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ABSTRACT. In this short note, we sharpen and generalize a geometric inequality by J. Sdndor.
As applications of our results, we give an alternative proof of Sandor’s inequality and solve two
conjectures posed by Liu.
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1. INTRODUCTION AND MAIN RESULTS

Let P be an arbitrary poinP in the plane of trianglel BC. Leta, b, ¢ be the lengths of these
sides,A the areas the semi-perimeterR? the circumradius and the inradius, respectively.
Denote byR,, R,, R3 the distances fron® to the verticesd, B, C, respectively.

The following interesting geometric inequality from 1986 is due to J. Sandor [8], a proof of
this inequality can be found in the monograph [9].

The authors would like to thank Mr. Jian Liu and Professor J. Sandor for their careful reading and some valuable suggestions on this paper.
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Theorem 1.1. For triangle ABC' and an arbitrary pointP, we have
16
(1.1) (RiR2)* + (RoR3)* + (R3Ry)* > > A?

Recently, J. Liul[6] also independently proved inequality|(1.1).
In this short note, we sharpen and generalize inequglity (1.1) and obtain the following results.

Theorem 1.2.We have

2 2 2 a’b?c®
. >
(1.2) (R1R2)” + (R2R3)” + (R3Ry)” > PER TR
Theorem 1.3.If
2(In3 —1n2)
k>k=——-~1.54 462
= ko= g3 T amo 1049800462,
then
4 k
(1.3) (RiR2)" + (RyR3)" + (RsRy)* > 3 (§@A> :

2. PRELIMINARY RESULTS

Lemma 2.1 (Hayashi’'s inequality, see|[7, pp. 297, 311For any AABC and an arbitrary
point P, we have

(21) CLRQRg + bR3R1 + CR1R2 Z CLbC,

with equality holding if and only iP is the orthocenter of the acute triangeBC or one of the
vertices of the trianglel BC.

Lemma 2.2(seel[2] and[[4]) For AABC, if

0<t<t _ln9—ln4
=" =" n4 13
then we have
t
2.2) at+bt+ct§3(\/§R> .
Lemma 2.3. Let ( )
2(ln3 — In2
k>k=——- 154 462.
=0 = 33 —amg OO0
Then
(abc)* 4 g
(2.3) — > 3 5\/§A .

k k
[am + bF-T + cm]
Proof. From the well known identitiegsbc = 4Rrs andA = rs, inequality [2.8) is equivalent

to .
k
(4Rrs) > 3 <é\/§r5> :
k k kR 9
|:a/k—1 + bE-1 + Ck—l:|
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or
(2.4) AP 4 DR 4 R < 3 <\/§R> -
It is easy to see that the function
xr
flo)= —

is strictly monotone decreasing ¢h +oc0). If we let

L (kaOZQ(ln?)—an))’

3In3 —41n2

then

In9 —1n4

0 < f(k)=t< == flh),

and inequality[(2J4) is equivalent to (2.2).
The proof of Lemma 2|3 is thus complete from Lenima 2.2. O

Lemma 2.4([3]). For any A > 1, we have
(25) [R—AAN+1)r)s® +r[4(N\* —4)R* + (5A° + 12X+ 4)Rr + (\* + 3A + 2)r°] > 0.
Lemma 2.5. In triangle ABC', we have

a® +b” + ¢ = 2s[s® — 18r(R + 2r)s® + 187%(21Rr + Tr* 4+ 12R%)s*
— 6r3(105r2 R + 240r R? + 147® + 160R®)s* + 9r*(r + 2R)(r + 4R)?].

Proof. The identity directly follows from the known identities+ b + ¢ = 2s, ab + bc + ca =
s2 + 4Rr + r?, abc = 4Rrs and the following identity:

a’+ 0"+
= 3a’b’c® — 45abc(ab + be + ca)(a + b+ ¢)* + 5dabe(ab + be + ca)*(a + b + ¢)?
—27a*b*c*(ab + be + ca)(a + b+ c) + (a + b+ c)°
—9(ab+be +ca)(a+b+c)" +9(ab+ be + ca)*(a + b+ c)
—30(ab + bc + ca)*(a + b+ ¢)® + 18a**c*(a + b + ¢)?
+27(ab + be + ca)*(a + b+ ¢)® + 9abe(a + b+ ¢)® — 9abe(ab + be + ca)®.

Lemma 2.6([5]). If x,y,z > 0, then

T+ y+ 2+ 3YTyz > 2 (Vay + yz + Vzx) .

