpi1 — by >n (b, —by)  forall n.
ThenA™ (z) < k.
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As a remark, we note that the idea underlying Lentirias that condition 2.1)
implies that the percentage of the inter{l, 7] on whichz (t) > k& becomes in-
creasingly negligible ag' — oc. If condition (2.1) can be verified, then Lemmnial
can be applied directly to obtain the estimdte () < k. However, conditionZ.1)
is difficult to verify directly in many cases of interest.
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3. An Application

As an application of Theorem 4, we verify a claim made ing] regarding a family
of non—autonomous systems

(3.1) s'(t) =D (q(t)—s(t) —s(t)z(t),
' (t) = (s(t) = D)z (1),
Estimation of Averages
that models the growth of a microbial culture in a chemostat. In these equations, Sean Ellermeyer
denotes the microbial population in the chemostat culture vessed dadotes the vol. 10, iss. 4, art. 93, 2009

concentration of a particular nutrient that the microorganisms must have in order to
survive and reproduce. The family of systerfisl] is parameterized by the controls

D > 0andq : [by,0) — [0,00) which signify, respectively, the dilution rate of
the chemostat and the concentration of fresh nutrient that is being supplied to the Contents
culture vessel. For the interested reader, an exposition on the theory of chemostats

Title Page

that begins from first principles can be found 0], 44 dd

A pair of functions(s, z) is termed to bedmissiblewith respect to systen(l) < >
if s(t),z(t) > 0fort € [by, o) and there exist control® > 0 andq : [by, c0) —
[0,00) continuous and bounded dby, oo), such that(D, ¢, s, z) satisfies system e 12 0l
(3.1 for all t > by. It was claimed but not proved ib[ page 143] that there exists Go Back
an admissible paiks, =), for which

Full Screen
(3.2) x (t) = exp (—t — tsin (Int))
Close

and that the function3(2) satisfiesA™ (z) = 0 < ™, thus demonstrating that the

family (3.1) admits solutions that exhibit weak persistence but not weak average  Journal of inequalities
persistence. The existence of an admissible pair witomponent as defined in in pure and applied
(3.2) is easily verified via a criterion given irb] Eq. (9)] . It is also clear that mathematics

zt =1 > 0. In what follows, we will use Theorerfi.4 to show thatA* (z) = 0, pssni L443-STSE
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thus completing the verification of the claim. Our strategy in applying Thearém
to the function 8.2) will be to show that

1 t
A* (x) = lim sup —/ z (u) du < exp (—e**7)

oo T — €2kT o2k

for each integek > 0. Once this has been established, the factthatz) = 0 will
follow from the fact thatxp (—e*") — 0 ask — oc.

In order to construct the sequencgsandb, needed in Theorerfi.4, we will
need the following facts about the behaviorobn the interval[e*™ )7 e?m] for
each integem > 1:

1. z (t) decreases froraxp (—e*™~U7) att = ¢*™m~D7 to exp (—ez(m‘%)”) at
t = 62(m7%)ﬂ-_

2. z (t) increases fromxp <—62(’”‘%)”) att = (") o 1 att = e2(m-i)7,

3. x (t) decreases fromatt = 2(m=3)7 10 exp (—e*™™) att = ™7,

The properties of: given above can be deduced using elementary calculus and
the fact that

' (t) = —x(t) (14 cos(Int) +sin (Int)) = —x (t) (1 +v/2sin <1nt + %)) :

To define the sequences andb,,, we first letk > 0 be a fixed but arbitrary
integer and defing, = ¢*7. Next, for each integen > 1 we definea,, to be the

unique point in the interva(ez(’”"‘%)”, ez<’“+”‘%>”> such that: (a,,) = exp (—bo)

and we defing,, to be the unique point in the intervébQ(“"‘i)”, 62<’“+")”) such
thatz (b,) = exp (—b).
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It can be verified that,, andb,, satisfy the equations

1 b
(3.3) ay = €xXp <2 (k +n— 5) T + arcsin (1 — —0>> ,
Qp,

b
(3.4) b, = exp <2 (k +n)m — arcsin (1 - b_0)> ,
thata b — 00 and that Estimation of Averages
, ’ Sean Ellermeyer
bo<a; <by <ag <by<---. vol. 10, iss. 4, art. 93, 2009
Also, it follows from equationsd.3), (3.4) that
) Title Page
(35) 6—2n7ran N 62(k—1)7r7
) Contents
(3.6) e 2"h,, — e2(k=5)m,
<44 »»
Furthermore, for each > 1, we have p >
z (t) > exp (=by) forallt € (an,b,), Page 14 of 18
< —
x (t) <exp(—by) forallt € [b,_1,a,], o Back
and by using §.5), (3.6) and the fact that Full Screen
b, — a, e 2D, — e ", n>1 Close

bn _ bnfl e—2mrbn — e 2m. 6_2(n_1)7rbn,17 ’

journal of inequalities
b, —a in pure and applied

lim T = 0. mathematics
n—00 Op — Op—1 issn: 1443-575k

we obtain

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:sellerme@kennesaw.edu
http://jipam.vu.edu.au

Finally, for eachn > 1 we have

bopr — by -1
b, —by 1 — 2’—0
bn+1
-1
bn
. bo . bo Estimation of Averages
=exp |27 —arcsin | 1 — Do + arcsin [ 1 — ™ —1 Sean Ellermeyer
T vol. 10, iss. 4, art. 93, 2009
>exp<27r—§+0> 1
= 637# -1, Title Page
which shows that Contents
bus1 — by > (e* - 1) (by —by) foralln > 1, «“ >

: : : < »
Theorem?.4 thus yields the conclusion that™ (z) < exp (—¢?*™) and, since

the integerk > 0 is arbitrary, we conclude that™* (z) = 0. Page 15 of 18
As a concluding remark, we note that the construction used in defining the se-

quences:, andb, in the above argument can also be used to show that the integral Go Back
J7° @ (u) du diverges. If we také: = 0, thenb, = 1 and Full Screen
) 1 Close
b, = exp <2n7r — arcsin (1 - b—>) foralln > 1.
" journal of inequalities
We then define in pure and applied
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and observe that, < ¢, < b, and that

o el 8) (e (1-8)
n — Cp =

672n7rbn ) i
for eachn > 1.
USIng 66)’ we Obtaln 1 Estimation of Averages
lim = eg Sean Ellermeyer
n— 00 eanTrbn .
vol. 10, iss. 4, art. 93, 2009
and L'Hépital’s Rule yields
i &P (—arcsin (1 — s)) — exp (—m + arcsin (1 — s)) Title Page
im
=07 5 Contents
i P (—arcsin (1 — s)) + exp (—7 + arcsin (1 — s))
it Norere «“« NS
= 00, 4 | 4
which shows that Page 16 of 18
exp <— arcsin <1 — %)) — exp (—7‘(‘ + arcsin (1 — é)) Go Back
lim T =00
n—00 . Full Screen
and hence thdtm,, . (b, — ¢,) = cc. Divergence of the integrgl™ z (u) du then Slese

follows from the fact that: (¢t) > e~ forall ¢t € (¢,,b,), n > 1.
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