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NOTE ON COMMUTATIVITY IN DOUBLE SEMIGROUPS AND
TWO-FOLD MONOIDAL CATEGORIES

JOACHIM KOCK

(communicated by Ronald Brown)

Abstract
A concrete computation — twelve slidings with sixteen tiles

— reveals that certain commutativity phenomena occur in ev-
ery double semigroup. This can be seen as a sort of Eckmann-
Hilton argument, but it does not use units. The result im-
plies in particular that all cancellative double semigroups and
all inverse double semigroups are commutative. Stepping up
one dimension, the result is used to prove that all strictly as-
sociative two-fold monoidal categories (with weak units) are
degenerate symmetric. In particular, strictly associative one-
object, one-arrow 3-groupoids (with weak units) cannot realise
all simply-connected homotopy 3-types.

1. Introduction and results

1.1. The Eckmann-Hilton argument. In 1932, Čech introduced the higher
homotopy groups πi, i > 1 in a contribution submitted to the International Congress
of Mathematicians in Zürich. His paper was received by Alexandrov and Hopf who
quickly realised that all these groups are abelian (or perhaps Čech had noticed
this himself), and for this reason they felt it could not be the correct notion. They
convinced Čech to withdraw his paper, and in the final proceedings only a very
short communication of Čech was included [3].1

The natural generality of the commutativity argument, known as the Eckmann-
Hilton argument [5], is an elementary statement about double monoids (although
asssociativity is not essential). Recall that a double monoid is a set S equipped with
two compatible monoid structures, i.e. two associative and unitary multiplications
∗h and ∗v satisfying the interchange law

(x ∗h y) ∗v (z ∗h w) = (x ∗v z) ∗h (y ∗v w)

for all x, y, z, w ∈ S. If ∗h is depicted horizontally and ∗v vertically, then the inter-
change law says that in a composite composition
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1I learned this story from Ronnie Brown, who in turn got it from Eldon Dyer.
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x y

z w

it doesn’t matter whether the vertical or the horizontal composition is performed
first.

It is automatic from the interchange law that the two units coincide. This unit,
which we denote by 1, obviously commutes with every other element, for the hor-
izontal as well as the vertical composition. This innocent-looking special case of
commutativity in fact forces the two composition laws to be commutative, and to
coincide. This is the Eckmann-Hilton argument:

a b =
a

b1
1

=
a

b
=

a

b

1
1

= b a

(Since the homotopy group π2 is defined in terms of maps from squares, which
can be composed in two compatible ways (horizontally and vertically), the commu-
tativity of π2 as well as all higher homotopy groups follows readily [5].)

1.2. Double semigroups. It is clear that the existence of the unit is a key ingre-
dient in the Eckmann-Hilton argument. For double semigroups (i.e. sets with two
compatible non-unital associative multiplications), the argument does not work,
and indeed it is easy to exhibit examples of double semigroups which are not com-
mutative.

The main discovery of the present note is that certain commutativity phenonema
do arise even in double semigroups without units. These phenomena occur in ex-
pressions with many terms, where the interchange law and associativity combined
give rise to some rearrangements of terms. One such commutativity is expressed by

Proposition 2.3. For any sixteen elements a, b, . . . in any double semi-
group, this equation holds:

a b
=

b a

(The empty boxes represent fourteen nameless elements, the same on
each side of the equation, and in the same order.)

The proof is an elementary computation exploiting the geometrical representa-
tion of the two multiplication laws. It would be quite cumbersome to write it out
algebraically.

1.3. Cancellative double semigroups and inverse double semigroups are
commutative. In double semigroups with some further cancellation properties, the
blanks in the equation can be cancelled away and we get absolute commutativity. In
particular, every cancellative double semigroup is commutative (Corollary 2.5). It is
also shown that every inverse double semigroup is commutative (Proposition 2.8).
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1.4. Two-fold monoidal categories and braidings. The notion of double
monoid as well as the Eckmann-Hilton argument make sense in any monoidal cate-
gory in place of the category of sets. A double monoid in Cat is the same thing as a
category with two compatible strict monoidal structures, and the Eckmann-Hilton
argument shows that such are commutative.

