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Abstract

Though connections between a well established theory of analytic univalent
functions and hypergeometric functions have been investigated by several re-
searchers, yet analogous connections between planer harmonic mappings and
hypergeometric functions have not been explored. The purpose of this paper is
to uncover some of the inequalities associating hypergeometric functions with
planer harmonic mappings.
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Let H be the class consisting of continuous complex-valued functions which
are harmonic in the unit disk = {z: |z| < 1} and letA be the subclass of

H consisting of functions which are analytic in. Clunie and Sheil-Small

in [1] developed the basic theory of planer harmonic mappifigs H which

are univalent inA and have the normalizatiofi0) = 0 = f.(0) — 1. Such
functions, also known as planer mappings, may be writteh-ash + g, where

h,g € A. Afunction f € H is said to be locally univalent and sense-preserving

if the Jacobian/(f) = |W/|* — |¢/|” is positive inA; or equivalently|g’(z)| < L e o
|W(2)| (z € A). Thusforf = h+ g € H we may write Planer Harmonic Mappings

Om. P. Ahuja and H. Silverman

(1.1) h(z)=z+ ZA,LZ”, g(z) = Zan”, |B;| < 1.
n=2 n=1

Let Sydenote the family of functions + g which are harmonic, univalent, and Ttle Page

sense-preserving ih whereh,g € A and are of the form1(1). Imposing Contents

the additional normalization conditioft(0) = 0, Clunie and Sheil-Smalll] «“ b

distinguished the class), from Sy. Both the familiesSy andSY, are normal

families. But,SY is the only compact family with respect to the topology of < 4

locally uniform convergencel]. Go Back
Let.S};, and Ky be the subclasses 6f; consisting of functiong’ which map Close

A, respectively, onto starlike and convex domaingf; &= h; +g;,j = 1,2 are
in the classSy (or S%), then we define the convolutiofy * f, of f; and fyin Quit
the natural wayh; * hy + g1 * g2. If ¢1 andg, are analyticand = h +gisin

. Page 3 of 21
Sy, we define
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Let a, b, c be complex numbers with £ 0,—1,—2,—3,.... Then the Gauss
hypergeometric function written ad(a, b; c; z) or simply asF'(a,b;c; z) is
defined by

(1.3) F(a,b;¢;2) = Z EZ)):((f;Zz",

where(}),, is the Pochhammer symbol defined by

r <)\ * n) | lities A iati
L4 W=y =AAFD (A1) AT UG T
Planer Harmonic Mappings

forn=1,2,3,... and(\), = 1.
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Since the hypergeometric series in3) converges absolutely if, it follows
that F'(a, b; c; z) defines a function which is analytic i, provided thatc is

. L . Title Page
neither zero nor a negative integer. As a matter of fact, in terms of Gamma
functions, we are led to the well-known Gauss’s summation theoreRe(Hf— Contents
a—0b) >0, then <« NS
I'(e)l'(c—a— b)
1.5 F(a,bc;1) = 0, — . < >
. . . Go Back
In particular, the incomplete beta functlon, related to the Gauss hypergeometric
function,¢(a, c; 2), is defined by Close
[e'S) QUit
(1.6) ela,c;z) = zF(a,1;¢; 2) Z )n 2, Page 4 of 21
n=0 n
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It has an analytic continuation to theplane cut along the positive real axis
from 1 toco. Note thatp(a, 1;2) = . Moreoverp(2,1;z2) = ﬁ is the
Koebe function.

The hypergeometric series ifi.0) and (L.6) converge absolutely ich and
thus F'(a, b; ¢; z) and ¢(a, ¢; z) are analytic functions i\, provided thatc is
neither zero nor a negative integer. For further information about hypergeomet-
ric functions, one may refer te7], [6], and [L1].

