
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 23, no. 4, pp. 715–743 (2019)
DOI: 10.7155/jgaa.00508

Treewidth of display graphs:
bounds, brambles and applications

Remie Janssen 1 Mark Jones 1 Steven Kelk 2

Georgios Stamoulis 2 Taoyang Wu 3

1Delft Institute for Applied Mathematics,
Delft University of Technology, Netherlands.

2Department of Data Science and Knowledge Engineering,
Maastricht University, Netherlands.

3School of Computing Sciences,
University of East Anglia, United Kingdom.

Abstract

Phylogenetic trees and networks are leaf-labelled graphs used to model
evolution. Display graphs are created by identifying common leaf labels
in two or more phylogenetic trees or networks. The treewidth of such
graphs is bounded as a function of many common dissimilarity measures
between phylogenetic trees and this has been leveraged in fixed param-
eter tractability results. Here we further elucidate the properties of dis-
play graphs and their interaction with treewidth. We show that it is
NP-hard to recognize display graphs, but that display graphs of bounded
treewidth can be recognized in linear time. Next we show that if a phyloge-
netic network displays (i.e. topologically embeds) a phylogenetic tree, the
treewidth of their display graph is bounded by a function of the treewidth
of the original network (and also by various other parameters). In fact, us-
ing a bramble argument we show that this treewidth bound is sharp up to
an additive term of 1. We leverage this bound to give an FPT algorithm,
parameterized by treewidth, for determining whether a network displays
a tree, which is an intensively-studied problem in the field. We conclude
with a discussion on the future use of display graphs and treewidth in
phylogenetics.

Submitted:
September 2018

Reviewed:
April 2019

Revised:
May 2019

Accepted:
August 2019

Final:
September 2019

Published:
September 2019

Article type:
Regular paper

Communicated by:
P. Mutzel

E-mail addresses: remiejanssen@gmail.com (Remie Janssen) markelliotlloyd@gmail.com (Mark

Jones) steven.kelk@maastrichtuniversity.nl (Steven Kelk) georgios.stamoulis@maastrichtuniversity.nl

(Georgios Stamoulis) Taoyang.Wu@uea.ac.uk (Taoyang Wu)

http://dx.doi.org/10.7155/jgaa.00508
mailto:remiejanssen@gmail.com
mailto:markelliotlloyd@gmail.com
mailto:steven.kelk@maastrichtuniversity.nl
mailto:georgios.stamoulis@maastrichtuniversity.nl
mailto:Taoyang.Wu@uea.ac.uk

716 Janssen et al. Display graphs

1 Introduction

A phylogenetic tree on a set of species (or, more abstractly, taxa) X is a tree
whose leaves are bijectively labelled by X. The central idea of such structures
is that internal nodes represent hypothetical ancestors of X [38]. In this way,
the tree can be viewed as a summary of how X evolved over time. Here we
focus on unrooted, binary trees: internal nodes all have degree 3, and there
is no direction on the edges of the tree. This is not an onerous restriction,
since many phylogenetic inference methods construct unrooted, binary trees.
We refer the reader to [41, 18] for further background on phylogenetics.

In this article we study display graphs. Simply put, a display graph is ob-
tained from two or more phylogenetic trees by identifying leaves with the same
label [12, 42, 34]. Display graphs have attracted interest in recent years because
of the phenomenon that, if two or more phylogenetic trees are (in some formal
sense) “similar”, the treewidth of their display graph is bounded by a function of
various parameters. For example, by the number of trees that form the display
graph [12], or by the Tree Bisection and Reconnect (TBR) distance of two trees
[34, 1].

Treewidth is a well-known graph parameter which measures, at least in an
algorithmic sense, how far an undirected graph is from being a tree: many NP-
hard problems can be solved in polynomial or even linear time on graphs of
bounded treewidth [5, 8, 9]. Display graphs thus form a bridge from phyloge-
netics into algorithmic graph theory. In particular, the bounds on the treewidth
of display graphs have been exploited to give fixed parameter tractable algo-
rithms for a number of NP-hard dissimilarity measures on phylogenetic trees
[12, 34, 3, 19]. (See [15] for background on fixed parameter tractability). Dis-
play graphs have also turned out to be useful for speeding up the computation
of certain “easy” parameters on phylogenetic trees [16], and the treewidth of
the display graph itself has also been considered as a proxy for phylogenetic
dissimilarity [33, 24].

The purpose of this article is to further investigate, and algorithmically
exploit, properties of the display graphs formed not only by trees, but also
by trees and networks. To the best of our knowledge this is the first time tree-
network display graphs have been considered. In the first part of the article,
we list some basic properties of display graphs, and then address the problem
of recognizing them, a problem posed in [33]. Specifically: given a cubic graph
G, do there exist two unrooted binary phylogenetic trees T1, T2 on the same
set of taxa X such that G is the display graph D(T1, T2) of T1 and T2 (after
suppression of degree-2 nodes)? We prove that the problem is NP-hard, by
providing an equivalence with the NP-hard TreeArboricity problem [13].
On the positive side, we prove that ifG has bounded treewidth then this question
can be answered in linear time. For this purpose we use Courcelle’s Theorem
[14, 2]. This well-known meta-theorem states, essentially, that graph properties
which can be expressed as a bounded-length fragment of Monadic Second Order
Logic (MSOL) can be solved in linear time on graphs of bounded treewidth. We
provide such an expression for recognizing display graphs.

JGAA, 23(4) 715–743 (2019) 717

In the second, longer part of the article, we turn our attention to display
graphs formed by merging an unrooted binary phylogenetic tree T with an un-
rooted binary phylogenetic network N , both on the same set of taxa X. The
latter is simply an undirected graph where internal nodes have degree 3 and
leaves, as usual, are bijectively labelled by X. Unlike trees, networks do not
need to be acyclic. We emphasize that unrooted phylogenetic networks (as
defined here and in e.g. [23, 44, 21, 40]) should be viewed as undirected ana-
logues of rooted phylogenetic networks, which correspond to directed graphs
[29]. This is to distinguish them from split networks which are phylogenetic
data-visualisation tools and which have a very different phylogenetic interpre-
tation; these are sometimes also referred to as “unrooted” networks [36].

Display graphs involving networks are relevant because of the growing num-
ber of optimization problems, traditionally posed on rooted trees and networks,
which are now being mapped to the unrooted setting (see e.g. [31, 44, 27, 21]).
We prove that, if N displays T - i.e., N contains a topological embedding of
T - the treewidth of their display graph is at most 2tw(N) + 1, where tw(N)
is the treewidth of the network N . We also give alternative upper bounds for
the treewidth of the display graph of N and T expressed in terms of a parame-
ter more familiar to the phylogenetics community. Specifically, we give (tight)
bounds in terms of the level of the original network N [23] (which automatically
implies bounds in terms of the weaker parameter reticulation number). Briefly,
the level of a network N is simply the maximum, ranging over all biconnected
components of N , of the number of edges in the biconnected component minus
the number of edges that a spanning tree for that component has. Following
[34] we use these upper bounds to give a compact MSOL-based fixed-parameter
tractable algorithm for the NP-hard problem of determining whether an un-
rooted network N displays T , under various parameterizations. This problem,
particularly in the rooted setting, continues to attract significant interest in the
phylogenetics literature (see [26, 44, 45] for relevant references). The param-
eterization in terms of treewidth is potentially interesting since, as we point
out, the treewidth of N can be significantly lower than the level or reticulation
number of N .

The question arises whether the bound 2tw(N)+1 can be strengthened. We
show that, up to the additive +1 term, this bound is essentially sharp. We do
this by providing an infinite family of networks N with corresponding trees T
such that T is displayed by N and whereby the treewidth of the display graph
is at least twice the treewidth of N . To derive the lower bound on treewidth we
crucially use brambles [39].

In the final part of the article we reflect on the potential future use of display
graphs and treewidth in phylogenetics, and list a number of open problems.

2 Preliminaries

An unrooted binary phylogenetic tree T on a set of leaf labels (known as taxa)
X is an undirected tree where all internal vertices have degree three and the

718 Janssen et al. Display graphs

leaves are bijectively labeled by X. When it is understood from the context we
will often drop the prefix “unrooted binary phylogenetic” for brevity. Similarly,
an unrooted binary phylogenetic network N on a set of leaf labels X is a simple,
connected, undirected graph that has |X| degree-1 vertices that are bijectively
labeled by X and any other vertex has degree 3. See Figure 1 for a simple
example of a tree T and a network N .

c

d

ac b d

a

b

N T D(N,T)

Figure 1: Left: An unrooted binary phylogenetic network N and an unrooted
binary phylogenetic tree T , both on the same set of taxa {a, b, c, d}. Right: the
display graph D(N,T) formed from N and T . As observed later in Section 4.1,
the network N does not display the tree T but the treewidth of their display
graph is equal to the treewidth of N , which is equal to 3. (Note also that, if
in T the positions of b and c are swapped, then N does display T but both the
network and the new display graph will still have treewidth 3.)