It is natural to consider the non-strict version of this situation, i.e. a category
equipped with two (non-strict) monoidal structures which are compatible up to
coherent isomorphism. In this case the Eckmann-Hilton argument consists of a se-
quence of specific isomorphisms, and it turns out to define a braiding. This was
observed by Joyal and Street [8] in 1985, and in fact was one of the motivating ex-
amples for their discovery of the notion of braided monoidal category. (Conversely
a braiding on a monoidal category can be used to construct a second, weakly com-
patible, monoidal structure.) In this way, the Eckmann-Hilton argument is directly
related to core subtleties of higher category theory.

1.5. Strictifications. One of the key themes in higher category theory is stric-
tification. Finding strict or semi-strict models for weak structure often amounts
to powerful coherence results. It is well known that every monoidal category is
equivalent to a strict one [14] [15, XI.3], but the argument of the previous para-
graph shows that not every two-fold monoidal category is equivalent to a strict one
— which is just another expression of the fact that not every braided monoidal
category is braided equivalent to a commutative monoid in Cat. In fact, two-fold
monoidal categories can be seen as tricategories with one object and one arrow,
and the observation is the simplest case of the fact that not all tricategories are
equivalent to strict 3-categories [6].

As a rule of thumb, one can strictify one level of weak structure, but in general
not two levels at the same time; see for example Paoli [16] who studies two different
one-level strictifications of weak 3-groupoids in the sense of Tamsamani [18], and
compares with cat2-groups [13] in the path-connected case. However, it is sometimes
possible to strictify one level of structure and parts of other levels. For example,
every two-fold monoidal category is equivalent to a two-fold strict monoidal category
with iso-interchange [1] (corresponding to the fact that every braided monoidal
category is equivalent to a braided strict monoidal category).

The braiding that results from the Cat version of the Eckmann-Hilton argument
is a composite of unit structure isomorphisms and interchange isomorphisms. As just
explained, it is possible to strictify the units if the interchange law is kept weak. It is
a natural question whether it would be possible to strictify instead the interchange
law while keeping the unit weak. This idea is related to Simpson’s conjecture:

1.6. Simpson’s conjecture. Based on a careful analysis of strict 3-groupoids, and
the observation that the units play a key role in the Eckmann-Hilton argument,
Simpson [17] was led to suspect that units ( = identity arrows) can account for
all higher homotopical data in higher categories. A strong version of his conjecture
states roughly that every weak n-category is equivalent to one where only the units
are weak. (See [17] and [10] for more formal statements of the conjecture.) Simpson’s
conjecture is highly surprising and goes against all trends in higher category theory,
where the emphasis was always on the composition laws.
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A weaker version of the conjecture states that strictly associative n-groupoids
with weak units is a model for homotopy n-types. In contrast, completely strict
n-groupoids can model only homotopy n-types whose higher Whitehead brackets
(i.e., those beyond the action of π1) are zero. The first interesting case is that of
1-connected homotopy 3-types, since this is the first appearance of a non-trivial
higher Whitehead bracket, π2 ⊗ π2 → π3, which in turn is closely related to the
braiding. In fact, 1-connected 3-types can be realised by braided categorical groups,
cf. Joyal-Tierney [9]; see also Brown-Gilbert [2] for a closely related model. A version
of Simpson’s conjecture in this case was proved in Joyal-Kock [7]: one-object 3-
groupoids which are strict in all respects except that there are only weak identity
arrows (forming a contractible space) can model all 1-connected homotopy 3-types.

1.7. Strictification of composition and interchange? It is tempting to refor-
mulate (and distort) Simpson’s conjecture by saying that composition and inter-
change can always be strictified if just the units remain weak. One might think that
every two-fold monoidal category is equivalent to one with strict compositions and
strict interchange. However, this is false: in Section 3 of this note, the commutativity
in Proposition 2.3 is used to show that

Proposition 3.2. If C is a two-fold monoidal category, strictly associa-
tive and with strict interchange, then C is degenerate symmetric (i.e. has
a symmetry σ such that σX,X = idX⊗X).