Throughout this paper, lef(z) := ¢1(z) + ¢2(z) be a function where

=g

gi?l(z) = o3 (al,l_)l;cl;z) and ¢o(2) = @2 (ag, bo; co; 2) are the hypergeomet- Hypéﬁgggﬂgﬁiﬁiﬁsﬂg%\/ -
rc funCtlonS deflned by Planer Harmonic Mappmgs
al (bl) 1 Om. P. Ahuja and H. Silverman
1.7 zF b = by
1.7) ¢1(2) = 2F(ar, br; c15 2 Z+Z (@m (Do e
n=2
Title Page
0o Contents
(1.8) ¢2(Z) - ZF(CL% ba; ca; 2 Z n n, asby < cy. <« >
n=1 n
. . . _ _ < 2
It was surprising to discover the use of hypergeometric functions in the proof
of the Bieberbach conjecture by L. de Brangélsifi 1985. This discovery has Go Back
prompted renewed interests in these classes of functions. For exampld, see [ Close
[£], and [ ou
However, connections between the theory of harmonic univalent functions
and hypergeometric functions have not yet been explored. The purpose of this Page 5 of 21
paper is to uncover some of the connections. In particular, we will investigate
the convolution multipliers*(¢; + ¢2), where¢,, ¢, are as defined byl(7) 3. Ineq. Pure and Appl. Math. 5(4) Art. 99, 2004
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and (L.8) and f is a harmonic starlike univalent (or harmonic convex univalent)
function inA.
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We need the following sufficient condition.

Lemma 2.1 (i, 1(]). For f = h + g with h and g of the form (..1), if
(2.1) > A+ 0B, <1,

n=2 n=1
thenf € S%.

Theorem 2.2.1f a;,b; > 0, ¢; > a; +b; + 1 for j = 1,2, then a sufficient
condition forG = ¢, + ¢, to be harmonic univalent ik andG € S%, is that

a by

(2.2) (1 + ) F(ay,bi;cq51)

Cbgbg
F bo;ce; 1) < 2.
+02—a2—b2—1 (CLQ, 2; C2; ) >~

cl—al—bl—l

Proof. In order to prove thaf is locally univalent and sense-preservingAn
we only need to show thad (z)| > |¢5(2)], z € A. In view of (1.7), (1.3),
(1.4) and (.5 we have

=~ (a)n1(b)no1 g
R DL vy

|64(2)] =
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. ab — (a1 + 1)p1(b1 + 1)51 B — (a1)n(b1)n
=1 €1 ; (1 + 1Dn—1(1)p1 Z
_ a1b1 ) F(Cl + ].)F(Cl — a; — b1 — ].) (

C1 F(Cl — al)P(cl — bl) F(Cl — al)F(cl — bl)

aib
=2 1| F bi;er:l).
(cl—al—bl—l + ) (a'17 15 C1; )

n=1

=2

Again, using 2.2), (1.5, (1.3), and (L.8) in turn, to the above mentioned in-

equality, we have

asby

¢1(2)] = o — Gy — by — 1F(a2,62;02; 1)

o a2b2 F(CQ + 1)F(CQ — ag — bg — 1)
Co F(CQ — CLQ)F(CQ — bg)

o

_ Z (a2)n+1(b2)n+1

(1 (Dn

> Zn(a2)n<b2)n |z|n—1

= [é5(2)]-

To show thatG is univalent inA, we assume that;, z, € A so thatz; # z,.
SinceA is simply connected and convex, we haye) = (1 — t)z; +tzy € A,
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where( < ¢t < 1. Then we can write

F(e) = F(a) = | *[(ea = 2264 00 + G = 20) 5 )

so that

(2.3) Rew = /01 Re an; (z (1) + m) m] dt

22— 21

> / Red, (= (£)) — | (= (£))Jdt

On the other hand,

Re ¢/ (2) — [¢5(2)]

o0

a1)n—-1 n—1 | _n—1 ann n—1
21_;n((01))n 1((1) 12| Z” Jn(b2) o
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(e2)n(D 1)n
zg_mm i nbl a2b2ia2+ n1b2+1)n1
a1b1 a2b2

