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ABSTRACT. We consider square integrable stochastic varialdles . . , X,, without imposing
any further conditions on their distributions. 1if ; denotes the correlation coefficient between
X; and X; then the product; o723 - - - 7(n—1),n7n,1 IS bounded from below by- cos™(7/n).
The configuration of stochastic variables attaining the minimum value is essentially unique.
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The main result in this note is the inequality
s
@) — cos" <ﬁ> < (@1 | w2)(@2 | @3) -+ (@01 | 2) (@0 | 21)

valid for arbitrary unit vectors;, ..., x, in a real Hilbert space. The inequality is of intrin-

sic interest as it provides more information than can be gleaned by simply using the Cauchy-
Schwartz’ inequality. The inequality grew out of a study of the Bessis-Moussa-Villani conjec-
ture [1,[7/8], which states that the functior~ Tr exp(A — tB) is the Laplace transform of a
positive measure, wheaA and B are self-adjoint, positive semi-definite matrices. The conjec-
ture can be reformulated to provide conditions of sign for the derivatives of arbitrary order of
the function where these derivatives can be written as sums of particular functions with coeffi-
cients as given by the right hand side [of (1). Subsequently it has appeared that the inequality
(1) and in particular the optimal configuration of the vectors given rise to the equality, is related
to the notion of robust portfolio in finance theory. Finally the inequality gives not always obvi-
ous constraints for correlation coefficients of random variables, especially in the important case
n = 3.

Lemma 1. Letz and z be unit vectors in a real Hilbert spacd and consider the function
fy)=(ly)lylz) yeH
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The supremum of on the unit spheréf; in H is given by

s #) = 1D
yeH

If x = z the supremum is attained only in= + z. If x = —z the supremum is attained in any

unit vectory orthogonal toz. In all other cases the supremum is attained onlytip,, where

yo € U = span{z, z} is the unit vector such that the angle betweeand y, equals the angle

betweeny, andz, thus(z | yo) = (yo | 2).

Proof. Apart from the trivial caseslim U = 2 and we may choose an orthonormal basjse,)
for U such that, with respect to this basis= (1,0) andz = (cos 3, sin ) for somes €]0, 7|.
We sety, = (cos(3/2),sin(3/2)) and calculate

f(yo) = cos? (é) — 1+cosﬁ: 1+(35|Z)‘

2 2 2

Let y be an arbitrary unit vector iV and write it on the formy = (cos«,sin«a) for some
a € [0, 27[. The difference
1
fyo) — fly) = ++osﬁ — cos a (cos v cos 3 + sin asin 3)

1 1 2 1
+SOSB — +C2OS O[cosﬁ— EsinQasinﬁ

(1 — cos2acos 3 — sin 2asin f3)

(1 —cos(2a—p)) >0

N~ DN~

with equality only foraw = /2 or « = (/2 + =. Finally, we must showf(y,) > f(y) for
arbitrary unit vectorgy ¢ U. But since f(y,) > 0, we only need to consider unit vectors
y ¢ U such thatf(y) > 0. Lety; denote the orthogonal projection éhof such a vector, then
0 < |lyal < 1and

f(y) ( Y1 )
0< fly)=fly) < =f < f(%o),
W)= < e =7 g ) = /0
where the last inequality follows sindlg, || 'y, is a unit vector inl. 0J

Lemma 2. Let H be a real Hilbert space of dimension greater than or equal to two. Then there
exists, for eaclm > 2, unit vectorsre,, .. ., x,, in H such that

™

@ (o1 | 22) @ [ 23) -+ (@ams | 2a) @ | 21) = = cos™ ().

Proof. Let U be a two-dimensional subspacefdfand choose an orthonormal bagis, e,) for
U. Relative to this basis we set

The angle between consecutive vectors in the sequence, ..., x,, —z; IS equal tor/n,
therefore

(@1 | w2)(@2 | 23) -+ (Tn1 [ @) (@0 | —21) = cos” (%>

and the statement follows. O

J. Inequal. Pure and Appl. Mathb(1) Art. 16, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

LOWER BOUNDS ON PRODUCTSOF CORRELATION COEFFICIENTS 3

We notice that the solution in Lemra 2 above constitutiesaf vectorglividing the radian
interval [0, ] into n slices, and that the angle/n between consecutive vectors is acute for
n > 3. The expression irj {2) is indifferent to a change of sign of some of the vectors, but after
such an inversion the angle between consecutive vectors is no longer acute, except in the case
when all the vectors are inverted. But then we are back to the original construction for the
vectors—z, —xs, ..., —Ty.

Proposition 3. The inequality

n—1 ( Q0 ) n (ﬂ-)
COSs < COoSs —
n—1 n

is valid forn = 2,3, . ... Furthermore,cos™ (7/n) 1 asn tends to infinity.

