JIPAM logo: Home Link
 
Home Editors Submissions Reviews Volumes RGMIA About Us
 

   
  Volume 6, Issue 4, Article 105
 
On the Determinantal Inequalities

    Authors: Shilin Zhan,  
    Keywords: Minkowski inequality, Determinantal inequality, Positive definite matrix, Eigenvalue.  
    Date Received: 24/08/05  
    Date Accepted: 13/09/05  
    Subject Codes:

15A15, 15A57.

 
    Editors: Bicheng Yang,  
 
    Abstract:

In this paper, we discuss the determinantal inequalities over arbitrary complex matrices, and give some sufficient conditions for

$displaystyle d[A + B]^t ge d[A]^t + d[B]^t,$    

where $ t in mathrm{R}$ and $ t ge frac{2 }{n}$. If $ B$ is nonsingular and $ func{Re}lambda (B^{ - 1}A) ge 0$, the sufficient and necessary condition is given for the above equality at $ t = frac{2 }{n}$. The famous Minkowski inequality and many recent results about determinantal inequalities are extended.

         
       
  Download Screen PDF
  Download Print PDF
  Send this article to a friend
  Print this page
 

      search [advanced search] copyright 2003 terms and conditions login