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CATEGORIES, NORMS AND WEIGHTS

MARCO GRANDIS

(communicated by George Janelidze)

Abstract
The well-known Lawvere category [0,∞] of extended real

positive numbers comes with a monoidal closed structure where
the tensor product is the sum. But [0,∞] has another such
structure, given by multiplication, which is *-autonomous and
a CL-algebra (linked with classical linear logic).

Normed sets, with a norm in [0,∞], inherit thus two sym-
metric monoidal closed structures, and categories enriched on
one of them have a ‘subadditive’ or ‘submultiplicative’ norm,
respectively. Typically, the first case occurs when the norm
expresses a cost, the second with Lipschitz norms.

This paper is a preparation for a sequel, devoted to weighted
algebraic topology, an enrichment of directed algebraic topol-
ogy. The structure of [0,∞], and its extension to the complex
projective line, might be a first step in abstracting a notion of
algebra of weights, linked with physical measures.

Introduction

A category can be equipped with a (sub)additive norm satisfying, for all objects
X and all pairs of composable arrows f, g

|1X | = 0, |gf | 6 |f |+ |g|, (1)

or also with a (sub)multiplicative norm, satisfying:

|1X | 6 1, |gf | 6 |f |.|g|. (2)

The first case appears when the norm expresses a ‘cost’ (length, duration, price,
energy,...) which can ‘at worst’ be added in a composition (typically, in a con-
catenation of paths). The second is usual with Lipschitz norms, where the norm
expresses a scale factor (or, rather, a best bound for that), which can ‘at worst’
be multiplied in a composition. A normed additive category (like normed vector
spaces and bounded linear mappings) makes use of both aspects: its hom-sets are
abelian groups equipped with an additive norm, but composition is multiplicative.
The ‘same’ happens in a normed ring - a normed additive category on one object,
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or a monoid object in the category of additively weighted abelian groups, with mul-
tiplicative tensor product. The purpose of this article is to investigate such aspects
and fix a coherent terminology.

As shown in the well-known article of Lawvere on (generalised) metric spaces [10],
the additive notion (1) is based on the category of extended positive real numbers,
λ ∈ [0,∞], with arrows λ > µ, equipped with a strict symmetric monoidal closed
structure, which we write w+: the tensor product is the sum λ+µ and the internal
hom is defined by truncated difference, hom+(µ, ν) = 0 ∨ (ν − µ). One derives
from w+ the symmetric monoidal closed category w+Set of normed sets (1.4),
written S(R) in [10] and more explicitly described in a paper by Betti-Galuzzi [2].
A category enriched on the latter (cf. 3.1) has an additive norm, as in (1).

But the same category ([0,∞],>) can be equipped with a multiplicative tensor
product λ.µ. Provided we define 0.∞ = ∞ (so that tensoring by 0 preserves the
initial object ∞), the latter is again a strict symmetric monoidal closed structure
w•: the internal hom is hom•(µ, ν) = ν/µ, where the ‘undetermined forms’ 0/0 and
∞/∞ are defined to be 0. (This choice comes from privileging the direction λ > µ,
which is necessary if we want to view (2) as an expression of enrichment; cf. 1.2.)
Multiplication gives a multiplicative symmetric monoidal closed structure w•Set,
on the category of normed sets; enrichment on the latter means a multiplicative
norm, cf. 3.2. The new multiplicative structure w• is *-autonomous (Barr [1]), with
involution 1/µ (1.2). (Lipschitz norms are viewed in [10] in a different way, based
on endofunctors of w+, cf. 3.5.)

Now, these ‘norms’ are ‘generalised norms’, in the same way as Lawvere metrics
are generalised ones:
(a) they can take an infinite value,
(b) they are not ‘Hausdorff’: |a| = 0 does not imply a = 0 (when this makes sense),
(c) they are ‘directed’: we do not assume |a| = | − a| (when this makes sense).

This is why we prefer to speak of weights (or costs) rather than norms: a weighted
abelian group, as defined here (2.2), is a much weaker notion than a normed abelian
group in the classical sense. As a typical example, the free weighted abelian group
on one element is the group of integers wZ, equipped with the weight where |k| =
k for k > 0 and otherwise |k| = ∞ (2.2); the weighted field wR of reals has a
similar weight (2.5). These examples also exhibit how weights (can) have a directed
character: a weighted abelian group has an associated preorder, where the positive
cone is given by the attainable elements (of finite weight; cf. 2.4).

This paper is a preparation for a sequel where, starting from some works in
‘directed algebraic topology’ (cf. [6, 7] and references therein), we shall develop a
study of ‘weighted algebraic topology’, where ‘weighted spaces’ (for instance, the
generalised metric spaces of Lawvere) can be studied - via homotopy or homol-
ogy - with additively weighted categories (3.1) or with additively weighted abelian
groups and their multiplicative tensor product. A first study of weighted homology
for weighted cubical sets can be found in [8], showing links with noncommutative
geometry.