The reticulation number r(N) of a network N = (V,E) is defined as r(N) :=
|E| − (|V | − 1), i.e., the number of edges we need to delete from N in order to
obtain a tree that spans V . A network N with r(N) = 0 is simply an unrooted
phylogenetic tree. Note that in graph theory the value |E| − (|V | − 1) of a
connected graph is sometimes called the cyclomatic number of the graph [17].

For a given network N we define its level, denoted `(N), as the minimum
reticulation number ranging over all biconnected components of N . To be con-
sistent with the phylogenetics literature we say that N is a “level-k network” if
`(N) ≤ k (which means that they are “almost k-trees” [7]). A level-0 phyloge-
netic network is simply a phylogenetic tree. Many NP-hard problems in phy-
logenetics that involve phylogenetic networks as input or output can be solved
in polynomial time if the network has bounded level (or bounded reticulation
number) [32, 20, 10].

We now formally define the main object of study in this article, namely the
display graph:

Definition 1 Let T1 = (V1∪X,E1), T2 = (V2∪X,E2) be two trees, both on the
same set of leaf labels X. The display graph of T1, T2, denoted by D(T1, T2), is
formed by identifying vertices with the same leaf label and forming the disjoint
union of these two trees, i.e., D(T1, T2) = (V1 ∪ V2 ∪X,E1 ∪ E2).

Although the more general definition of display graph encountered in the
literature allows the display graph to be formed by more than two trees, not
necessarily on the same set of taxa (see e.g. [12]), here we will focus exclusively

JGAA, 23(4) 715–743 (2019) 719

on the above, more restricted definition which is enough for our purposes. We
note that, by construction, a display graph is always biconnected.

Note that a display graph is a labeled graph: the set X bijectively labels the
degree-2 nodes in the graph. In some parts of the article the labels X and the
degree-2 vertices are not important (because, modulo some trivial exceptions,
degree-2 vertices do not impact upon the treewidth of a graph), and in such cases
we work with suppressed display graphs. Such a graph is obtained by erasing
the labels X and repeatedly suppressing degree-2 nodes. Here suppressing (also
known as dissolving) a degree-2 vertex v means introducing a new edge between
the two neighbours of v, and deleting v and its two incident edges. A suppressed
display graph is always cubic (when |X| ≥ 3). The act of suppressing degree-2
nodes can potentially create multi-edges. It is easy to see that this happens if
and only if the two trees contain one or more common cherries. A cherry is a
size-2 subset of taxa {x, y} that have a common parent, and a cherry is common
on two trees if it exists in both of them.

The definition of a display graph formed by a tree T and a network N , both
on X, is completely analogous to the definition for two trees, and is denoted as
D(N,T).

Let N be a phylogenetic network and T a phylogenetic tree, both on a
common taxon set X. Then we say that N displays T (or T is displayed by
N) if there exists a subtree N ′ of N that is a subdivision of T , that is, T can
be obtained by a series of edge contractions on N ′. Here the contraction of an
edge {u, v} means deleting the edge and identifying u and v. We say that N ′

is an image of T . We observe that every vertex of T is mapped to a vertex of
N ′, and that edges of T map to paths in N ′ (perhaps consisting of only a single
edge) leading us to the following observation (see also [12]):

Observation 1 If an unrooted binary phylogenetic network N displays an un-
rooted binary phylogenetic tree T , both on the same set of leaf labels X, then
there exists a subtree N ′ of N and a surjective function f from V (N ′) to V (T)
such that:

(1) f(`) = `,∀` ∈ X,

(2) the subsets of V (N ′) induced by f−1(v), where v ∈ V (T), are mutually
disjoint, and each such subset induces a connected subtree of V (N ′),

(3) For each edge {u, v} in T , there exists a unique edge {α, β} in N ′ with
f(α) = u and f(β) = v.

This observation will be crucial when we study the treewidth of D(N,T) as
a function of several parameters (including the treewidth) of N . We note that,
since the leaves of N,T are bijectively labeled by X, we can write with a slight
abuse of notation ` ∈ X to also refer to the unique leaf vertex with label `, and
this is what we do in (1) above.

We now move on to define the concept of the treewidth of an undirected
graph:

720 Janssen et al. Display graphs

Definition 2 Given an undirected graph G = (V,E), a tree decomposition of
G is a pair (B, T) where B = {B1, . . . , Bq} is a multiset of bags such that
Bi ⊆ V (G) and T is a tree whose q nodes are in bijection with B (and, as such,
we can assume that the q nodes of T are exactly the q bags of B), satisfying the
following three properties:

(tw1) ∪qi=1Bi = V (G);

(tw2) ∀e = {u, v} ∈ E(G),∃Bi ∈ B s.t. {u, v} ⊆ Bi;

(tw3) running intersection property: ∀v ∈ V (G) all the bags Bi that contain v
form a connected subtree of T .

The width of (B, T) is equal to maxq
i=1 |Bi|−1. The treewidth of G, denoted

by tw(G), is the smallest width among all possible tree decompositions of G. A
tree decomposition achieving the smallest possible width for a given graph G is
called optimal. For brevity, we often simply write T as shorthand for a tree
decomposition.

If an undirected graph H can be obtained from a graph G by deleting vertices
and edges and contracting edges, then H is a minor of G. It is well known that,
if H is a minor of a graph G, then tw(H) ≤ tw(G) [17].

In [33] it was shown that the treewidth of the display graph of two trees can
be, in the worst case, linear in the number of the vertices in the trees. In this
article we will explore the relation of the treewidth of a display graph formed by
a phylogenetic network and a tree displayed by that network, and the treewidth
(or other parameters) of the network itself.

Finally, we define the bramble parameter of a graph, a parameter closely
related to treewidth that is very useful when proving lower bounds on treewidth.
Given a graph G and two subgraphs S1, S2 of it, we say that S1 and S2 touch if
V (S1)∩ V (S2) 6= ∅, or some edge of G has one endpoint in S1 and the other in
S2. A bramble B of G is a set of connected subgraphs of G that pairwise touch.
A (sub)set H ⊆ V (G) is a hitting set of a bramble B of G if H intersects every
element of B. The order of B is the minimum size of such a hitting set and the
bramble number of G, denoted by br(G), is the maximum order of a bramble
of G, among all possible brambles. The usefulness of brambles comes from the
following result, due to Seymour & Thomas, relating the treewidth of a graph
G to its bramble number:

Theorem 1 ([39]) For any graph G we have that tw(G) = br(G)− 1.

3 Recognizing display graphs of pairs of trees

We consider the DisplayGraph decision problem, posed in [33]:

Input: A biconnected, cubic, simple graph G = (V,E).

JGAA, 23(4) 715–743 (2019) 721

Goal: Find two unrooted binary trees T1, T2, on the same set of taxa X, such
that the suppressed display graph D(T1, T2) of these two trees is isomorphic to
G, if they exist.

Note that in this formulation we can assume without any loss of generality
that T1 and T2 do not have common cherries.

Here we will argue that the DisplayGraph problem is NP-hard by pro-
viding an equivalence between the DisplayGraph problem and the NP-hard
TreeArboricity problem [13] which is defined as follows:

Input: A simple, undirected graph G = (V,E).
Goal: Find the smallest positive integer k such that there exists a partition
(V1, . . . , Vk) of V such that each part of the partition induces a tree, i.e., the
subgraph induced by the vertices in Vi, denoted by G|Vi

is a tree for i ∈ [k]
(such a partition is called a tree partition). This k is the Tree Arboricity of G,
also denoted as ta(G).

We emphasize that unlike some closely related variants of the problem (for
example VertexArboricity [37]), it is not permitted that a G|Vi

induces a
forest consisting of two or more components.

Chang et al. [13] discuss the decision version of the TreeArboricity prob-
lem with k = 2 (i.e., is ta(G) ≤ 2?) and show that it is NP-complete when
restricted to simple, cubic, 3-connected planar graphs. The following lemma
binds their problem to ours.

Lemma 1 Given a simple, connected, cubic graph G as input to the TreeAr-
boricity decision problem, G is a “yes” instance for the TreeArboricity
problem with k = 2 if and only if G is a suppressed display graph D(T1, T2) of
two binary phylogenetic trees T1, T2 on a common set of taxa X.