+Cl—a1—b1—1) al; 17617 02_a2_b2_1 ((IQ, 2; C2; )
>0, by (2.2.
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Thus @.3) and the above inequality lead #(z;) # F(z2) and henceF is

univalent inA. In order to prove thatr € S3;,using Lemma&2.1, we only need
to prove that

(2.4) Zn(al n-1( b1 Jn-t +Z <1

" (c1)n(

Writing n = n — 1 + 1, the left hand side ofA.4) reduces to

e}

a1b1 CL1 +1 bl + )
n=0 Cl + )n
=~ (a1)n(b1)n by o (ag + 1) (bs + 1)
Zal (b1) 1 +a222(a2 )n (b2 )
0 (€1)n(1)n G = (c2 4+ 1)n(1)n
JE— . . albl
—F(&1,b1,C1,1> (61 Y —b1 1 +1
agbg

F ba;ca; 1) — 1.
02_a2_b2_1 (a27 27627)

The last expression is bounded above by 1 provided thax i satisfied. This
completes the proof. H

Lemma 2.3 (b, 10]). For f = h + g with h and g of the form (..2), if

inZ\An\ +in2\Bn! <1,
n=2 n=1

thenf € Ky.
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Theorem 2.4.1f a;,b; > 0, ¢; > a; + b; + 2, for j = 1,2 then a sufficient
condition forG = ¢; + ¢4 to be harmonic univalent ih andG € Ky, is that

3a1b; (a1)2(b1)2
2.5 1+ +
( ) ( cl—al—bl—l (cl—al—bl—Q)g
i ( asby i (G2)2(b2)2

Cg—ag—bz—l (Cg—ag—bg—2)2

Proof. The proof of the first part is similar to that of Theoréh® and so it is
omitted. In view of Lemma&.3, we only need to show that

Zn acll n1+Zn In( <1.
n=2

Tl

) F(ay,b15¢151)

) F(ag, by;co;1) < 2.

That is,
- (@) nr1(b1)ns1 | ~o 2 (@2)n11(b2)n11
(2.6) n+ 2)? + n+1 < 1.
2 2 Dy 2
But,
i n+2 (al)n+1(bl)n+1
=0 (c1)nt1(Dnt1
= Cl1 n+1 bl n+1 CL1 n+1 bl n+1 b1 n+1
+ 2 +
Z C1 n+1 Z 01 n+1 Z n+1

3&1[)1
CcT —ay — bl —1

1| F bi;e;1)—1
|:Cl—a,1—b1—2) + :| (ala 15 C1;5 ) J
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and

i n+1 n+1(b2)n+1
n=0 ”+1(1>n+1

N (a2)n11( b2 Jnt1 - (az) n+1 bz Jn+1

+
; (c2)nir(1 nZ; (ca)nt1(1)n
(az)2(b2)2 by
B F(ag, by; c9;1) — 1.
{(02_062—51—2)2+cl—a1—b1—1 (a2, ba; c2; 1)

Thus, @.6) is equivalent to
(o) Bab 1) .
(cl—al—b1—2)2 cl—al—bl—l

(az)a2(b2)2 asbs
F by; a1 <1
+ (CLQ) 2; C2; )<(02—a2—62—2>2+CQ—CL2—b2—1 ~

which is true because of the hypothesis. O

F(ay,b1;c151) <

Denote byS},;; and Ky, respectively, the subclasses$jf and K con-
sisting of functionsf = h + g so thath andg are of the form

0
§ n

= an )
n=1

). Letf = h+ g be given byZ.7). Then

(2.7) h(z _Z—ZAZ A, >0, B, >0, B <1.
Lemma 2.5 ([,

(i) feSpy< > nA,+ > nB, <1,
n=2

n=1
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(ii) f € Krg & >, n*A,+ >, n’B, < 1.