Recall from [1] that braided monoidal categories correspond to two-fold loop
spaces (via group completion of the nerve) and arbitrary 1-connected homotopy
3-types [8], while symmetric monoidal categories correspond to infinite loop spaces.
Since infinite loop spaces have vanishing Whitehead bracket π2 ⊗ π2 → π3, we find
the following corollary.

Corollary 3.4. Strictly associative one-object, one-arrow 3-groupoids (but
still with weak units) cannot realise all simply-connected homotopy 3-
types.

Acknowledgements. The sliding argument of Proposition 2.3 was discovered after
conversations with André Henriques, whom I thank for precious input. I am also
thankful to Ronnie Brown for some pertinent comments.

2. Double semigroups

A double semigroup is a set equipped with two compatible associative multipli-
cation laws. In other words, it is just like a double monoid, except that there is no
unit.

2.1. Example. A double semigroup is not necessarily commutative: take any set
with at least two elements, and let both composition laws be the ‘K-combinator’:
x ∗v y := x ∗h y := x. Clearly, this is associative, and satisfies the interchange law,
but it is not commutative.

2.2. Sliding tiles. When writing the graphical representation of some product in
a double semigroup, it is important to note that there is a certain freedom in where
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to set the ‘walls’ — this comes about because of associativity. For example, in the
product

(c ∗h d ∗h e) ∗v (a ∗h b)

there are two ways of setting parentheses in (c ∗h d ∗h e):

((c ∗h d) ∗h e) ∗v (a ∗h b) = (c ∗h (d ∗h e)) ∗v (a ∗h b).

Hence graphically we get

a b

c d e
=

a b

c d e

The upshot is that in the graphical representation, sliding the inner walls of a given
rectangle does not change the corresponding algebraic expression. It is clear that
such slidings can never change the order of the elements that touch the border
of the expression. Hence in the picture above, the order of the five elements will
always be c, d, e, b, a, walking around counter-clockwise. But in expressions with
more elements, nontrivial permutations can take place, as the following computation
shows.

Proposition 2.3. For any sixteen elements a, b, . . . in any double semigroup, this
equation holds:

a b
=

b a

(The empty boxes represent fourteen nameless elements, the same on each side of
the equation, and in the same order.)

Proof. We shall perform twelve slidings, each representing a strict equality. We
only label the middle four elements, since anyway the configuration of the elements
touching the border is fixed by any sliding.

a b

c d
= a b

c d
= a b

c

d = a b

c

d = a b

c

d

= a b

c

d =
a

b

c

d =
a

b

c

d = b d

a c
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= b

da
c

= b

da
c

= b

d

a

c
= b a

c d

(Note that the first eight moves effectuate a cyclic permutation of the four middle
elements, and that the last four moves permutes three of the middle elements.)

The remainder of this section explores a few consequences of the commutativity
phenomenon.

2.4. Cancellative double semigroups. A double semigroup is cancellative if
x ∗ c = y ∗ c implies x = y, for multiplication with any c from any of the four sides.
The following corollary is immediate.

Corollary 2.5. A cancellative double semigroup is commutative.

More generally it is sufficient that there exists one cancellable element c whose
powers in both directions are also cancellable: then place this c in the empty boxes
of the argument and cancel.

2.6. Inverse double semigroups. Recall that two elements x and y in a semigroup
are said to be each other’s inverses if xyx = x and yxy = y, and that an inverse semi-
group is one where every element has a unique inverse. This can also be described
as a universal algebraic structure: an associative multiplication, together with a
unary ‘inverse’ operation x 7→ x−1, satisfying (xy)−1 = y−1x−1, and xx−1yy−1 =
yy−1xx−1. Inverse semigroups are important in many areas of mathematics and
arise notably as semigroups of partial symmetries, cf. Clifford-Preston [4]. See also
Lawson [12], who explains the equivalence (due to Ehresmann and Schein) between
inverse semigroups and certain ordered groupoids.

An inverse double semigroup is a double semigroup both of whose semigroup
structures are inverse. We shall see in a moment that inverse double semigroups are
commutative.