Proof: Given such T1, T2 then the partition of the set of vertices into two
sets V1, V2 is simply Vi = V (Ti) \ X. We exclude the taxa X since, when we
form the display graph D(T1, T2), these will become degree-2 vertices which
are subsequently suppressed. On the other hand, given a bipartition V1, V2 of
G, we can form the two phylogenetic trees T1, T2 on a common set of taxa X
whose display graph is isomorphic to G as follows. First of all, by definition,
G|V1 , G|V2 are trees. Since G is connected and cubic, every leaf vertex v in
one bipartition, say G|V1 , has exactly 2 neighbor vertices u1, u2 in G|V2 (i.e.,
{u1, u2} ⊆ V2). Subdivide each of the edges {v, u1}, {v, u2} with a new vertex
in X (i.e., for i = 1, 2, replace edge {v, ui} with the two edges {v, wi}, {wi, ui},
where each wi is a newly introduced vertex, and include wi ∈ X which is
initially empty). The points of subdivisions of these “crossing” edges (having
one vertex in each bipartition) are the taxa X of the new trees. Repeat the
process on the remaining leaf vertices from G|V2 . The same argumentation will
also take care of the remaining degree-2 vertices in each of G|V1

and G|V2
. To

complete the proof, we need to show that the number of the degree-1 plus the
degree-2 vertices in G|V1

, G|V2
are equal, such that the two constructed trees

are binary phylogenetic trees. Indeed, this will follow because G is cubic and

722 Janssen et al. Display graphs

connected and a “yes” instance to the TreeArboricity problem. Specifically,
each edge not entirely in G|Vi must have one endpoint in each bipartition. Thus,
if we define for every vertex v ∈ Vi its “missing” degree in each tree as µ(v) =
3−deg(v) (where here deg(v) refers to the degree of v in G|Vi

), then we see that∑
v∈V1

µ(v) =
∑

u∈V2
µ(u) i.e., both constructed trees T1, T2 are binary and, by

construction, on the same set of taxa X. �

Theorem 2 DisplayGraph is NP-complete.

Proof: The DisplayGraph problem is easily seen to be in NP: a certificate
can be the two trees T1, T2 that form the graph G. We only need to check that
D(T1, T2), after suppressing degree-2 vertices, is isomorphic to G, something
that can be done in polynomial time since the graph isomorphism problem is
polynomial-time solvable for graphs of bounded degree [35, 25]. For hardness,
Chang et al. [13] prove that the decision version of the TreeArboricity prob-
lem with k = 2 is NP-complete when restricted to simple, cubic, 3-connected
planar graphs. Thus, let G be a simple, cubic, 3-connected planar graph that is
input to the TreeArboricity problem. A 3-connected graph is vacuously also
a biconnected graph, so G is a valid input to the DisplayGraph problem. The
result follows because of the if and only if relationship described in Lemma 1.

�

3.1 The fixed parameter tractability of recognizing display
graphs of bounded treewidth

Let G = (V,E) be a simple, biconnected cubic graph. We will use Courcelle’s
Theorem to test whether G is a suppressed display graph. This will show that
the question can be settled in time O(f(tw(G)) · |V |) where f is a function
that depends only on the treewidth of G. Specifically, when G has bounded
treewidth this will yield a linear time algorithm. The constant-length MSOL
formulation simply tests whether ta(G) ≤ 2. (Clearly, ta(G) ≥ 2 because G is
not acyclic). The MSOL formulation (and an introduction to MSOL proofs) is
given in the appendix.

Theorem 3 Suppressed display graphs can be recognized in linear time on
graphs of bounded treewidth.

Proof: This is a consequence of the correctness of the MSOL formulation de-
scribed in Appendix A.2 and the equivalence stated in Lemma 1. �

4 Display graphs formed from trees and net-
works

In this section we will consider the display graph formed by an unrooted binary
phylogenetic network N = (V,E) and an unrooted binary phylogenetic tree T

JGAA, 23(4) 715–743 (2019) 723

both on the same set of taxa X. We will show upper and lower bounds on the
treewidth of D(N,T) in terms of the treewidth tw(N) of N and the level `(N)
of N (and thus also the reticulation number r(N) of N). We will also show
how these upper bounds can be leveraged algorithmically to give FPT results
for deciding whether a given network N displays a given tree T .

4.1 Treewidth upper bounds

We first relate the treewidth of the display graph with the treewidth of the
network N .

Lemma 2 Let N = (V,E) be an unrooted binary phylogenetic network and T
an unrooted binary phylogenetic tree, both on X, where |X| ≥ 3. If N displays
T , then tw(D(N,T)) ≤ 2tw(N) + 1.

Proof: Since N displays T , we fix a subgraph N ′ of N that is a subdivision of
T and a surjective function f from V (N ′) to V (T) as defined in Observation 1
(in Section 2). Informally, f maps taxa to taxa, and degree-3 vertices of N ′ to
the corresponding vertex of T . Vertices of degree-2 in N ′ form paths between
degree-3 vertices, and between degree-3 vertices and taxa. Concerning f , each
edge {u, v} of T corresponds to a path in N ′ (whose interior vertices, if they
exist, have degree 2) whereby part of the path lies inside f−1(u), part lies in
f−1(v), and exactly one edge of the path has an endpoint in f−1(u) and an
endpoint in f−1(v).

Now, consider any tree decomposition T of N . Let k be the width of the
tree decomposition, i.e., the largest bag in the tree decomposition has size k+1.
We will construct a tree decomposition T ′ for D(N,T) as follows. For each
vertex u′ ∈ V (N ′) we add f(u′) to every bag that contains u′. To show that T ′
is a valid tree decomposition for D(N,T) we will show that it satisfies all the
treewidth conditions. Condition (tw1) holds because f is a surjection.

To show that (tw2) holds for T ′, we fix an arbitrary edge {u, v} in E(T).
Then it suffices to show that there exists some bag in T ′ which contains both u
and v. By the third property of f as described in Observation 1, there exists a
unique edge {α, β} in E(N ′) with f(α) = u and f(β) = v. Noting that {α, β}
is also an edge in E(N), there exists a bag B in T with {α, β} ⊆ B. Since
f(α) = u and f(β) = v, both u and v will be added into B to form a bag in T ′
that contains both u and v, as required.

For the last property (tw3) we need to show that the bags of T ′ to which
v ∈ V (T) has been added form a connected component. For this, we use the
second property of f as described in Observation 1: ∀v ∈ V (T), the set {u ∈
V (N ′) : f(u) = v} forms a connected subtree in N ′. Hence, the set of bags that
contain at least one element from {u ∈ V (N ′) : f(u) = v} form a connected
subtree in the tree decomposition. These are the bags to which v is added,
ensuring that (tw3) indeed holds for v.

We now calculate the width of T ′: Observe that the size of each bag can at
most double. This can happen when every vertex in the bag is in V (N ′) and

724 Janssen et al. Display graphs

f(u′) 6= f(v′) for every two vertices u′, v′ in the bag. This causes the largest
bag after this operation to have size at most 2(k+ 1). That is, the width of the
new decomposition is at most 2k + 1. �

We move on and deliver a bound of the treewidth of the display graph
D(N,T) in terms of the level `(N) of N . We remind the reader that a network
N is a level-k network if the reticulation number of each biconnected component
is at most k.

Lemma 3 Let N = (V,E) be an unrooted binary phylogenetic network and T
an unrooted binary phylogenetic tree, both on X, such that |X| ≥ 3 and N
displays T . Then tw(D(N,T)) ≤ `(N) + 2 where `(N) is the level of N .

Proof: Due to the fact that N displays T , there is a subgraph T ′ of N that is
a subdivision of T . If T ′ is a spanning tree of N , then keep T ′ as is. Otherwise,
construct a spanning tree T ′ of N by greedily adding edges to T ′ until all vertices
of N are spanned. At this point, T ′ contains exactly |V | − 1 edges and consists
of a subdivision of T from which possibly some unlabelled pendant subtrees (i.e.
pendant subtrees without taxa) are hanging.

We argue that D(T ′, T) has treewidth 2, as follows. First, note that D(T, T)
can be obtained from D(T ′, T) by repeatedly deleting unlabelled vertices of
degree 1 and suppressing unlabelled degree 2 vertices. Since these operations
cannot increase or decrease the treewidth [33], D(T ′, T) has the same treewidth
as that of D(T, T). On the other hand, D(T, T) has treewidth 2 because T is
trivally compatible with T (and |X| ≥ 3) [12]. Hence D(T ′, T) has treewidth 2.

For the purposes of the present proof we need a tree decomposition of
D(T, T ′) of width 2 with a very particular structure which we now construct
explicitly. For each vertex a′ ∈ V (T ′) we create a singleton bag {a′}. For
each edge {a′, b′} ∈ E(T ′) we insert the bag {a′, b′} between the two singleton
bags {a′} and {b′}. Now, recall that each vertex a ∈ V (T) has a unique image
a′ ∈ V (T ′). For each vertex a ∈ V (T), add a to the singleton bag {a′}. For
each edge {a, b} ∈ E(T), consider the vertices a′ and b′ in T ′. We distinguish
two cases:

Case 1. If {a′, b′} ∈ E(T ′), remove the bag {a′, b′} that lies between bags
{a, a′} and {b, b′} and replace it with the pair of bags {a, a′, b}, {a′, b′, b}.

Case 2. If {a′, b′} 6∈ E(T ′), then edge {a, b} ∈ V (T) corresponds to a path
a′, v1, . . . , vt, b

′ in T ′ where t ≥ 1 and none of v1, . . . , vt are images of
vertices from T . In the tree decomposition, this corresponds to the chain of
bags {a, a′}, {a′, v1}, {v1}, {v1, v2}, {v2}, . . . , {vt, b′}, {b, b′}. In this case,
we add a to the bag {a′, v1}, add both a and b to bag {v1}, and add just
b to all the remaining bags in the chain.