Finally, it may be interesting to pay some reflection to the algebraic structure
which makes [0,∞] an ‘algebra of measures’ or ‘weights’. As briefly considered in 1.8,
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[0,∞] is a commutative semiring, equipped with an involution which transforms sum
and multiplication into other operations. Such a structure also exists in the complex
projective line P 1C, whose additive structure and involution z−1 yield the calculus
of impedances and admittances, in RLC networks. But [0,∞] has an order, which
allows us to treat it as a category (cf. 1.2), and it is not clear if and how this aspect
should be partially transferred to P 1C (cf. 1.8).
Acknowledgements. The author is indebted with F.W. Lawvere, R. Betti, G. Rosolini
for various helpful discussions.

1. Weights and weighted sets

Weighted sets, equipped with a weight function X → [0,∞], have two tensor
products, derived from two tensor products on the category of weights [0,∞], i.e.
addition and multiplication. All these structures are symmetric monoidal closed.
We end with some speculation on ‘algebras of weights’ (1.8).

1.1. Real weights
Quantities are generally measured by positive real numbers. It is convenient to

use the interval [0,∞] of extended positive real numbers, including ∞, which will be
called real weights, or just weights. For instance, if we are considering the resistance
R of a conductor, the perfect conductor (R = 0) should have equal rights to be
included as the perfect insulator (R = ∞); also because the conductance G = R−1

reverses such values.
The interval [0,∞] has a rich structure, of relevance for measures. First, it is

totally ordered, which allows us to compare quantities of the same species, and a
complete lattice (thanks to including ∞), obviously distributive.

Second, [0,∞] has a sum (which measures a disjoint union of quantities of the
same species) and a multiplication (corresponding to the product of physical quan-
tities). It is a commutative semiring, letting

λ +∞ = λ.∞ = λ ∨∞ = ∞ (λ ∈ [0,∞]). (3)

Since we want to use both operations, and some physical intuition here and
there, we should insist on the fact that these weights are ‘pure quantities’: they
do not stand for physical quantities but for their measures, with respect to a fixed
system of units. Let us also note that ∞ acts in the obvious way, except for the
choice 0.∞ = ∞ of the ‘undetermined form’, which is motivated below (1.2). As
to terminology, a semiring is here an (additive) abelian monoid equipped with a
multiplication which is associative, has a unit and distributes over addition; note
that we do not (cannot) require that 0 be absorbent for multiplication: the present
notion is slightly weaker than a rig (which is a monoid in the monoidal category of
abelian monoids, cf. [12]). The prime example is the semiring N of natural numbers,
which is the free such algebra on the empty set.

Finally, there is in [0,∞] a (well defined) involution λ 7→ λ−1, whose physical
interest is also obvious. This involution transforms the sum into another operation,
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which we call harmonic sum

λ ∗ µ = (λ−1 + µ−1)−1, (4)

of common use for lp-norms, but also in geometrical optics and for resistor networks:
in the latter case, composition in series of resistors leads to the sum of resistances,
while composition in parallel leads to the sum of conductances, and the harmonic
sum of resistances. (This interpretation suggests an extension to complex numbers,
measuring impedances and admittances, see 1.8.)

Similarly, the involution transforms the multiplication into a commutative monoid
operation

λ•µ = (λ−1.µ−1)−1, (5)

which coincides with multiplication, except that it gives ‘the other choice’ for the
undetermined form: 0•∞ = 0.

One can also note that all translations λ+( ): [0,∞] → [0,∞] preserve arbitrary
meets (while, generally, they do not preserve the empty join, 0); thus, reversing
the order, ([0,∞],>,+) is a commutative unital quantale. The same holds with
the multiplicative structure ([0,∞],>, .), with definition (3). On the other hand,
the involution λ 7→ λ−1 does not make any of these structures into an ‘involutive
quantale’, according to the notion in use (cf. Mulvey-Pelletier [11]). The categorical
counterpart of these facts is the closure of the two monoidal structures, λ + µ and
λ.µ, considered below (1.2).

1.2. The category of weights
Our weight functions - for sets, abelian groups or categories - will take values in

the commutative ordered semiring [0,∞] considered above. But we need to make it
into a category.

As in Lawvere [10], we use the opposite category w, with morphisms λ > µ
(which is necessary to treat normed categories as enriched ones). This category has
all limits and colimits (with trivial equalisers and coequalisers, of course)

product: supλi, terminal object: 0,
sum: infλi, initial object: ∞.

(6)

We will write w+ = (w,+, 0) this category equipped with the strict symmetric
monoidal closed structure defined by the additive tensor product, λ+µ. The internal
hom is given by truncated subtraction, and will be written as a difference (as in [10]):

λ + µ > ν ⇔ λ > hom+(µ, ν) = ν − µ, (ν − µ = 0 ∨ (ν − µ)). (7)

Note that an ‘undetermined form’ appears, and gets a precise value: ∞−∞ = 0
(since λ +∞ > ∞ is always true, as λ > 0).