Lemma 2.7. In an inverse double semigroup, the horizontal and vertical inverse
operations commute.

Proof. Given an element a ∈ S, let a−1 denote the horizontal inverse, and let σ(a)
denote the vertical inverse. We need to show that σ(a−1) = σ(a)−1.

Claim 1:

a

a

σ(a) σ(a−1) σ(a) = a

Claim 2:

a

σ(a) σ(a−1) σ(a)

σ(a) σ(a−1) σ(a)

= σ(a) σ(a−1) σ(a)
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Both claims follow by starting on the left-hand side by rewriting a = aa−1a.
Then use the interchange law, and compute each column.

These two equations show that σ(a)σ(a−1)σ(a) is the vertical inverse to a, in
other words

σ(a)σ(a−1)σ(a) = σ(a).

Now repeat the arguments with a−1 and a interchanged, to show also

σ(a−1)σ(a)σ(a−1) = σ(a−1).

These two equations show that σ(a−1) is the horizontal inverse to σ(a). That is,
σ(a−1) = σ(a)−1 as we wanted to show.

In view of the lemma, we can adopt the following notation: given an element a,
let a−1 denote the horizontal inverse, and let A denote the vertical inverse. Then
by the lemma, the horizontal inverse of A is the vertical inverse of a−1, and we can
denote this element by A−1 without unambiguity.

Proposition 2.8. Every inverse double semigroup is commutative.

Proof. Let A and B be two elements in an inverse double semigroup. The proof
consists in writing a big multiplication where AB appears in the middle, as inverse
to the outer factors. Then commute A and B using Proposition 2.3. By uniqueness
of inverses we can then conclude that AB = BA. In fact this argument is needed
four times: one for each way one element can be inverse to another. Here goes:

Claim 1:

ab

ab

ABA−1B−1AB = ab

Claim 2:

ab

ABA−1B−1AB

ABA−1B−1AB

= ABA−1B−1AB

Claim 1 and 2 together say that ABA−1B−1AB is the vertical inverse to ab.
That is,

AB A−1B−1 AB = AB.

Repeating the arguments with ()−1 on every symbol we find also

A−1B−1 AB A−1B−1 = A−1B−1.

These two equation together say that AB is the horizontal inverse to A−1B−1. But
so is BA, and we are done, provided we can prove the two claims.

Let us just prove Claim 1. The second claim is analogous.

ab

ab

ABA−1B−1AB
(1)
=

abb−1a−1ab

abb−1a−1ab

ABA−1B−1AB
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(2)
=

a b b−1 a−1 a b

A B B−1A−1 A B

a b b−1 a−1 a b

A B A−1B−1 A B

a b b−1 a−1 a b

(3)
=

a b b−1 a−1 a b

A B B−1A−1 A B

a b b−1 a−1 a b

A B B−1A−1 A B

a b b−1 a−1 a b

(4)
= ab

Step (1) is to rewrite using ab = ab(ab)−1ab = abb−1a−1ab. In Step (2), the bot-
tom row is expanded into three rows. Step (3) is the crucial commutation, justified
by Proposition 2.3. In Step (4), each column is reduced to a single symbol, and the
resulting six-fold horizontal product is resolved.

3. Two-fold monoidal categories

3.1. Double semigroups in Cat. As remarked, Proposition 2.3 holds true for
double semigroups in any monoidal category. We shall now be concerned with double
semigroups in Cat; these are categories equipped with two strictly associative mul-
tiplication laws satisfying the strict interchange law. Observe that Proposition 2.3
holds also when the symbols a and b represent arrows.

As in the previous section, in order to get a useful and generic statement out of
Proposition 2.3, we need the presence of some cancellability. One interesting case
(the only one we consider) is when the two multiplication laws possess weak units,
that is when we have a two-fold monoidal category, strictly associative and with
strict interchange. Weak units are in particular weakly cancellable, which is what
we need. The weakness means that we do not get strict commutativity as conclusion,
but we do get a symmetry, and in fact a degenerate one. We say that a symmetry σ
on a monoidal category is degenerate if for every object X we have σX,X = idX⊗X .
The result is this:

Proposition 3.2. Let C be a two-fold monoidal category, strictly associative and
with strict interchange, but only weak units. Then C is degenerate symmetric.
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The proof starts on the next page.