We denote the tree decomposition by T . It is immediate to verify, by con-
struction, that the above tree decomposition is indeed a valid tree decomposi-
tion, i.e., it satisfies all the three properties (tw1)-(tw3).

JGAA, 23(4) 715–743 (2019) 725

Crucially, the topology of T is a subdivision of T ′: each vertex a′ ∈ V (T ′)
corresponds to a unique bag of T , and each edge in E(T ′) corresponds to a
unique chain of bags in T . We leverage this property as follows.

Let C be 2-connected component of N . Let k = `(N). Then we have that
|E(C)| − (|V (C)| − 1) ≤ k. Combined with the fact that T ′ is a spanning tree
of N , it follows that we can obtain N from T ′ by adding at most k missing
edges to C (and repeating this for other non-trivial biconnected components).
Let M(C) be the at most k edges missing from C in T ′ and let A(C) be a
(not necessarily minimum) minimal vertex cover of the edges in M(C); clearly
|A(C)| ≤ k since in the worst case we can select one distinct vertex per edge.
Due to the topological structure of T (i.e., that T is a subdivision of T ′) the
vertices and edges of C in T ′ map unambiguously into bags and chains of bags
in T . We add all the vertices in A(C) to all these bags. This will take care of
all the edges {u, v} of C that are not in T ′. We repeat this for each non-trivial
biconnected component of N . Due to the fact that N has maximum degree 3,
the non-trivial biconnected components of N are vertex-disjoint, and hence the
corresponding bags in T are all disjoint. This means that, after all the non-
trivial biconnected components have been processed, each bag will contain at
most k + 3 vertices.

It remains to show that this is indeed a valid tree decomposition for D(N,T).
The vertex set of D(N,T) is the same as that of D(T, T ′) so (tw1) is clearly
satisfied. For each edge {x, y} ∈M(C), both x and y are inside C, so some bag
(in the part of T corresponding to C) contained x and some bag contained y.
Given that A(C) ∩ {x, y} 6= ∅, adding all the vertices in A(C) to all the bags
(corresponding to C) ensures that some bag contains both x and y. Hence,
(tw2) is satisfied. Regarding (tw3), observe that each vertex x ∈ A(C) lies
inside C, so in T some bag (in the part of the decomposition corresponding to
C) already contained x. Moreover, all the bags corresponding to C induce a
connected subtree of bags. Hence, adding x to all these bags cannot destroy the
running intersection property for x. Hence, (tw3) holds. �

The following observation helps to contextualize Lemmas 2 and 3.

Observation 2 Let N be an unrooted binary phylogenetic network. Then
tw(N)− 1 ≤ `(N) ≤ r(N).

Proof: `(N) ≤ r(N) follows by definition. To see that tw(N) − 1 ≤ `(N), it
is well-known that the treewidth of a graph is equal to the maximum treewidth
ranging over all biconnected components in the graph [7]. A spanning tree for
each biconnected component can be obtained by deleting at most `(N) edges,
by definition. A tree has treewidth 1, and adding one edge to a graph can
increase its treewidth by at most 1 [7]. Hence, each biconnected component has
treewidth at most 1+`(N). (Alternatively, by observing that level-k networks
are almost k-trees, [7, Theorem 74] can be leveraged). �

The following corollary is therefore immediate.

726 Janssen et al. Display graphs

Corollary 1 Let N = (V,E) be an unrooted binary phylogenetic network and T
an unrooted binary phylogenetic tree, both on X, where |X| ≥ 3. If N displays
T then tw(D(N,T)) ≤ r(N) + 2.

Combining the above results yields the following:

Theorem 4 Let N be an unrooted binary phylogenetic network and T be an
unrooted binary phylogenetic tree, both on X. Then if N displays T ,

tw(D(N,T)) ≤ min

{
2tw(N) + 1, r(N) + 2, `(N) + 2

}
.

Here the term r(N) + 2 in the last theorem is included for completeness as
`(N) + 2 ≤ r(N) + 2 always holds in view of Observation 2. Note that, from the
perspective of r(N) and `(N), the bounds `(N)+2 and r(N)+2 are sharp, since
if N = T then r(N) = `(N) = 0 and D(N,T) has treewidth 2 [12]. Curiously,
the treewidth bound gives 3 for this same instance: an additive error of 1. In
Section 4.3 we will further analyse the sharpness of this bound.

We remark that tw(N) can be arbitrarily small compared to `(N) (and
r(N)). For example, the display graph of two copies of the same tree T on n taxa
has treewidth 2. Re-introducing taxa to turn the degree-2 vertices into degree-3
vertices, we obtain a biconnected treewidth 2 phylogenetic network N = (V,E)
with 3n− 4 vertices and 5n− 6 edges, so `(N) = r(N) = |E| − (|V | − 1)→∞
as n→∞. However, for N with low `(N) the bound `(N) + 2 will potentially
be stronger than 2tw(N) + 1.

The above bounds raise a number interesting points about the phylogenetic
interpretation of treewidth. First, consider the case where a binary network
N does not display a given binary phylogenetic network T . As we can see in
Figure 1, there is a network N and a tree T such that N does not display T
and yet the treewidth of their display graph is equal to the treewidth of N
which (as can be easily verified) is equal to three. Hence “does not display”
does not necessarily cause an increase in the treewidth. On the other hand, the
results from [33] show that for two incompatible unrooted binary phylogenetic
trees (vacuously: neither of which displays the other, and both of which have
treewidth 1) the treewidth of the display graph can be as large as linear in the
size of the trees. The increase in treewidth in this situation is asymptotically
maximal. So the relationship between “does not display” and treewidth is rather
complex. Contrast this with the bounded growth in treewidth articulated in
Theorem 4. Such bounded growth opens the door to algorithmic applications.

4.2 An algorithmic application

We give an example of how the upper bounds from the previous section can
be leveraged algorithmically. The Unrooted Tree Containment problem (UTC)
is simply the NP-hard problem of determining whether an unrooted binary
phylogenetic networkN = (V,E) onX displays an unrooted binary phylogenetic
tree T , also on X. In [44], a linear kernel (parameterized by reticulation number)

JGAA, 23(4) 715–743 (2019) 727

is described for the UTC problem, and, separately, a bounded-search branching
algorithm. Summarizing, these yield FPT algorithms parameterized by r(N) =
|E| − (|V | − 1), i.e., algorithms that can solve UTC in time at most f(r(N)) ·
poly(|N |+ |T |) for some function f that depends only on r(N). We emphasize
that these results are more involved than the trivial 2r(N) ·poly(|N |+ |T |) FPT
algorithm for the rooted version of the problem.

Here we give an FPT proof using Courcelle’s Theorem. We prove that the
problem is FPT when parameterized by tw(N). This result has not appeared
in the literature before and is potentially interesting given that tw(N) can be
much smaller than `(N). FPT in terms of r(N) and `(N) follow as a corollary
of this, due to Observation 2.

Theorem 5 Given an unrooted binary phylogenetic network N = (V,E) and an
unrooted binary phylogenetic tree both on X, we can determine in time O(f(t)·n)
whether N displays T , where t is tw(N) and n = |V |.

Proof: We run Bodlaender’s linear-time FPT algorithm [6] to compute a tree
decomposition of D(N,T) and return NO if the treewidth is larger than 2t+11.
This is correct by Lemma 2. Otherwise, we have a bound on the treewidth of
D(N,T) in terms of t. Subsequently, we construct the constant-length MSOL
sentence described in Appendix A.1 and apply the Arnborg et al. [2] variant of
Courcelle’s Theorem [14]. This variant of Courcelle’s Theorem permits (amongst
other extensions) subsets of vertices and edges to be labelled; we use this to make
X and other relevant subsets available to the logical formula. From this, the
result follows. (Note that D(N,T) has O(n) vertices and O(n) edges). The
result can be made constructive if desired, i.e., in the event of a YES answer
the actual set of edge cuts in N (to obtain an image of T) can be obtained. �

Corollary 2 Given an unrooted binary network N = (V,E) and an unrooted
binary tree both on X, we can determine in time O(f(k) ·n) whether N displays
T , where k = `(N) and n = |V |.

Proof: Immediate from Theorem 5 and Observation 2. �

4.3 Treewidth lower bounds

In this subsection, we show that the upper bound tw(D(N,T)) ≤ 2tw(N) + 1 is
almost optimal, in the sense that there exist a family of display graphs D(N,T)
such that N displays T and tw(D(N,T)) ≥ 2tw(N). (Note that, irrespective
of whether N displays T , tw(D(N,T)) ≥ tw(N) always holds because N is a
minor of D(N,T); see Figure 1 for examples when tw(D(N,T)) = tw(N).)