We will write w• = (w, ., 1) the same category, equipped with the strict sym-
metric monoidal closed structure defined by the multiplicative tensor product λ.µ;
recall that we have chosen 0.∞ = ∞, in 1.1. (Thus, tensoring with any element λ
preserves the initial object ∞, for the ‘direction’ λ > µ. But of course the oppo-
site category wop = ([0,∞],6) is monoidal closed with tensor product λ•µ, and
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∞•0 = 0.)
Now, the internal hom for w• is given by division, with ‘undetermined forms’

0/0 = ∞/∞ = 0 (as required by the adjunction, after the previous choice)

λ.µ > ν ⇔ λ > hom•(µ, ν) = ν/µ,
(ν/∞ = 0 for all ν; ν/0 = ∞ for ν > 0, 0/0 = 0). (8)

This is a *-autonomous category [1], with dualising object the multiplicative
identity 1 and involution λ 7→ hom•(λ, 1) = λ−1. (It is thus a CL-algebra, i.e. an
algebra for classical linear logic according to Troelstra’s book [13], or a commutative
cyclic Grishin algebra according to Lambek [9].)

We have already remarked that the derived operation λ•µ = (λ−1.µ−1)−1 ‘nearly’
coincides with the multiplication (1.1): the *-autonomous structure is ‘nearly’ com-
pact. One can also note that all finite ξ > 0 are dualising elements, i.e. provide an
involution λ 7→ hom•(λ, ξ) = ξ/λ; but ξ = 1 is the unique choice giving a ‘nearly
compact’ structure.

Note also that the values of the ‘undetermined forms’, 0/0 = 0 = ∞/∞, agree
with the following identity (holding in every *-autonomous category, in the right-
hand form)

λ/µ = (µ.λ−1)−1 (hom(µ, λ) ∼= (µ⊗ λ∗)∗). (9)

The two tensor products in the category w have an interesting interplay, already
examined above from the algebraic point of view. Multiplication distributes on
addition, and the involution λ 7→ λ−1 of the *-autonomous multiplicative structure
transforms w+ into an anti-isomorphic symmetric monoidal closed category w∗: the
opposite category, equipped with the harmonic sum λ∗µ = (λ−1 +µ−1)−1 (cf. (4)).
These structures will be further examined in 1.8.

1.3. Truth values
Let v = ({0,∞},>) denote the full subcategory of w on the objects 0,∞. Note

that, in this subcategory, the cartesian product λ ∨ µ coincides with both tensor
products considered above, λ + µ and λ.µ, in (3).

The category v (‘v’ for verity) is isomorphic to the boolean algebra 2 = ({0, 1},6)
of truth-values, a cartesian closed category with cartesian product p ∧ q = p.q. The
covariant embedding (contravariant with respect to the natural orders)

M : 2 → w, M(0) = ∞, M(1) = 0, (10)

transforms the (cartesian) product in 2 into the three tensor products of w (which
coincide in v). Moreover, M has left and right adjoint

P a M a Q, P (λ) = 1 ⇔ λ < ∞, Q(λ) = 1 ⇔ λ = 0. (11)

1.4. Weighted sets
A weighted set, or w-set, will be a set X equipped with a weight, or cost function,

consisting of an arbitrary mapping

wX : X → [0,∞], (12)
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also written w, or |−|X , or |−|. We shall say that an element of X is free, attainable
or unattainable when, respectively, its cost is 0, finite or ∞.

A (weak) contraction f : X → Y , or w-map, or map of w-sets, has |f(x)| 6 |x|,
for all x ∈ X. wSet will denote the category of these weighted sets and contractions;
an isomorphism is thus a bijective isometry: |f(x)| = |x|, for all x. This category has
all limits and colimits, constructed as in Set and equipped with a suitable weight
(strictly determined).

Thus, a product
∏

Xi and a sum
∑

Xi (where Xi has weight | − |i) have the
following weights

|(xi)| = supi|xi|i ((xi) ∈
∏

Xi),
|(x, i)| = |x|i (x ∈ Xi),

(13)

while a weighted subset has the restricted weight, and a quotient X/ ∼ has the
induced one

|ξ| = inf{|x| | x ∈ ξ} (ξ ∈ X/∼). (14)

Plainly, infinite products exist because we are allowing an infinite weight. By the
same reason, the forgetful functor B∞ : wSet → Set has a left adjoint w∞S, which
equips the set S with the discrete weight, always ∞, and a right adjoint w0S, with
the codiscrete weight, always zero.

More generally, the functor wλ : Set → wSet which equips a set with the constant
weight λ ∈ [0,∞] has for right adjoint the (representable) λ-ball functor

Bλ : wSet → Set, Bλ(X) = {x ∈ X | |x| 6 λ} = wSet(wλ{∗}, X), (15)

and there is a chain of adjunctions: w∞ a B∞ a w0 a B0.