J. Inequal. Pure and Appl. Mathl0(4) (2009), Art. 118, 8 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

4 Y.-D. Wu, Z.-H. ZHANG, AND X.-G. CHU

3. PROOF OF THE MAIN RESULT

The proof of Theorem 1] 2 is easy to find from the following inequality](3.1)fer 2 of the
proof of Theoren 1]3. Now, we prove Theorpm|1.3.

The proof of Theorenj T]3Hdlder’s inequalityand Lemma 2]1 imply fok > 1 that

k-1

[a% 4 bET 4 cﬁ] ©[(RyRo)* + (RoRy)* + (Ry Ry
Z CLRQPL?, + bR3R1 + CR1R2 Z abc,

or
(abc)*

(3.1) (RiR2)" + (RoR3)* 4 (R3Ry)* >

ke ke ke kL
|:ak71 + br—1 + Ck—1i|
Combining inequality[(3]1) and Lemra 2.3, we immediately see that Theorém 1.3 is truie.

4. APPLICATIONS

4.1. Alternative Proof of Theorem[1.]. From Theorem 1]2, in order to prove inequaljty {1.1),
we only need to prove the following inequality:
a’b*c? 16
—_— > A%,
a2+ +c 79
With the known identitiesbc = 4Rrs andA = rs, inequality [4.1) is equivalent to

(4.1)

a® + b+ <9R”.
This is simply inequality[(2]2) fot = 2 < ¢, in Lemma[2.2. This completes the proof of
inequality [T.1).

Remark 1. The above proof of inequality (1.1) is simpler than Liu’s praoof [6].

4.2. Solution of Two Conjectures. In 2008, J. Liu [6] posed the following two geometric
inequality conjectures] (4.2) and (#.3), involviRy, Rs, R3, R andr.

Conjecture 4.1. For AABC and an arbitrary pointP, we have

(4.2) (R1R2)* + (RyR3)* + (R3Ry)* > 8(R? + 2r*)r?,
and
(4.3) (R1Ry)? + (RoR3)? + (R3Ry)? > 241,

Proof. First of all, fromGerretsen’s inequalityl, pp. 50, Theorem 5.8]
s> <4R? 4+ 4Rr + 3r?
andEuler’s inequality[1, pp. 48, Theorem 5.1]

R > 2r,
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we have

2r*(4R* + 4Rr + 3r* — s*) + (R — 2r)(4R* + Rr + 2r*)r > 0
16 R?r%s?
2(s? —4Rr —r?)
Using Theorem 1]2 and the known identities [7, pp.52]

> 8(R? + 2r%)r?.

abc = 4Rrs and @’ + b+ = 2s(s* — 6Rr — 3r?),
we see that inequality (4.2) holds true.
Secondly, from[(3]1), in order to prove inequality (4.3), we only need to prove
(abc)?
[a3 + b3 + 03}%
With the known identities [7, pp. 52]

(4.4) > 2473,

abc = 4Rrs and @’ +b* + & =2s(s* — 6Rr — 3r?),
inequality [4.4) is equivalent to
(4Rrs)2
[25(s? — 6Rr — 37“2)]%
< 18r°(4R* + 4Rr + 3r° — §*) + R*(s® — 16Rr + 5r°)
+ Rr(R — 2r)(16R* + 27Rr — 18r%) > 0.

> 2473

(4.5)

FromGerretsen’s inequalityl, pp. 50, Theorem 5.8]
16Rr — 5r* < s> < 4R® + 4Rr + 3r*
andEuler’s inequality[1, pp. 48, Theorem 5.1]
R > 2r,

we can conclude that inequalify (4.5) holds, further, inequdlity (4.4) is true.
This completes the proof of Conjectire}4.1. O

Corollary 4.2. For AABC and an arbitrary pointP, we have
(4.6) R} + Ry + Ry + 3R Ry Rs > 487,
Proof. Inequality [4.6) can directly be obtained from Lemmg 2.6 and inequality (4.3). O

4.3. Sharpened Form of Above Conjectures.The inequalities[(4]2) andl (4.3) of Conjecture
[4.7 can be sharpened as follows.

Theorem 4.3. For AABC and an arbitrary pointP, we have

(47) (R1R2)2 + (R2R3)2 + (R3R1)2 Z S(PL + T)RTZ,
and
(4.8) (RiR»)? + (RoR3)? + (R3Ry)? > 12Rr”.
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Proof. The proof of inequality[(4]7) is left to the readers. Now, we prove inequality (4.8).