Fix some integer r and an integer n such that n > 2r + 2. We will give
a construction for a network N and tree T on a set of rn leaves, such that
tw(N) = r, tw(D(N,T)) ≥ 2r, and N displays T . For the sake of convenience,
we will assume that r is even, though the construction can easily be modified

1The same algorithm can be used to first compute t, if it is not known.

728 Janssen et al. Display graphs

to handle cases where r is odd. For the sake of simplicity, and as it has no
affect on the treewidth of D(N,T), in this subsection we take D(N,T) to be
the suppressed display graph.

The intuition behind the construction is as follows. The network N will have
roughly the same structure as an r×(n+1) grid (with r rows and n+1 columns)
with leaves attached to the horizontal edges. An r× (n+ 1) grid has treewidth
min(r, n+1) = r, and so N also has treewidth r. The tree T is a long caterpillar
that weaves back and forth across the rows of the grid (see Figure 4). Thus T
is displayed by N . However, the display graph D(N,T) has (very roughly) the
structure of a 2r × (n + 1) grid, and as such can be shown to have treewidth
at least 2r. We remind that a caterpillar graph is basically a tree where all
degree-1 vertices are on distance 1 from a central path.

We now proceed with the formal construction.

Vertices of N and taxa: Let the taxon set X = {xi,j : i ∈ [r], j ∈ [n]}.
For each i ∈ [r], j ∈ [n], N will contain a leaf labelled with xi,j . The
internal vertices of N are yi,j for each i ∈ [r], j ∈ [n], and ui,j , vi,j for each
i ∈ [r], j ∈ [n] ∪ {0}. (Note that some of these vertices will be deleted
or suppressed at the end of the construction, in order to turn N into a
phylogenetic network with no unlabelled leaves.)

Edges: The edges of N are as follows. For each i ∈ [r], j ∈ [n], let {yi,j , xi,j}
be an edge in N . In addition let {ui,j−1, vi,j−1}, {vi,j−1, yi,j}, {yi,j , ui,j},
{ui,j , vi,j} be “horizontal” edges in N . For each i ∈ [r − 1], j ∈ [n] ∪ {0},
let {vi,j , ui+1,j} be a “vertical” edge in N . Figure 2 shows an example
when r = 4, n = 11. Note that at this point N is not a network, as it has
degree-2 vertices and unlabelled degree-1 vertices

Finally, we delete all unlabeled degree-1 vertices (namely u1,0 and vr,n),
and then suppress all degree-2 vertices (namely ui,0 and vi,n for all i ∈ [r],
as well as u1,j and vr,j for all j ∈ [n]∪{0}, and the vertices v1,0 and ur,n).
Note that this causes vi,0 to be adjacent to vi+1,0 for 2 ≤ i ≤ r − 2, and
also ui,n to be adjacent to ui+1,n for 2 ≤ i ≤ r − 2. Figure 4 shows the
final structure of N in the case when r = 4, n = 11, together with the tree
T described below.

The tree T : We next construct the tree T as follows. For each i ∈ [r], j ∈ [n],
T will contain a leaf labelled with xi,j . The internal vertices of T are
zi,j for each i ∈ [r], j ∈ [n]. For each i ∈ [r], j ∈ [n], there is an edge
{zi,j , xi,j}. For each i ∈ [r] and j ∈ [n− 1] there is an edge {zi,j , zi,j+1}.
Furthermore, for odd i ∈ [r−1] there is an edge {zi,n, zi+1,n}, and for even
i ∈ [r − 1] there is an edge {zi,1, zi+1,1}. Finally, suppress the degree-2
vertices z1,1 and zr,1 (or z1,1 and zr,n when r is odd). See Figure 3 for an
example when r = 4, n = 11.

Lemma 4 T is displayed by N .

JGAA, 23(4) 715–743 (2019) 729

� � �

� � �

� � �

� � �

y1�1

y2�1

y3�1

y4�1 y4�2

y3�2

y2�2

y1�2 y1�3

y2�3

y3�3

y4�3 y4�1� y4�11

y3�1� y3�11

y2�1� y2�11

y1�1� y1�11

x4�1 x4�2 x4�3 x4�1� x4�11

x3�1 x3�2 x3�3 x3�1� x3�11

x2�1 x2�2 x2�3 x2�1� x2�11

x1�1 x1�2 x1�3 x1�1� x1�11

u3�1 u3�2

u2�2u2�1 u2�1�

u3�1�

v3�1�

v2�1�v2�2v2�1

v3�1 v3�2

u4�1 u4�2 u4�1�

v1�1�v1�2v1�1

v3��

v2��

u2�11

u3�11

v4�1 v4�2 v4�1�

u1�1 u1�2 u1�1�

v2�11

u1�11

v1�11

v3�11

u4�11

v4�11

u2��

u3��

v1��

u1��

v4��

u4��

Figure 2: The construction of N before deleting unlabelled degree-1 vertices
and suppressing degree-2 vertices, in the case r = 4 and n = 11.

730 Janssen et al. Display graphs

� � �

� � �

� � �

� � �

z2�1

z3�1

z4�2

z3�2

z2�2

z1�2 z1�3

z2�3

z3�3

z4�3 z4�1� z4�11

z3�1� z3�11

z2�1� z2�11

z1�1� z1�11

x4�1 x4�2 x4�3 x4�1� x4�11

x3�1 x3�2 x3�3 x3�1� x3�11

x2�1 x2�2 x2�3 x2�1� x2�11

x1�1 x1�2 x1�3 x1�1� x1�11

Figure 3: The tree T when r = 4 and n = 11.

Proof: Let N ′ be the network derived from N by deleting edges of the
form {vi,j , ui+1,j}, as well as edges of the form {ui,n, ui+1,n} for i even and
{vi,0, vi+1,0} for i odd, and the edges {x1,1, v2,0}, {vr−1,0, yr,1}. Observe that
N ′ is a subtree of N , and that furthermore N ′ is a subdivision of T , which can
be seen by mapping internal vertices zi,j of T to yi,j . See Figure 4. �

This completes the construction of N and T . The (suppressed) display graph
D(N,T) is shown in Figure 5. For convenience, we keep the same names for
internal vertices of N and T but it will always be clear from the context which
structure we are referring to. Observe that any vertex zi,j is adjacent to yi,j in
D(N,T), as the degree-2 vertex xi,j has been suppressed.

Lemma 5 The treewidth of N , tw(N), is equal to r.

Proof: To prove that tw(N) ≤ r, we give a tree decomposition of N . We first
ignore the nodes xi,j because those can be added to any tree decomposition of
the remaining graph by adding the bags {xi,j , yi,j} and connecting them to any
bag containing yi,j for all i, j.

We will now give a tree decomposition (in fact a path decomposition2) of
the remaining graph.

2A path-decomposition is a tree decomposition in which the underlying tree of the decom-
position is a path graph.

JGAA, 23(4) 715–743 (2019) 731

� � �

� � �

� � �

� � �

y1�1

y2�1

y3�1

y4�1 y4�2

y3�2

y2�2

y1�2 y1�3

y2�3

y3�3

y4�3 y4�1� y4�11

y3�1� y3�11

y2�1� y2�11

y1�1� y1�11

x4�1 x4�2 x4�3 x4�1� x4�11

x3�1 x3�2 x3�3 x3�1� x3�11

x2�1 x2�2 x2�3 x2�1� x2�11

x1�1 x1�2 x1�3 x1�1� x1�11

u3�1 u3�2

u2�2u2�1 u2�1�

u3�1�

v3�1�

v2�1�v2�2v2�1

v3�1 v3�2

u4�1 u4�2 u4�1�

v1�1�v1�2v1�1

v3��

v2�� u2�11

u3�11

Figure 4: The network N for r = 4, n = 11, with the tree T drawn in bold.

Start with the bag

{y1,1, v2,0, . . . , vr−1,0, yr,1},

which contains exactly r nodes. We now sequentially add one node and delete
another to get a sequence of bags corresponding to a path decomposition of
the remaining graph. Denote by (a, d) the process of taking the most recently
created bag, Bq, adding a new bag Bq+1 = Bq ∪ {a}, and then adding a second
new bag Bq+2 = Bq+1 \{d}, with each new bag being adjacent to the one before
it. Note that adding node a results in a bag with r + 1 nodes while deleting
node d results in another bag with r nodes. Then the following steps bring us
to the bag {vi,1}i∈[r−1] ∪ {ur,1}:

(v1,1, y1,1), (y2,1, v2,0), (u2,1, y2,1), (v2,1, u2,1), (y3,1, v3,0), . . . , (vr−1,1, ur−1,1), (ur,1, yr,1).

Now we use a similar sequence of steps to go from the bag {vi,j}i∈[r−1]∪{ur,j}
to the next {vi,j+1}i∈[r−1] ∪ {ur,j+1}:

(y1,j+1, v1,j), (v1,j+1, y1,j+1),(y2,j+1, v2,j), (u2,j+1, y2,j+1),(v2,j+1, u2,j+1),

(y3,j+1, v3,j), (u3,j+1, y3,j+1),(v3,j+1, u3,j+1),

. . .