1.5. The additive tensor product
This structure, hinted at in [10], is explicitly described in [2].
We shall write w+Set the closed symmetric monoidal category of w-sets, equipped

with the additive tensor product X⊗0 Y , derived from the tensor product of w+. It
is given by the cartesian product |X|×|Y | of the underlying sets, with the following
additive weight on a pair x⊗0 y (written thus to avoid confusion with the cartesian
product, where |(x, y)| = |x| ∨ |y|)

|x⊗0 y| = |x|+ |y|. (16)

The identity of the tensor product is the 0-weighted singleton w0{∗}, and the
representable functor produced by the latter is the zero-ball functor B0 (15)

B0 : wSet → Set, B0(X) = {x ∈ X | |x| = 0} = wSet(w0{∗}, X). (17)

The internal hom is the set of all mappings, equipped with the additive weight,
or truncated-difference weight

Hom0(Y, Z) = Set(|Y |, |Z|),
|h|0 = supy(|h(y)| − |y|) = min{λ ∈ [0,∞] | for all y ∈ Y, |h(y)| 6 λ + |y|},
|h|0 6 λ ⇔ for all y ∈ Y, |h(y)| 6 λ + |y|.

(18)
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Thus, the usual bijection Set(X×Y,Z) = Set(X,Set(Y, Z)) which identifies
f : X×Y → Z with g : X → Set(Y, Z) under the condition f(x, y) = g(x)(y),
provides two bijections

Hom0(X ⊗0 Y, Z) = Hom0(X, Hom0(Y, Z)), |f |0 = |g|0,
wSet(X ⊗0 Y, Z) = wSet(X, Hom0(Y, Z)).

(19)

And of course, the zero-ball functor B0, applied to the internal hom, gives back
the w-maps

B0(Hom0(Y,Z)) = wSet(Y, Z). (20)

1.6. The multiplicative tensor product
Similarly, wSet has a second important closed symmetric monoidal structure,

which we shall write w•Set. The multiplicative tensor product X ⊗1 Y is given
again by the cartesian product |X|×|Y | of the underlying sets, with the multiplicative
weight derived from the tensor product of w• (recall that 0.∞ = ∞)

|x⊗1 y| = |x|.|y|. (21)

The identity is the 1-weighted singleton w1{∗}, and its representable functor is
the unit-ball:

B1 : wSet → Set, B1(X) = {x ∈ X||x| 6 1} = wSet(w1{∗}, X). (22)

The internal hom is the set of all mappings equipped with the multiplicative
weight, or Lipschitz weight, i.e. the least Lipschitz constant of a mapping (possibly
∞)

Hom1(Y, Z) = Set(|Y |, |Z|),
|h|1 = supy(|h(y)|/|y|) = min{λ ∈ [0,∞] | for all y ∈ Y, |h(y)| 6 λ.|y|},
|h|1 6 λ ⇔ for all y ∈ Y, |h(y)| 6 λ.|y|.

(23)

Again, the exponential law in Set provides two bijections (notation as in (19))

Hom1(X ⊗1 Y, Z) = Hom1(X, Hom1(Y, Z)), |f |1 = |g|1,
wSet(X ⊗1 Y, Z) = wSet(X, Hom1(Y, Z)).

(24)

and the unit-ball functor B1, applied to the internal hom, gives back the w-maps

B1(Hom1(Y,Z)) = wSet(Y, Z). (25)

1.7. Probabilistic and relative weights
The additive structure w+ is isomorphic to the category p = [0, 1] of probabilistic

weights, with morphisms p 6 q, via

λ = − ln(p), p = exp(−λ) (26)
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(and anti-isomorphic as a lattice, with respect to the natural orders). The category
p has thus an isomorphic structure, with internal hom by truncated division:

product and sum: inf(pi), sup(pi),
tensor product: p.q,
internal hom: hom(q, r) = 1 ∧ r/q,
adjunction: pq 6 r ⇔ p 6 1 ∧ r/q.

(27)

Moreover, p contains the category 2, on which cartesian and tensor product coincide.
On the other hand, the multiplicative structure w• is isomorphic to the category

r = [−∞,∞] of relative weights, with morphisms x > y, via

x = ln(λ), p = exp(x). (28)

The category r has thus an isomorphic structure of *-autonomous category, with

product and sum: sup(xi), inf(xi),
tensor product: x + y, (−∞+∞ = ∞),
internal hom and involution: hom(y, z) = z − y, −x

(29)

1.8. From cubical monoids to algebras of weights
Before going on with the main goals, let us pay some attention to the structure

of [0,∞], which makes it an ‘algebra of weights’, adequate to express measures of
physical quantities. We shall distinguish some properties of this kind, without giving
a precise definition of an algebra of weights, which would require a deeper study.

Let us first note that measures need not be confined to the real line; complex
numbers are also used, e.g. in the analysis of electric networks (or of their mechanical
equivalents). The purely algebraic structure examined above, with main operations
λ + µ, λ.µ, λ−1 extends, with the same properties, to the complex projective line
P 1C = C∪{∞} - and more generally to the projective line P 1F on any commutative
field F (always defining λ +∞ = ∞ = λ.∞, for all λ).

