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ABSTRACT. Itis shown that the functiom — 1+ InT'(z+1) —In(z+1) is strictly completely
monotone or{—1, co) and tends to one as— —1, to zero asx — oo. This property is derived
from a suitable integral representationlof(x + 1).
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The starting point of this note was an inequality,

r(z+1)"
(1) 1< #
L (259 +1)
for all pairs of integerd < d < n, in [9, Lemma 2.1]. Note that the left hand side of this
inequality is an immediate consequence of the logarithmic convexity di-fia@ction; seel[5].
Looking for a stream-lined proof of inequality] (1), we first found a proof of the more general

inequality
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valid for all 0 < ¢ < p, and finally showed
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forall —1 < ¢ < p. These inequalities will be immediate consequences of the following result.
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2 HENDRIK VOGT AND JURGENVOIGT

Theorem 1. The functionf(z) := 14+ 1 InT'(z+1) — In(z + 1) is strictly completely monotone
on(—1, c0),
hnill f(z)=1, lim f(x)=0,

£(0) = lim f(x) =1~ 7.

(Here, ~ is the Euler-Mascheroni constant, ansftrictly completely monotonemeans
(—=1)"f™)(x) >0 forall z € (—1,00), n € Np).

Proof. The main ingredient of the proof is the integral representation

<1 1 1
lnF(x+1):xln(ac+1)—x+/() (;—et_1>@t¥(1—ezt>dt’

which is an immediate consequence [of [6, formula 1.9 (2) (p.21)] @nd [6, formula 1.7.2 (18)
(p. 17)]. We obtain

The function
1 1
o) = (=) = [Lerds
Y 0
is strictly completely monotone dR. Since% — eth > ( for all ¢ > 0, we conclude thaf is
strictly completely monotone. Ag — oo, ¢(y) tends to zero, and henden, ... f(x) = 0.

The definition of f showslim, ., f(z) = 1+ ¥(1) = 1 — ~; cf. [6, formula 1.7 (4) (p. 15)].
Finally,

lim f(z) =1+ lim (é(lnl“(:c +2) —In(z + 1)) — In(z + 1)) =1

r——1 z——1

Corollary 2. Inequalities(3), (2) and (1) are valid for the indicated ranges.

Proof. Inequality [3) is just a reformulation of the monotonicity of the functjopfrom Theo-
rem[]. Continuing(3) to the right,

we obtain[(2). Setting = %<, e get[(). O

Remark 3.

3
(a) In [4] it was shown that the functicgh— & (T’ (1 + %)) is increasing orf0, co). This
fact follows immediately from our Theorejnm 1, because of
1 1 1
In (—F(:c + 1)z> +1l=—Inz+-TI'(z+1)+1=In(z+1) —lnz+ f(x).
xr T

(In fact, the latter function even is strictly completely monotone as well.)
(b) For other recent results on (complete) monotonicity properties of'thenction we
refer to [1/2] 3].
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