(yr−1,j+1, vr−1,j), (ur−1,j+1, yr−1,j+1),(vr−1,j+1, ur−1,j+1),

(yr,j+1, ur,j), (ur,j+1, yr,j+1).

732 Janssen et al. Display graphs

Finally, do the following sequence of additions and deletions to the bags
starting from {vi,n−1}i∈[r−1] ∪ {ur,n−1}:

(y1,n, v1,n−1), (y2,n, v2,n−1), (u2,n, y2,n), (y3,n, v3,n−1), · · · , (ur−1,n, yr−1,n), (yr,n, ur,n−1).

Hence we get a path decomposition of N minus the nodes xi,j and their
incoming edges. This can be seen by inspecting when nodes are added and
deleted. Nodes in the initial bag only get deleted, nodes in the final bag only
get added, and all other nodes are first added then deleted, therefore we have the
running intersection property. It is also clear that each node is in at least one
bag, so we still have to check that each edge is represented in a bag. We consider
each type of edge separately, and find a bag where the edge is represented.

• The edges {y1,1, v2,0}, {v2,0, v3,0}, . . . , {vr−2,0, vr−1,0} and {vr−1,0, yr,1}
are in the initial bag;

• The edges {vi,0, yi,1} for i ∈ {2, · · · , r− 1} are in the intermediate bag for
the addition/deletion (yi,1, vi,0) in the first part of the sequence;

• {ui,j , vi,j} for each i ∈ {2, · · · , r−1} and j ∈ [n−1] is in the intermediate
bag for the addition/deletion (vi,j , ui,j);

• {vi,j , yi,j+1} for each i ∈ [r− 1] and j ∈ [n− 1] is in the intermediate bag
for the addition/deletion (yi,j+1, vi,j);

• {yi,j , ui,j} for each i ∈ {2, · · · , r} and j ∈ [n − 1] is in the intermediate
bag for the addition/deletion (ui,j , yi,j);

• {y1,j , v1,j} for each j ∈ [n − 1] is in the intermediate bag for the addi-
tion/deletion (v1,j , y1,j);

• {ur,j , yr,j+1} for each j ∈ [n − 1] is in the intermediate bag for the addi-
tion/deletion (yr,j+1, ur,j);

• {vi,j , ui+1,j} for each i ∈ [r − 1] and j ∈ [n − 1] is in the intermediate
bag for the addition/deletion (ui+1,j , yi+1,j), this is clear when we realize
that vi,j is added in the addition/deletion step (vi,j , ui,j) or (v1,j , y1,j) two
steps before (ui+1,j , yi+1,j);

• The edges {yi,n, ui,n} for i ∈ {2, · · · , r − 1} are in the intermediate bag
for the addition/deletion (ui,n, yi,n) in the last part of the sequence;

• The edges {y1,n, v2,0}, {u2,n, u3,n}, . . . , {ur−2,n, ur−1,n} and {ur−1,n, yr,n}
are in the final bag.

Hence our proposed tree decomposition is indeed a tree decomposition, and the
treewidth of N is at most r.

For the lower bound, observe that the r× (n+ 1) grid is a minor of N . This
grid has treewidth r, so tw(N) ≥ r. Combining the upper and lower bound, we
conclude that the treewidth of N is exactly r. �

JGAA, 23(4) 715–743 (2019) 733

� � �

� � �

� � �

� � �

y1�1

y2�1

y3�1

y4�1 y4�2

y3�2

y2�2

y1�2 y1�3

y2�3

y3�3

y4�3 y4�1� y4�11

y3�1� y3�11

y2�1� y2�11

y1�1� y1�11

u3�1 u3�2

u2�2u2�1 u2�1�

u3�1�

v3�1�

v2�1�v2�2v2�1

v3�1 v3�2

u4�1 u4�2 u4�1�

v1�1�v1�2v1�1

v3��

v2�� u2�11

u3�11

z4�2 z4�3 z4�1� z4�11

z3�11z3�1�z3�3z3�2z3�1

z2�1 z2�2 z2�3 z2�1� z2�11

z1�11z1�1�z1�3z1�2

Figure 5: The display graph D(N,T).

In order to show that tw(D(N,T)) ≥ 2r, we use the concept of brambles.
We will construct a bramble B in D(N,T) of order 2r + 1. This implies that
tw(D(N,T)) ≥ 2r. Below we describe the vertex sets of the brambles in B. We
note that for convenience of description, some of these sets contain vertices such
as v1,0 that were deleted or suppressed in the construction of N . Such vertices
should be ignored for the purposes of defining an induced subgraph.

The bramble B contains the subgraphs induced by D(N,T) on the following
sets:

• For each i ∈ [r − 1] and 1 ≤ j < n, the set

Si,j = {ui,l, vi,l, yi,l : l ∈ [n− 1] ∪ {0}} ∪ {yh,j , uh,j , vh,j : h ∈ [r]}

• For each i ∈ [r] and 1 ≤ j < n, the set

Ti,j = {zi,l : l ∈ [n]} ∪ {yh,j , uh,j , vh,j : h ∈ [r]}

• The set End = {yh,n, uh,n : h ∈ [r]}

• The set Top = {yr,l, ur,l : l ∈ [n− 1]}

Intuitively, one may think of the graph D(N,T) as being split up into “rows”
and “columns”, with a “column” being made up of the vertices yi,j , ui,j , vi,j for

734 Janssen et al. Display graphs

some fixed j and all values of i. A “row” either consists of all yi,j , ui,j , vi,j for
a fixed i, or all zi,j for a fixed i. The set End consists of all vertices in the last
column, and the set Top consists of all vertices in the top row (except for those
already in End). The sets Si,j and Ti,j combine all vertices from a given row
and column (except those vertices already in End). Note that End is vertex-
disjoint from all the other sets; this will be crucial for the lower bound on the
order of B.

Lemma 6 B is a bramble in D(N,T).

Proof: Observe that all the sets induce a connected subgraph of D(N,T). (In
particular, the “columns” are connected because of the edges {vi,j , ui+1,j}; also
note that for Ti,j the sets {zi,l : l ∈ [n − 1]} and {yh,j , uh,j , vh,j : h ∈ [r]} are
connected by the edge {zi,j , yi,j}.) It remains to show that for each pair of sets
in B the sets either share a vertex or are joined by an edge with one vertex in
each set.

To see that the sets Top and End touch, observe that Top contains ur,n−1
and End contains yr,n, and these vertices are connected by an edge. To see that
End touches the other sets, observe that all other sets contain either the vertex
zi,n or vi,n−1 for some i ∈ [r]. As both of these vertices are adjacent to yi,n, it
follows that End is touches each of these sets.

To see that Top touches each of the other sets except for End, observe that
each of these sets contains yr,j for some 1 ≤ j < n. As yr,j is also in Top, these
sets touch.

It remains to consider pairs of sets where each set is Si,j or Ti,j for some
i ∈ [r] and j ∈ [n − 1]. First consider a set Si,j and a set Ti′,j′ . As both these
sets contain yi,j′ , the sets touch. Next consider sets Si,j and Si′,j′ . As both
these sets contain yi,j′ , the sets touch. Finally consider the set Ti,j and Ti′,j′ .
Then Ti,j contains zi,j′ and Ti′,j′ contains yi,j′ . As these vertices are adjacent,
the sets touch. �

Lemma 7 The order of B is 2r + 1.

Proof: Observe that the set {yi,2, zi,2 : i ∈ [r]} ∪ {y1,n} is a hitting set of size
2r + 1.

To see that any hitting set must have size at least 2r + 1, suppose for a
contradiction that H is a hitting set for B with |H| ≤ 2r. As n > 2r + 2,
there exists some 1 < j < n such that H does not contain ui,j , vi,j , yi,j or zi,j
for any i ∈ [r]. For each i ∈ [r], H contains elements from Ti,j , from which it
follows that H must contain some element from {zi,l : l ∈ [n]} for each i ∈ [r].
Similarly as H contains elements from Si,j , H must contain some element from
{ui,l, vi,l, yi,l : l ∈ [n−1]∪{0}} for each i ∈ [r−1]. In addition, H must contain
some element from Top = {yr,l, ur,l : l ∈ [n− 1]}.

As these sets are disjoint and there are 2r of them, H must contain exactly
one element from each of these sets. But as each of these sets is disjoint from
End = {yh,n, uh,n : h ∈ [r]}, it follows that H contains no element of End, a
contradiction. �

JGAA, 23(4) 715–743 (2019) 735

This shows that the treewidth of the display graph D(N,T) is at least 2r.
From the above three lemmas we have the following:

Theorem 6 For any positive integer r, there is a network N of treewidth r and
a tree T such that N displays T and tw(D(N,T)) ≥ 2r.