Note that degeneracy is stable under braided monoidal equivalence, and in partic-
ular most braided monoidal categories are not equivalent to degenerate symmetric
ones. Hence we get this corollary:

Corollary 3.3. Not every two-fold monoidal category is equivalent to one with
strict associativity and strict interchange.

¿From standard facts about braided categorical groups and homotopy 3-types,
as explained in the Introduction, we then get:

Corollary 3.4. Strictly associative one-object, one-arrow 3-groupoids (but still with
weak units) cannot realise all simply-connected homotopy 3-types.

3.5. Weak units. A weak unit for a category with (strict) multiplication is an
object I equipped with natural isomorphisms λX : I⊗X ∼→ X and ρX : X⊗I ∼→ X
satisfying idX⊗λY = ρX⊗ idY . Alternatively [11], a weak unit can be characterised
as an object I equipped with a single isomorphism α : I ⊗ I ∼→ I and having the
property that tensoring with it from either side is an equivalence of categories.
(The left and right constraints can be canonically constructed from α, cf. [11].)
The property that tensoring with I from either side is an equivalence is the crucial
property for the present purposes — we shall say that I is cancellable.

3.6. Two-fold strictly associative monoidal categories. Let (C ,⊗h,⊗v) de-
note a strict double semigroup in Cat, where each multiplication has a weak unit,
denoted respectively (Ih, αh) and (Iv, αv). Certain compatibilities could be required
of the two structures, for example commutativity of the square z in the next proof,
but we shall not need any such further conditions.

Lemma 3.7. The two units are isomorphic as objects in C : Ih ' Iv.

Proof. In fact there are two different isomorphisms, depending on which route we
take in the diagram

Ih ' Ih Ih '

Iv

Iv ' Iv'

' 'z

Iv Ih

Ih Iv

Ih Iv

Iv Ih

We shall not need any specific isomorphism — just from its existence we conclude
that Ih is cancellable also vertically. So tensoring with Ih from any of the four sides
is an equivalence of categories, that’s all we need to know. We now set

I := Ih,

and forget about the vertical unit.
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Proof of Proposition 3.2. Step 1: the functor

F : C −→ C

X 7−→

I I I
I X I
I I I
I I I

is an equivalence of categories. This is clear since it is the composite of tensoring
with I from each of the four sides.

Step 2: the functor F has a strong multiplicative structure (with respect to
⊗ := ⊗h). In other words, there are natural isomorphisms FX ⊗ FY ∼→ F (X ⊗ Y )
satisfying the usual associativity condition [15, XI.2]. Specifically,

I I I I I I
I X I I Y I
I I I I I I
I I I I I I

∼→

I I I
I XY I
I I I
I I I

is defined row-wise as the composite of horizontal left and right constraints, mul-
tiplying together horizontally the four middle columns. By coherence for the hori-
zontal unit, it does not matter how these multiplications are effectuated.

Step 3: F has the property that for any pair of objects (or arrows) X, Y ∈ C , we
have FX ⊗ FY = FY ⊗ FX. This follows immediately from Proposition 2.3.

Now we define a symmetry σ on ⊗ component-wise by transporting these equal-
ities back along the multiplicative equivalence F . Explicitly, by fully faithfulness
and strong multiplicativity of F we have bijections

C (X ⊗ Y, Y ⊗X) ' C (F (X ⊗ Y ), F (Y ⊗X)) ' C (FX ⊗ FY, FY ⊗ FX)

and in this last hom set we have a distinguished element, namely the identity arrow.
Define σX,Y to be the arrow X ⊗ Y → Y ⊗X corresponding to the identity arrow
under this bijection. It is easy to see that the σX,Y are natural in X and Y , and
that they satisfy the axioms for a symmetry [8, Def. 2.1]. (Note that compatibility
with the unit is automatic from the axioms, cf. [8, Prop. 2.1].) It is also clear that
σ is degenerate.
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