From inequality [(2.6) for\ = 2 in Lemma[ 2.4, the well-knowGerretsen’s inequalityl,
pp. 50, Theorem 5.8]

16Rr — 512 < s < 4R?> + ARr + 37“2,
Euler’s inequality[1, pp. 48, Theorem 5.1]
R >2r
and the known identities [7, pp. 52]
abc = 4Rrs anda® + b* + ¢ = 2s(s* — 6Rr — 3r?),

we obtain that

(4.9) (R = 6r)s* +12r*(4R + 1)) + 3r(4R* + 4Rr + 31 — 5°)
+ R(s®> — 16Rr + 5r2) + (R — 2r)(4R — 3r) > 0
3
(4Rrs)? S R
[25(s%2 — 6Rr — 3r2)|2
3
(abe)> > 12Rr.

[a3 + b3 + 03}%
Inequality [4.8) follows by Lemmfa 2.4.
Theorenj 4.3 is thus proved. O
4.4. Generalization of Inequality (4.3).

Theorem 4.4.1f k > 2, then
(4.10) (R1Ry)* + (RoRs)* + (RsRy)* > 3(4rH)k.

Proof. From the monotonicity of the power mean, we only need to prove that inequality (4.10)
holds fork = 2. By using inequality[(3]1), we only need to prove the following inequality

(abc)s
(@ + b + c9)§
FromGerretsen’s inequalityl, pp. 50, Theorem 5.8]

(4.12) > 3(4r2)5.
s? > 16Rr — 512
andEuler’s inequality{1, pp. 48, Theorem 5.1]
R > 2r,
it is obvious that
P = (R — 2r)[4096 R'" 4 12544 R°r + 34992 R®r* + 89667 R"r* 4+ 218700 R%r*

+ 516132R%r® + 1189728 R*rS + 2493180 Rr 4 6018624(R — 2r) Rr®
+ 675345611 + 201204(R® — 4r*) RrT] + 27993601 > 0,
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and
Q = (s* = 16Rr + 5r*){R%(s* — 16 Rr + 5r%) + 3R*r(R — 2r)(16R* + 27R"r + 54 R*r?

+ 108 R?*r® 4 216 Rr* + 432r°) + 32477 [8(R? — 12r?)? + 30r*(R — 2r)?
+ 39Rr® + 267} + 1749677 (R* — 3Rr + 6r?)(R* — 12Rr + 24r?)?
+3r*(R — 2r){(R — 2r)[256 R? + 864 R®r + 2457 R*r*(R® — 32r°)
+ 6372R*r*(R* — 16r*) + 15660 R*r* (R® — 8r®) + 31320R*r°(R* — 47?)
+ 220104R*r5(R — 2r) + 2618784(R — 2r)r® 4 51840R*r" + 501120 Rr®]
+687312r'°} > 0.

Therefore, with the fundamental inequality [7, pp.1-3]
—s* + (4R* + 20Rr — 2r*)s* —r(4R +1)* > 0,
we have
W = (R® — 13122r%)s® 4 2361967 (21 + R)s® — 2361967 (7r? + 12R* + 21 Rr)s*
+ 7873212 (105Rr* 4+ 160 R® + 240R*r + 141%)s® — 118098r"*(2R + ) (4R + r)?
= 13122r7[s* + 93 (2R + 1)][—s* + (4R* + 20Rr — 2r*)s* — r(4R +1)°]
+735%(R — 2r)P + s*(s* — 16 Rr + 5r)Q
> 0.

Hence, from Lemmp 24, we get that

Rs\”’ s

4.12 =) =@+ 4+ = >
(4.12) 3(3r) (a® +b" +¢”) 65617"9W_O’
or

Rs\” 9,19, 9
(4.13) 3| — | =a +b +cC.

3r
Inequality [4.18) is simply[(4.11). Thus, we complete the proof of Thegremn 4.4. O

5. Two OPEN PROBLEMS
Finally, we pose two open problems as follows.
Open Problem 1. For a triangle ABC and an arbitrary pointP, prove or disprove
(5.1) R} + Ry + Ry + 6R Ry Rs > 72",

Open Problem 2. For a triangle ABC' and an arbitrary pointP, determine the best constant
k such that the following inequality holds:

(5.2) (RiR»)? + (RoRs)? + (R3B1)2 > 12[R + k(R — 2r)]r?.
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