5 Discussion and conclusions

An obvious open question is whether we can match the theoretical upper and
constructive lower bound on the treewidth of D(N,T) in terms of the treewidth
of N . This means either finding a tight example of the inequality tw(D(N,T)) ≤
2tw(N) + 1, or improving the upper bound to match the 2tw(N) lower bound
of the construction from the previous section. It is also natural to explore
empirically how large the treewidth of D(N,T) is compared to the treewidth of
N , when N displays T . We conjecture that for realistic phylogenetic trees and
networks tw(D(N,T)) will be much smaller than 2tw(N).

As touched upon in Section 4 it could additionally be interesting to identify
non-trivial examples when N does not display T but tw(D(N,T)) = tw(N)
and to give, if possible, a phylogenetic interpretation to this. Phylogenetics has
defined many topologically-restricted subclasses of phylogenetic networks, such
as tree-based networks [21], precisely to prohibit networks (such as that shown
in Figure 1) that are artificially large and complex with respect to the num-
ber/location of taxa in the network. Possibly the display relation will behave
differently on such restricted subclasses with respect to tw(D(N,T)). In any
case, recent advances in treewidth solvers will be useful here (see e.g. [4]) since
display graphs can quickly become quite large. We now understand that, after
suppression of degree-2 nodes, display graphs of two phylogenetic trees are ex-
actly those (biconnected, cubic) graphs of tree arboricity 2; is there any hope
of computing treewidth quickly on these graphs? See the related discussion in
[33].

Algorithmically, the obvious challenge that (still!) remains is to convert
MSOL formulations into practical dynamic programming algorithms running
over tree decompositions. This remains tempting, for the following reason.
In [34] it is reported that display graphs of two trees T1, T2 often have low
treewidth compared to even conservative phylogenetic dissimilarity measures on
T1, T2, such as Tree Bisection and Reconnect (TBR) distance, and this makes
computation of these measures (paramerized by treewidth of the display graph)
attractive. But what about networks - as opposed to display graphs? In phy-
logenetics it is quite common to construct phylogenetic networks by asking for
a network N that simultaneously displays two (or more) trees T1, T2 and which
minimizes r(N); this is the well-studied hybridization number problem [11, 43].
In such an N , r(N) will be equal to the TBR-distance of T1 and T2 [44] which,
as mentioned earlier, can be large compared to tw(D(T1, T2)). The question
arises how tw(N) relates to tw(D(T1, T2)) and, in particular, whether tw(N)
is also “low”. If so, there is some hope that phylogenetic networks arising in

736 Janssen et al. Display graphs

practice will also have low treewidth, compared to other phylogenetic measures.
More empirical study is needed in this area.

The obvious theoretical shortcoming of this approach is that phylogenetic
MSOL formulations are complex and explicit dynamic programs require some
effort to write and understand (see e.g. [3]) with relatively high exponential
dependency on the treewidth bound. The UTC formulation in this article nev-
ertheless seems a promising candidate for a “clean” explicit dynamic program
since it has, by phylogenetic standards, a comparatively straightforward combi-
natorial structure.

Looking forward we observe that, as phylogenetic networks become more
commonplace in computational biology, it is natural to compare networks, rather
than trees (see e.g. [22, 30]). In this regard, network-network display graphs are
certainly worthy of investigation. For example, it is straightforward to prove
that if two phylogenetic networksNa, Nb both display a tree T , tw(D(Na, Nb)) ≤
r(Na)+r(Nb)+2. Now, if Na and Nb are two distinct optima (i.e. competing hy-
potheses) produced by an algorithm solving the hybridization number problem
for two trees T1, T2, then r(Na) and r(Nb) are both equal to the TBR-distance d
of T1 and T2 [44]. Hence, tw(D(Na, Nb)) ≤ 2d+ 2. In particular: the treewidth
of the display graph formed from the networks, will be bounded as a function
of the TBR-distance of the two original trees. Similarly, the proof of Lemma 2
goes through essentially unchanged for two networks on the same set of taxa: if
N2 displays N1 then tw(D(N2, N1)) ≤ 2tw(N2) + 1.

Perhaps such treewidth bounds can help in the development of compact
FPT MSOL proofs for determining the dissimilarity of networks. There is quite
some potential here. Topological decompositions in phylogenetics (into quartets,
triplets, agreement forests and so on) can be modelled fairly naturally within
MSOL [34]. Higher-order analogues are emerging for decomposing phylogenetic
networks (see e.g. [28]) - and it is plausible that such structures could also be
encoded within MSOL.

Finally, stepping away from phylogenetics, the study of display graphs con-
tinues to generate interesting new questions for algorithmic graph theory. In
particular, the behaviour (and “phylogenetic meaning”) of (forbidden) minors
in display graphs remains a subject where much is still to be learned [19, 33].
Indeed, display graphs can be viewed as a special case of a more generic prob-
lem. Given a set of graphs and a well-defined protocol for merging them, how
do parameters of the merged graph (and topological features such as minors)
relate to parameters and features of the constituent graphs?

Acknowledgements

Mark Jones and Remie Janssen were supported by Leo van Iersel’s Vidi grant
(NWO): 639.072.602. Georgios Stamoulis was supported by an NWO TOP
2 grant. Part of the work was supported by CNRS “Projet international de
cooperation scientifique (PICS)” grant number 230310 (CoCoAlSeq).

JGAA, 23(4) 715–743 (2019) 737

A Appendix

A.1 Unrooted tree containment (UTC) is FPT when pa-
rameterized by treewidth: a proof via Courcelle’s
Theorem

This leverages the upper bound on tw(D(N,T)) as a function of the treewidth
tw(N) of N proven earlier in the paper, see Lemma 2.

The high-level idea of the following MSOL formulation is that, if N displays
T , then (as discussed in Section 4) N contains some subtree T ′ that is a subdi-
vision of T and which can be “grown” into a spanning tree T ′′ of N . Spanning
trees of N are precisely those subgraphs obtained by deleting a subset of edges
E′ from N to make it connected and acyclic. Note that the set of quartets
(unrooted phylogenetic trees on subsets of exactly 4 taxa) displayed by T ′′ is
identical to those displayed by T ′, which is identical to those displayed by T .
(In other words, subdivision operations, and pendant subtrees without taxa that
possibly hang from T ′′, do not induce any extra quartets.)

The core idea underpinning MSOL is to query properties of a graph using
universal and existential quantification ranging not just over vertices and edges,
but also subsets of these objects. For the benefit of readers not familiar with
MSOL we now show how various basic auxiliary predicates can be easily con-
structed and combined to obtain more powerful predicates. (The article [34]
gives a more comprehensive inroduction to the use of these techniques in phylo-
genetics). The MSOL sentence will be queried over the display graph D(N,T)
where we let V be the vertex set of D(N,T) and E its edge set. Here RD is
the edge-vertex incidence relation on D(N,T). We let VT , VN , ET , EN denote
those vertices and edges of D(N,T) which belong to T,N respectively (note
that VT ∩ VN = X). Alongside X,V,E all this information is available to the
MSOL formulation via its structure.

• test that Z is equal to the union of two sets P and Q:

P ∪Q = Z :=∀z(z ∈ Z ⇒ z ∈ P ∨ z ∈ Q)

∧ ∀z(z ∈ P ⇒ z ∈ Z) ∧ ∀z(z ∈ Q⇒ z ∈ Z).

• test that P ∩Q = ∅:

NoIntersect(P,Q) :=∀u ∈ P (u 6∈ Q).

• test that P ∩Q = {v}:

Intersect(P,Q, v) :=(v ∈ P) ∧ (v ∈ Q) ∧ ∀u ∈ P (u ∈ Q⇒ (u = v)).

• test if the non-empty sets P and Q are a bipartition of Z:

Bipartition(Z,P,Q) := (P 6= ∅) ∧ (Q 6= ∅)∧(P ∪Q = Z) ∧NoIntersect(P,Q).

738 Janssen et al. Display graphs

• test if the elements in {x1, x2, x3, x4} are pairwise different:

allDiff(x1, x2, x3, x4) :=
∧

i6=j∈{1,2,3,4}

xi 6= xj .

• check if the nodes p and q are adjacent:

adj(p, q) :=∃e ∈ E(RD(e, p) ∧RD(e, q)).

The complex predicate PAC(Z, x1, x2,K) (“path avoiding edge cuts?”)
asks: is there a path from x1 to x2 entirely contained inside vertices Z that
avoids all the edges K? We model this by observing that this does not hold if
you can partition Z into two pieces P and Q, with x1 ∈ P and x2 ∈ Q, such
that the only edges that cross the induced cut (if any) are in K.

PAC(Z, x1, x2,K) :=

(x1 = x2) ∨ ¬∃P,Q

(
Bipartition(Z,P,Q) ∧ x1 ∈ P ∧ x2 ∈ Q

∧
(
∀p, q

(
p ∈ P ∧ q ∈ Q⇒ ¬adj(p, q) ∨

(
∃g ∈ K

(
RD(g, p) ∧RD(g, q)

)))))

The following predicate QACi (“quartet avoiding edge cuts?”), where i ∈
{T,N}, returns true if and only if i contains an image of quartet xaxb|xcxd that
is disjoint from the edge cuts K. As usual we write xaxb|xcxd to denote the
quartet where the path between xa and xb is disjoint from the path between xc
and xd. (The tree T shown in Figure 1, for example, is the quartet ab|cd).

