JIPAM logo: Home Link
 
Home Editors Submissions Reviews Volumes RGMIA About Us
 

   
  Volume 9, Issue 4, Article 104
 
A Multinomial Extension of an Inequality of Haber

    Authors: Hacčne Belbachir,  
    Keywords: Haber inequality, multinomial coefficient, symmetric functions.  
    Date Received: 10/07/08  
    Date Accepted: 17/09/08  
    Subject Codes:

05A20, 05E05.

 
    Editors: László Tóth,  
 
    Abstract:

In this paper, we establish the following: Let $ a_{1},a_{2},ldots ,a_{m}$ be non negative real numbers, then for all $ ngeq 0,$ we have

$displaystyle frac{1}{inom{n+m-1}{m-1}}sum_{i_{1}+i_{2}+cdots +i_{m}=n}a_{... ...cdots a_{m}^{i_{m}}geq left( frac{a_{1}+a_{2}+cdots +a_{m}}{m}ight)^{n}.$
The case $ m=2$ gives the Haber inequality. We apply the result to find lower bounds for the sum of reciprocals of multinomial coefficients and for symmetric functions.

         
       
  Download Screen PDF
  Download Print PDF
  Send this article to a friend
  Print this page
 

      search [advanced search] copyright 2003 terms and conditions login