Proof. The inequality is trivial fom = 2. We introduce the functioifi(¢) = cos'(n /t) for ¢t > 2.
Sincelog f(t) = tlog cos(7/t), we have

@) ™ _ sin(r/t) (=7)
oy~ loseos (?) st B
or
1'(t) = (cos @ -log cos O + Qsine)cj;(;) where 0< 6 = % < g

Settingg(f) = cos b - logcos @ + Osind for 0 < § < 7/2 we obtain
g (0) = —sinf -logcosf + 6 cosf > 0,

showing thay is strictly increasing, and singgf) — 0 for § — 0 we obtain that botly and f’
are strictly positive. This proves the inequality for> 3. We then use the mean value theorem

to write . )
cos (z) —-1= z(—1)sin (W—> > —7T—2
n n n n

where0 < § < 1. To eache > 0 there exists an, € N such thatr>n~! < ¢ and consequently

2
s T €
cos(—>21——221——
n n n

for n > ny. Hence
. ™ ) g\"
lim cos” (—) > lim <1 — —) = exp(—e)

n—oo n n—oo n
and since: > 0 is arbitrary, the statement follows. O
Theorem 4. Letzq,...,z, forn > 2 be unit vectors in a real Hilbert spacé of dimension

greater than or equal to two. Then

—cos" (2) < (o1 | a)(an @) - (an | ) (@ | 21)

with equality only for the configuration in Lemra 2 together with configurations that are de-
rived from this by multiplying some of the vectors-by.

Proof. We prove the theorem by induction and notice that the statement is obvious=fdz.
We then consider, for > 3, the function

Fiun) = W L y2) (W2 [ y3) (s [ ya) - (Uno1 | Yn)(Un | —21)

for arbitrary vectorgy, ..., y, in H;. We equipH with the weak topology and notice thatis
continuous and the unit ball compact in this topology, hepegtains its maximum o, in
somen-tuple (zy, ..., x,) of unit vectors. It follows from Lemm@z that

flzr, .. xn) = (1 | 22) (2o | z3) (23 | 24) -+ (Tpo1 | Tn)(Tn | —21) > 0.
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Each vector appears twice in the expressiofi(af;, . .. , =, ), so the value of is left unchanged
by multiplication of one or more of the vectors byl. Possibly by multiplyingz, by —1 we
may thus assumeér; | z5) > 0. Possibly by multiplyingz; by —1 we may next assume
(x9 | 3) > 0 and so forth, until possibly by multiplying,, by —1, we realize that we may
assumez,_ | x,) > 0. After these rearrangements which leave the valug wfichanged and
sincef(z1,...,x,) > 0, we finally realize that als@z,, | —z1) > 0. The angle between any
two consecutive vectors in the sequengex,, zs, . . ., x,, —x; IS thus acute. None of these
angles can be zero, since if any two consecutive vectors are identicah say;, then

floy, oo xy) = (o | x3)(xs | xg) -+ (Tpet | n) (@0 | —22) = f2e, ..., 20).

By the induction hypothesis and Propositign 3 we thus have

flxy,...,2,) < cos" ! ( T 1) < cos" (f)

n — n

which contradicts the optimality dfcy, ..., x,), cf. Lemma@. We may therefore assume that
each angle between consecutive vectors in the sequenee, ..., z,, —z; iS acute but non-
zero.

Since all then factors inf (x4, . . ., x,,) are positive, we could potentially obtain a larger value
of f by maximizing(z; | z2)(z9 | x3) as a function of, € H,. However, since already is op-
timal in the point(x4, ..., z,), we derive that als¢x; | z2)(x2 | z3) is optimal as a function of
xo. According to Lemm@l, this implies that € U = span{x1, 3} and that the angle between
1 andz, equals the angle between andz;. Potentially,—x, could also be a solution, but
this case is excluded by the positivity of each inner product in the expressitof. . . , z,,).

We may choose an orthonormal bais, e,;) for U such thatr; = e; and the angle between
x1 andz, is positive, thuse, = (cos 6, sin ) and consequently; = (cos 26, sin 20) for some
0 €0, /2] with respect to this basis. We similarly obtain € U and that the anglé, between
xo andx is equal to the angle between andzx,, thusxz, = (cos 36, sin 30). We continue in
this way until we obtain,, € U with the representation, = (cos(n — 1)#,sin(n — 1)#) and
that the angle between, and—zx; is §. We conclude thatt = = + k27w orf = (2k + 1)7/n

forsomek = 0,1, 2,.... However, sincé is acute we obtain
2k +1
0 < cosf = cos <u> < cos (E> ,
n n
and this inequality contradicts the optimality @f;, . .., z,) unlessk = 0, thusf = = /n. We
have derived that the vectofs, . .., z,) have the same configuration as in Lenjra 2 and that
f(zq,...,x,) = cos"(mw/n). O
If X,,...,X, are non-constant square-integrable stochastic variables, then the correlation
coefficientr; ; betweenX; and.X; is defined by
COV(XZ', Xj)

= ,5j=1,...,n,

7"@‘
DXl - 11
where|| X ||, = Var[X]'/2. Theoren] 4 then states that
n m
— COS <E> < T12723°  Tn—1)n"n1-

Notice that for the optimal configuration in Leminia 2, we can calculate all possible correlation
coefficients, not only the coefficients between neighbours in the 60X, . . ., X,,, X;.
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Forn = 2 the inequality reduces 0 < 7{2 with equality, when the stochastic variables are
uncorrelated. The most striking case is probablky 3 wherecos™(7/n) = 1/8 and thus

1
3 < riar23731-

This is the only case where each correlation coefficient is represented exactly once in the prod-

uct. Forn = 4 we obtain

1
- 4_1 < T1,272,373,474,1

and so forth.
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