Extending the previous interpretation for resistor networks, the additive structure
of P 1C, together with the involution z−1, formalises the calculus of impedances and
admittances, for networks of resistors, inductors and capacitors in steady sinusoidal
state (cf. [14]). In this situation, the complex number Z = R + iX represents the
impedance of an RLC network, for an alternate current of (fixed) frequency f and
angular speed ω = 2πf ; the real part is the resistance R > 0 while X is the reactance
of our device

X = ωL− (ωC)−1 (30)

which results of its inductance L and capacitance C. Sum and harmonic sum of
impe-dances still agree with composition in series and parallel, respectively.

For this interpretation, it makes sense to restrict P 1C to C+, the complex num-
bers with real part > 0 (including ∞), which are closed under the structure we
are considering - sum, involution and harmonic sum - but not under product. How-
ever, the multiplicative structure of (the whole) P 1C is also of interest for physical
measures, e.g. in the analysis of electrical networks in alternate current.
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The goal of abstracting a notion of ‘algebra of measures’, or ‘weights’, might
begin with the following steps.
(a) Let us start from a dioid, or cubical monoid, a structure of interest for homotopy
and standard intervals, introduced in [5]: it is a set equipped with two structures
of monoid, such that the unit of each operation is an absorbent element for the
other. Typically, a lattice (with minimum and maximum) has such a structure, but
a cubical monoid need not satisfy the idempotence laws, nor the general absorption
laws. (The name comes from links with cubical sets. A cubical monoid in a category
of endofunctors is called a cubical monad [5], typically the structure of a cylinder
functor; thus, an augmented simplicial set is to a cubical set what a monad is to a
cubical monad, what a monoid is to a cubical monoid.)
(b) An involutive cubical monoid [5] has an involution turning each structure into
the other. Equivalently, one can give a monoid (A,+, 0) equipped with an involution
(−)∗ such that the element ∞ = 0∗ is absorbent for the sum; the second operation
is then defined as x ∗ y = (x∗ + y∗)∗.

The standard interval I = [0, 1] has two such structures of interest for homo-
topy: the usual one, as a (totally ordered) lattice with involution t∗ = 1 − t, and
a non-idempotent structure (I, ., 1,∗ ) with ordinary multiplication and the same
involution, which is of interest for smooth homotopies in differentiable manifolds
(while the lattice operations are not smooth). The ordered interval has the same
structures without the involution. An MV-algebra, used in ‘multi-valued logic’
[3, 4] is a commutative involutive cubical monoid satisfying one axiom more:
(x∗ + y)∗ + y = (y∗ + x)∗ + x.
(c) Now, let us define a cubical semiring as a set equipped with two structures of
semiring, such that the zero of each structure is an absorbent element for both
operations of the other structure, while the multiplicative units coincide.
(d) Further, an involutive cubical semiring will also have an involution turning each
structure into the other. Again, one can equivalently give a semiring (A,+, 0, ., 1)
with an involution (−)∗ leaving 1 fixed and such that the constant ∞ = 0∗ is
absorbent for sum and product

x∗∗ = x, 0∗ = ∞, 1∗ = 1, x +∞ = x.∞ = ∞.x = ∞. (31)

The dual operations x∗y = (x∗+y∗)∗, x•y = (x∗.y∗)∗ form then an anti-isomorphic
structure. In this sense, [0,∞] and every projective line are involutive cubical semir-
ings, while C+ is a sub-involutive cubical monoid of P 1C.

Now, [0,∞] is a totally ordered commutative cubical semiring: the semiring struc-
ture agrees with its natural order, while the involution reverses it. Something can
be said about order properties of P 1C, provided we separate the additive structure
from the multiplicative one, with two different (partial) orders, both extending the
total order of [0,∞].
(e) First, one can consider the category with objects in C+ (complex numbers with
real part > 0, including ∞) and morphisms z >+ w, meaning that Re(z) > Re(w)
and Im(z) = Im(w) (with ∞ as an initial object, i.e. a maximum for 6+). Ex-
tending the additive structure of [0,∞], this category is strict symmetric monoidal
closed, with additive tensor product z +w and hom+(w,w′) = w′−w, by truncated
difference on the real part. The (partial) order we are considering is - presumably -
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consistent with the interpretation of our weights as impedances R+ iX, where only
the real part R ‘dissipates’ energy. This structure should likely be enriched with the
(contravariant) involution z−1, which turns sum into harmonic sum.
(f) Second, we have the category with objects in P 1C and morphisms z >• w,
meaning that |z| > |w| and arg(z) = arg(w) (with ∞ as an initial object and 0 as
a terminal). Extending now the multiplicative structure of [0,∞], this category is
a *-autonomous, with tensor product z.w and hom•(w,w′) = w′/w (undetermined
forms as in the real case) and dualising object 1.

2. Weighted algebraic structures

We fix the terminology for weighted algebraic structures, to be used in the sequel.