n=2 n=1

Theorem 2.6.Leta;,b; > 0, ¢; > a; +b; +1,for j = 1,2andasby < c,. If

Z —_—
(2.8) Gi(z) =z <2 — ¢1£ )) + ¢a(2)
then
(Z) Gl < SRH <:>(2'2) holds Inequalitie_s Assoc_iating _
(i1) G € K +5(2.5) holds. e
Proof. (I) We observe that Om. P. Ahuja and H. Silverman
o (a1)n-1( bl Jn1 _n o
Gilz) === Z; (€1)n-1( Z * Z Title Page
and Sy, C Sy. Inview of Theoren?.2, we onIy need to show the necessary Contents
_condition for(_ll to be inS},. !f Gl € Sgy, thenG, satisfigs the inequality <« NS
in Lemma2.5(i) and the result in (i) follows from Lemma.5(i). The proof of
(i) is similar becausd{ry C Ky, and by using Lemma.X(ii) and Theorem < 4
2.4, O Go Back
Theorem 2.7.Leta;,b; > 0, ¢; > a; +b; + 1, for j = 1,2andasby < cz. A Close
necessary and sufficient condition such tfiate, + ¢2) € Sy for f € Sy Quit
is that
Page 13 of 21
(2.9) Fa1,bi;cr;1) + F(ag, by a5 1) < 3,
whereg¢,, ¢, are as defined, respectively, by ) and (1.8). 3. Ineq. Pure and Appl. Math. 5(4) Art. 99, 2004
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Proof. Let f = h+ g € Si, Whereh andg are given by 2.7). Then
(f¥(¢1 + 62)) (2) = h(2) * $1(2) + g(2) * 6a(2)

_Zalnlblnl +Z In( an

QClnl n

In view of Lemma2.5(i), we need to prove thatk(¢, + ¢,) € S%,; if and only
if

- a1 )n—1 bl n—1 TL b2

As an application of Lemma.X(i), we have

1 1
‘An| < 0 |Bn’ < -—.
n n

n=1

Therefore, the left side o2(10 is bounded above by

(@) n1(0)no1 o= (@2)n(b2)y,
2 e T2 e

n=2 n-l n=1

= F(ay,by;c151) + F(ag, by; co; 1) — 2.

The last expression is bounded above by 1 if and onlg.8)(is satisfied. This
proves £.10 and results follow. O]

Theorem 2.8.1f a;,b; > 0 andc; > a; + b, for j = 1,2, then a sufficient
condition for a function

Ga(2) :/ F(al,bl;cl;t)dt+/ [F (ag,b; co;t) — 1]dt
0 0
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to be inSy is that
F(ay, bi;c1;1) 4+ F(ag, by;co; 1) < 3.

Proof. In view of Lemma?2.1, the function

(l b CL b
1 1 1 -1 2 1 2 1
_Z 2 : n— n=1\Pn=1 on z : n— n— on

(c)n-1(1)n S (ca)n-1(1)n
isin Sy if
i alnlblnl i a2n1b2n1<1
= (c1)n-1( = (c2)n-1( -
That is, if
io: (al)n(b1>n + io: (a2>n(b2)n S 1.
"t (€1)n(1)n ot (c2)n(1)n

Equivalently,G € S if
F(a1,b1;c1;1) + F(ag, be; ;1) < 3.

Theorem 2.9.1f a;,b; > —1, ¢ > 0, a1b1 < 0, a2 > 0, by > 0, andc¢; >
aj+bj+1,j:1,2,then