2.1. Weighted monoids
An additively weighted monoid A, or w+-monoid, will be a monoid object in the

monoidal category w+Set. Thus, it is a monoid (in additive notation) equipped
with a weight function, written w or | − |, taking values in [0,∞] and such that

|0| = 0, |a + b| 6 |a|+ |b|. (32)

In the category w+Mon of such objects, a morphism is a contracting homomor-
phism: |f(a)| 6 |a|, for all elements a of the domain.

Similarly, a multiplicatively weighted monoid A, or w•-monoid, is a monoid in
w•Set. Writing the operation as a product, the weight satisfies now the following
axioms

|1| 6 1, |a.b| 6 |a|.|b|, (33)

and we have a category w•Mon, with contracting homomorphisms.

2.2. Weighted abelian groups
Weighted directed homology, to be studied in a sequel, will take values in the

category wAb of weighted abelian groups, i.e. the full subcategory of w+Mon formed
of the additively weighted monoids which are abelian groups. We shall not use the
category of multiplicatively weighted abelian groups, which is why we do not insist
in writing w+Ab .

Note that, for n ∈ N, we only have |n.a| 6 n.|a|. Note also that we do not require
| − a| = |a|; we want a directed notion, able to distinguish ‘negative elements’ by
means of an infinite cost (cf. 2.3). For instance, wZ will be the group of integers
with

w(k) = k, for k > 0, w(k) = ∞, for k < 0. (34)

In any weighted abelian group, we have

|ka| 6 w(k).|a|, |
∑

kiai| 6
∑

w(ki).|ai|. (35)

The category wAb has all limits and colimits, computed as in Ab and equipped
with a suitable weight (as for w-sets). The tensor product A⊗B of Ab can be lifted
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to wAb, with a multiplicative weight on an element ξ ∈ A⊗B

|ξ| = inf {
∑

|ai|.|bi| | ξ =
∑

ai ⊗ bi } |a⊗ b| 6 |a|.|b|. (36)

In fact, to prove that |ξ + η| 6 |ξ|+ |η|, take any pair of expressions of ξ and η

ξ =
n∑

i=1

ai ⊗ bi, η =
m∑

i=n+1

ai ⊗ b), (37)

and note that

|ξ + η| = |
m∑

i=1

ai ⊗ bi| 6
m∑

i=1

|ai|.|bi| =
n∑

i=1

|ai|.|bi| +
m∑

i=n+1

|ai|.|bi|. (38)

This object A⊗B solves the universal problem for bi-homomorphisms ϕ : A×B →
C such that |ϕ(a, b)| 6 |a|.|b|. It produces a closed symmetric monoidal structure:
the internal hom Hom(B,C) is the abelian group of all homomorphisms of the
underlying abelian groups, with the Lipschitz weight (23).

The unit of the tensor product is wZ, as defined above (and essentially proved
in (35). The representable functor wAb(wZ,−), applied to the internal hom, gives
back the set of morphisms

B1(A) = wAb(wZ, A), B1(Hom(B,C)) = wAb(B,C). (39)

The unit-ball functor B1 : wAb → Set has a left adjoint, associating to a set S
the free weighted abelian group wZS generated by S, namely the free abelian group
generated by S with the weight

|
∑

x

kx.x| =
∑

x

w(kx), (40)

(where (kx)x∈S is a quasi-null family of integers). It is, of course, a sum of copies of
wZ, the free weighted abelian group on one element, indexed on the elements of S.

Note that, in (36), one can have |a ⊗ b| < |a|.|b| (as an obvious consequence of
a⊗ b = (−a)⊗ (−b), since we can have |a| < | − a|.)

2.3. Symmetry
The opposite weighted abelian group Aop has the same algebraic structure, with

the opposite weight
|a|op = | − a| (a ∈ A). (41)

A weighted abelian group is symmetric if it coincides with the opposite one, i.e.
we always have | − a| = |a|. Such objects form a full reflective and coreflective
subcategory !wAb. The reflector ! : wAb → !wAb gives the symmetrised weighted
abelian group !A, with the greatest symmetric weight || − || 6 | − |

||a|| = infa (
∑

(|ai| ∧ | − ai|), (a = (a1, ..., ap), a1 + ... + ap = a). (42)

The free symmetric weighted abelian group on one element is thus !wZ, with ||k||
the ordinary absolute value. It is easy to see that the reflector does not preserve
finite products up to isometry, but only up to Lipschitz equivalence. In [8], we only
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used symmetric weighted abelian groups, called normed abelian groups; direction
was obtained by enriching such object with a preorder, while here we prefer to derive
the preorder from a (possibly non-symmetric) weight (2.4).

Formally, the notion of a symmetric weighted abelian group might seem to be
preferable, since it amounts to an abelian group object in w+Set, while a weighted
abelian group is just an abelian monoid in w+Set which happens to be a group.
But note that such problems arise whenever some form of ‘direction’ is present;
similarly, an ordered group is not a group in the category of ordered sets (since
inversion must reverse the order), but an ordered monoid which happens to be a
group.

2.4. Other adjoints
The forgetful functor p : wAb → dAb with values in the category of preordered

abelian groups equips a weighted group with the positive cone formed of the attain-
able elements (of finite weight)

a 6 b if w(b− a) < ∞. (43)

(Plainly, the functor p comes from the functor P : w → 2 sending all λ < ∞ to
1, see 11.) Its right adjoint wA gives to a preordered abelian group A the weight
sending the positive cone to 0 and its complement to ∞.

Enriching a previous result (40), the forgetful functor wAb → wSet has a left
adjoint, associating to a weighted set X the free weighted abelian group wZX, which
is the free abelian group generated by the underlying set, equipped with the obvious
weight

|
∑

x

kx.x| =
∑

x

w(kx).|x|. (44)

2.5. Weighted rings and modules
A weighted ring (with unit) will be a monoid in the monoidal category wAb

(2.2). Since weighted abelian groups have an additive weight, and a multiplicatively-
weighted tensor product, a weighted ring amounts to a ring R equipped with a
weight function |a| ∈ [0,∞] satisfying the following axioms (for all a, b ∈ R)

|0| = 0, |a + b| 6 |a|+ |b|, |1| 6 1, |a.b| 6 |a|.b|. (45)

Note that the last condition should actually be written as |a.b| 6 |a ⊗ b|, with
respect to the norm of the tensor product R⊗R of the underlying weighted abelian
groups (cf. (36)). But, in the presence of the other axioms, these two conditions are
equivalent (under universal quantifiers for a, b, of course).

In fact, the first condition is a trivial consequence of the second, since we always
have |a ⊗ b| 6 |a|.b|. Conversely, suppose we have |ab| 6 |a|.|b| for all a, b; if a ⊗ b
can be written as

∑
ai ⊗ bi, it follows that ab =

∑
aibi and∑

|ai|.|bi| >
∑

|aibi| > |
∑

aibi| = |ab|, (46)

so that the greatest lower bound of such expressions
∑
|ai|.|bi| gives |a⊗ b| > |a.b|.
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Typical examples are the weighted rings wZ,wQ,wR of integers, rationals and
reals, with

w(a) = a, for a > 0, w(a) = ∞, for a < 0; (47)

their symmetrised versions !wZ, !wQ, !wR are weighted by the ordinary absolute
value.

The category wRng of weighted rings and contracting homomorphisms has thus
forgetful functors with values in the categories wAb and w•Mon of (additively)
weighted abelian groups and multiplicatively weighted monoids.

A weighted module A on the weighted ring R is a module with a weight satisfying

|0| = 0, |a + b| 6 |a|+ |b|, |λa| 6 |λ|.|a| (a, b ∈ A; λ ∈ R). (48)

Similarly for weighted vector spaces on weighted fields. Thus, a weighted abelian
group is ‘the same’ as a weighted module on the weighted ring wZ, while a symmetric
weighted abelian group (2.3) amounts to a weighted module on !wZ.

3. Weighted categories

Like monoids (2.1), categories can be equipped with an additive weight or with
a multiplicative one. In a weighted additive category (3.4), defined as a category
enriched on weighted abelian groups, the sum of parallel maps has a (sub)additive
weight, while the weight of a composition is (sub)multiplicative.

3.1. Categories with an additive weight
An additively weighted category (called a normed category in [10, 2]) will be a

category X enriched on the symmetric monoidal closed category w+Set.
Equivalently, X is a category and every morphism a is given a weight, or cost

|a| ∈ [0,∞], so that two obvious axioms are satisfied, for identities and composition:

(w+cat.0) |1x| = 0, for all objects x of X,

(w+cat.1) |ba| 6 |a|+ |b|, for all pairs of consecutive arrows a, b.

Loosely speaking, we can think of |a| as a cost, in some sense (length, duration,
price, energy, etc.) which can ‘at worst’ be added in a composition (typically, a
concatenation of procedures). A weighted group - abelian or not - can be viewed as
a weighted groupoid on one object (cf. 2.2).

An additively weighted category will also be called a w+-category. A w+-functor
f : X → Y is a functor between such categories, satisfying the condition |f(a)| 6 |a|,
for all morphisms a of X; a w+-transformation ϕ : f → g is a natural transformation
between w+-functors. All this forms the 2-category w+Cat of (small) w+-categories.

Some examples can be found in [10], p. 139. In a sequel, we will construct the
fundamental weighted category of a generalised metric space, in the sense of Lawvere
[10], or more generally of a ‘weighted space’ (a topological space equipped with a
weight function for continuous paths, under suitable axioms). Other examples are
in 3.3.
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Incidentally, also the notion of a sup-weighted category, enriched on the cartesian
monoidal structure (wSet,×), can be of interest. Then, the second axiom above has
to be replaced with: |ba| 6 |a| ∨ |b|. The previous ‘additive’ notion is to the latter
what a metric space is to an ultrametric one.