GQ(Z) :/0 F(al,bl;cl;t)dt—i—/o [F ((Ig,bg;Cz;t) — 1]dt

isin Sy ifand only if F(ay, by;c1;1) — Fag, ba;ca;1) +1 > 0.
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Proof. Applying Lemma2.5(i) to

|CL1Z)1| Cll +1 n 2 b1 + 1 n 2 > CLQ 1 bg 1
G2 Z — prg + n— n 2,
( Z Cl + 1 n 2 ( nz n 1 (1)n

it suffices to show that

1) by +1 > b
‘a1b1| Z CL1 + n 2( 1+ ) +Zn(a2)n—1( 2)n—1 <1

Cl + ) (1)n n=2 (CQ)nfl (1)n B Inequalities Associating
Hypergeometric Functions With
Or equiva|ent|y Planer Harmonic Mappings
. Om. P. Ahuja and H. Silverman
Z &1 -+ 1 bl + 1 Z n C1
(a+1) (1 a b ~ |aib
n— 1 ( )n+1 ‘ 1 1| n ’ 1 1‘ Title Page
But, this is equivalent to Contents
albl — n |a151| n ‘Cllblf | >
That is Go Back
F(al,bl;cl;l)—F(ag,bQ;Cg;l) Z —1. Close
This completes the proof of the theorem. [ Quit
Remark 2.1. Comparable results to Theorerag, 2.8, 2.9for harmonic convex Page 16 of 21
functions may also be obtained. The proofs and results are similar and hence
are omitted. J. Ineq. Pure and Appl. Math. 5(4) Art. 99, 2004
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In particular, the results parallel to Theoref§, 2.4, 2.6to 2.9 may also be
obtained for the incomplete beta functipiu, c; z) as defined by(.6). If

P1(2) == zp(ar, c1; 2) Z+Z (al)n L

C
n=2 1n1

o0
Cl
Ya(2) 1= 2p(a, c2;2) =1 =) 2 =2 ay <

(62)71

n=1

then

V1(2) + 2(2) = ¢1(2) + da(2),
whenevebh, = 1, by = 1.
Note that
C1
(c1 —a1)

¢2(1) = F(a27 1362; 1) —1= ﬁ

Y1(1) = F(ar,1;¢151) = and

As an illustration, we close this section with the incomplete beta function
analog to some of the earlier results.

Theorem2.2. If a; > 0andc; > a;+2for j = 1,2, then a sufficient condition
for ¢, + 1, to be harmonic univalent ik with ¢, + ¢, € S}, is

¢ (e —2) a3

(cr —a1)(cr —ay —2)  (ca—az)(ca—as—2)

<2
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Theorem2.4. If a; > 0andc; > a;+3for j = 1,2, then a sufficient condition
for ¢, + 1)y to be harmonic univalent i\ with ¢, + 1y € Ky is

a1 3a 2a; ]
S +
(c1 — ay) [ co—a;—2 (g —a; —3),
N a9 { s n 2(a2)2
(CQ — (12) Co — Qg — 2 (CQ — ag — 3)2

Theorem 2.7. A necessary and sufficient condition such tifiaty, + ;) €
wy for f € Sy is that

< 2.

C1 a2

(1 —a1)  (ca—ag) =t

Theorem2.9.1f a1 > —1, ¢ >0, a1 <0, a2 >0, ¢; >a;+1forj=1,2,
andc; > a; +b;+1, 7 =1,2,then

/gp(al,cl;t)dzH—/ [ (ag, co;t) — 1]dt
0 0

is in Sy, if and only if

cp—1 ao

ci—a;—1 " cg—as—1

We say thatf of the form (L.1) is harmonic starlike of ordet, 0 < o < 1,for
2| = rif & (arg f(re”)) > a, |2| = r. Denote byS} (a)and Sj ()
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the subclasses df;,and S}, respectively, that are starlike of order Also,
denote by (o) andK g (o) the subclasses d&f yjand K iy, respectively, that
are convex of orde. Most of our results can also be rewritten for functions of
positive order by using similar techniques. For instance, using the resuifs in [
we have the following:

Theorem 2.10.1f a;,b; > 0 andc¢; > a; + 1, azby < ¢y for j = 1,2, then
¢1 + ¢2 is harmonic univalent il\ with ¢, + ¢2 € Sj(a), 0 < a < 1if

(1—OK+ albl )F(al,bl;cl;l)

+ (Oé+62_a/2_b2_1)F(ag,bQ;CQ;l) SQ(l—OJ)
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