3.2. Categories with a multiplicative weight
Similarly, a multiplicatively weighted category will be a category X enriched over

the symmetric monoidal closed category w•Set.
Equivalently, X is a category and every morphism a is equipped with a weight

|a| ∈ [0,∞], so that:

(w•cat.0) |1x| 6 1, for all objects x of X,

(w•cat.1) |ba| 6 |a|.|b|, for all pairs of consecutive arrows a, b.

We also speak of a w•-category. A w•-functor f : X → Y is a functor between
such categories, satisfying the condition |f(a)| 6 |a|, for all morphisms a of X; a
w•-transformation ϕ : f → g is a natural transformation between w•-functors. We
have now the 2-category w•Cat of (small) w•-categories.

The categories of normed vector spaces and Banach spaces, with all linear maps
(or with the bounded ones, or with linear contractions), have a classical multiplica-
tive weight, the Lipschitz norm. Note that the norm of the identity of the null space
is 0; this happens less exceptionally with seminormed vector space or weighted
vector spaces. Other examples are considered below.

3.3. Other examples
The category of w-sets and all mappings has an additive weight |f |0 as defined

above for a mapping f : X → Y (see (18))

|f |0 = supx(|f(x)| − |x|) = min{λ ∈ [0,∞] | for all x ∈ X, |f(x)| 6 λ + |x|},
|f |0 6 λ if and only if, for all x ∈ X : |f(x)| 6 λ + |x|,

(49)
which identifies w-maps by the condition |f |0 = 0. It is thus trivial on wSet.

But it has also a more usual multiplicative or Lipschitz weight (23)

|f |1 = supx(|f(x)|/|x|) = min{λ ∈ [0,∞] | for all x ∈ X, |f(x)| 6 λ.|x|},
|f |1 6 λ if and only if, for all x ∈ X : |f(x)| 6 λ.|x|,

(50)

which identifies w-maps by the condition |f |1 6 1, and is also of interest for wSet.
There is a similar weight on the category of weighted abelian groups and algebraic
homomorphisms; wAb inherits a multiplicative weight.

3.4. Weighted additive categories.
A weighted additive category A will be a category enriched on the monoidal cate-

gory wAb (2.2). Extending the case of a weighted ring considered in 2.5 (a weighted
additive category on one object), all hom-sets A(X, Y ) are weighted abelian groups,
and composition is (sub)multiplicative

|0| = 0, |f + g| 6 |f |+ |g| (f, g : X → Y ),
|1X | 6 1, |gf | 6 |f |.g| (f : X → Y, g : Y → Z).

(51)
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Also here the last condition is equivalent to |gf | 6 |f ⊗ g|, with respect to the
norm of the tensor product A(X, Y )⊗A(Y, Z) (as in 2.5).

3.5. Multiplicative norms and fibered categories
We end with noting that Lawvere’s article [10] deals with the multiplicative

aspect of Lipschitz norms in a different, much more general way.
As hinted at there (see p. 150-151), one can form a category of generalised met-

ric spaces, say M, fibered on the monoid of monoidal endofunctors of w+ (as a
category on one object). A morphism (f, λ) : X → Y of M consists of an arbi-
trary mapping f : |X| → |Y | between the underlying sets, together with a monoidal
functor λ : w+ → w+ such that

λ(dX(x, x′)) > dY (f(x), f(x′)) (x, x′ ∈ X), (52)

and the composition is obvious: (g, µ)◦(f, λ) = (gf, µλ).
Now, a monoidal functor λ : w+ → w+ is an increasing function such that:

λ : [0,∞] → [0,∞], 0 > λ(0), λ(s) + λ(t) > λ(s + t). (53)

Every element λ ∈ ]0,∞[ gives a ‘linear endofunctor’ λ̂(s) = λ.s, which, in con-
dition (52), says that λ is a Lipschitz constant for f ; composition multiplies such
constants. But there are monoidal endofunctors, of interest in the theory of metric
spaces, which are not ‘linear’, e.g. the square root. Even restricting to ‘linear endo-
functors’, this approach is slightly different from the one we are following here; for
instance, there are two candidates for 0̂ (sending ∞ either to 0 or to ∞), but both
give ∞̂◦0̂ = 0̂.

While this ‘fibered approach’ is certainly important, the one we are following
seems to give more directly the tools we need to develop ‘weighted’ homology and
homotopy, in a sequel.
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Università di Genova
Via Dodecaneso 35
16146-Genova, Italy

http://jhrs.rmi.acnet.ge
http://www.emis.de/ZMATH/
http://www.ams.org/mathscinet
http://jhrs.rmi.acnet.ge
mailto:grandis@dima.unige.it

	Weights and weighted sets
	Real weights
	The category of weights
	Truth values
	Weighted sets
	The additive tensor product
	The multiplicative tensor product
	Probabilistic and relative weights
	From cubical monoids to algebras of weights

	Weighted algebraic structures
	Weighted monoids
	Weighted abelian groups
	Symmetry
	Other adjoints
	Weighted rings and modules

	Weighted categories
	Categories with an additive weight
	Categories with a multiplicative weight
	Other examples
	Weighted additive categories. 
	Multiplicative norms and fibered categories