QACi(xa, xb, xc, xd,K) :=

∃u, v ∈ Vi

(
(u 6= v) ∧ ∃A,B,C,D, P ⊆ Vi

(
u ∈ P ∧ v ∈ P

∧ xa, u ∈ A ∧ xb, u ∈ B ∧ xc, v ∈ C
∧ xd, v ∈ D ∧ Intersect(A,B, u) ∧ Intersect(A,P, u)

∧ Intersect(B,P, u) ∧ Intersect(C,D, v) ∧ Intersect(C,P, v)

∧ Intersect(D,P, v) ∧NoIntersect(A,C) ∧NoIntersect(B,C)

∧NoIntersect(A,D) ∧NoIntersect(B,D) ∧ PAC(A, u, xa,K)

∧ PAC(B, u, xb,K) ∧ PAC(C, v, xc,K) ∧ PAC(D, v, xd,K)

∧ PAC(P, u, v,K)
))

We need a prediate which asks: is the subgraph induced by vertex subset
Z, and then with edges K deleted, connected? We model this as follows: for

JGAA, 23(4) 715–743 (2019) 739

every pair of vertices u and v in Z a path should exist from u to v completely
contained inside Z and which avoids the edges K. Hence,

Connected(Z,K) := ∀u, v ∈ Z(PAC(Z, u, v,K)).

In a similar vein, we need a predicate which asks: is the subgraph induced
by vertex subset Z, and then with edges K deleted, acyclic? The idea here is
that, if it is not acyclic, there will exist two distinct vertices u, v ∈ Z such that
u can reach v via two distinct, vertex-disjoint paths P and Q:

Acyclic(Z,K) := ¬∃u, v ∈ Z
(
∃P,Q ⊆ Z

(
u 6= v ∧ P ∩Q = {u, v}

∧P 6= Q ∧ PAC(P, u, v,K) ∧ PAC(Q, u, v,K)
))
.

(The predicate P ∩ Q = {u, v} is a simple modification of the earlier Intersect
predicate.)

The final formulation is shown as below. The first line asks for a subset
E′ (representing the edges we delete from N to obtain T ′′) such that the N
part of D(N,T) remains connected and acyclic after deletion of E′ (and thus
induces a spanning tree), and from the second line onwards we stipulate that,
after deletion of E′, the set of quartets that survive is exactly the same as the
set of quartets displayed by T . (This is leveraging the well-known result from
phylogenetics that two trees are compatible if and only if they display the same
set of quartets [38]). Note that the overall length of the MSOL fragment is
fixed, i.e., it is not dependent on parameters of the input.

∃E′⊆ EN

(
Connected(VN , E

′) ∧Acyclic(VN , E
′)

∧∀x1, x2, x3, x4 ∈ X

(
allDiff(x1, x2, x3, x4)

⇒
((
QACT (x1, x2, x3, x4, ∅) ⇔ QACN (x1, x2, x3, x4, E

′)
)

∧
(
QACT (x1, x3, x2, x4, ∅) ⇔ QACN (x1, x3, x2, x4, E

′)
)

∧
(
QACT (x1, x4, x2, x3, ∅) ⇔ QACN (x1, x4, x2, x3, E

′)
))))

.

A.2 MSOL proof for recognizing display graphs

The following MSOL fragment checks whether a cubic, simple graph G = (V,E)
is a suppressed display graph. We re-use predicates defined in the previous
section.

∃V1, V2(Bipartition(V, V1, V2) ∧i=1,2 Connected(Vi, ∅) ∧i=1,2 Acyclic(Vi, ∅)).

740 Janssen et al. Display graphs

References

[1] B. Allen and M. Steel. Subtree transfer operations and their induced
metrics on evolutionary trees. Annals of Combinatorics, 5:1–15, 2001.
doi:10.1007/s00026-001-8006-8.

[2] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-
decomposable graphs. Journal of Algorithms, 12:308 – 340, 1991. doi:

10.1016/0196-6774(91)90006-K.

[3] J. Baste, C. Paul, I. Sau, and C. Scornavacca. Efficient fpt algorithms for
(strict) compatibility of unrooted phylogenetic trees. Bulletin of Mathe-
matical biology, 79(4):920–938, 2017. doi:10.1007/s11538-017-0260-y.

[4] S. Berndt. Computing tree width: From theory to practice and back. In
F. Manea, R. G. Miller, and D. Nowotka, editors, Sailing Routes in the
World of Computation - 14th Conference on Computability in Europe, CiE
2018, Proceedings, volume 10936 of Lecture Notes in Computer Science,
pages 81–88. Springer, 2018. doi:10.1007/978-3-319-94418-0_8.

[5] H. Bodlaender. A tourist guide through treewidth. Acta cybernetica, 11(1-
2):1–21, 1994.

[6] H. Bodlaender. A linear-time algorithm for finding tree-decompositions of
small treewidth. SIAM Journal on Computing, 25(6):1305–1317, Dec. 1996.
doi:10.1137/S0097539793251219.

[7] H. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.
Theoretical Computer Science, 209(1-2):1–45, 1998. doi:10.1016/

S0304-3975(97)00228-4.

[8] H. Bodlaender and A. Koster. Treewidth computations I. Upper bounds.
Information and Computation, 208(3):259–275, 2010. doi:10.1016/j.ic.
2009.03.008.

[9] H. Bodlaender and A. Koster. Treewidth computations II. Lower bounds.
Information and Computation, 209(7):1103–1119, 2011. doi:10.1016/j.

ic.2011.04.003.

[10] M. Bordewich, C. Scornavacca, N. Tokac, and M. Weller. On the
fixed parameter tractability of agreement-based phylogenetic distances.
Journal of Mathematical Biology, 74(1-2):239–257, 2017. doi:10.1007/

s00285-016-1023-3.

[11] M. Bordewich and C. Semple. Computing the hybridization number of two
phylogenetic trees is fixed-parameter tractable. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 4(3):458–466, 2007. doi:

10.1109/tcbb.2007.1019.

http://dx.doi.org/10.1007/s00026-001-8006-8
http://dx.doi.org/10.1016/0196-6774(91)90006-K
http://dx.doi.org/10.1016/0196-6774(91)90006-K
http://dx.doi.org/10.1007/s11538-017-0260-y
http://dx.doi.org/10.1007/978-3-319-94418-0_8
http://dx.doi.org/10.1137/S0097539793251219
http://dx.doi.org/10.1016/S0304-3975(97)00228-4
http://dx.doi.org/10.1016/S0304-3975(97)00228-4
http://dx.doi.org/10.1016/j.ic.2009.03.008
http://dx.doi.org/10.1016/j.ic.2009.03.008
http://dx.doi.org/10.1016/j.ic.2011.04.003
http://dx.doi.org/10.1016/j.ic.2011.04.003
http://dx.doi.org/10.1007/s00285-016-1023-3
http://dx.doi.org/10.1007/s00285-016-1023-3
http://dx.doi.org/10.1109/tcbb.2007.1019
http://dx.doi.org/10.1109/tcbb.2007.1019

JGAA, 23(4) 715–743 (2019) 741

[12] D. Bryant and J. Lagergren. Compatibility of unrooted phylogenetic trees
is FPT. Theoretical computer science, 351(3):296–302, 2006. doi:10.1016/
j.tcs.2005.10.033.

[13] G. Chang, C. Chen, and Y. Chen. Vertex and tree arboricities of graphs.
Journal of Combinatorial Optimization, 8(3):295–306, 2004. doi:10.1023/
B:JOCO.0000038912.82046.17.

[14] B. Courcelle. The monadic second-order logic of graphs. I. Recognizable
sets of finite graphs. Information and Computation, 85:12–75, 1990. doi:

10.1016/0890-5401(90)90043-H.

[15] M. Cygan, F. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer
Publishing Company, Incorporated, 1st edition, 2015. doi:10.1007/

978-3-319-21275-3.

[16] Y. Deng and D. Fernández-Baca. Fast compatibility testing for rooted
phylogenetic trees. Algorithmica, 80(8):2453–2477, 2018. doi:10.1007/

s00453-017-0330-4.

[17] R. Diestel. Graph Theory. Springer-Verlag Berlin and Heidelberg GmbH
& Company KG, 2010.

[18] J. Felsenstein. Inferring Phylogenies. Sinauer Associates Sunderland, MA,
2004.

[19] D. Fernández-Baca and S. Vakati. On compatibility and incompatibility of
collections of unrooted phylogenetic trees. Discrete Applied Mathematics,
245:42–58, 2018. doi:10.1016/j.dam.2017.05.002.

[20] M. Fischer, L. Van Iersel, S. Kelk, and C. Scornavacca. On computing the
maximum parsimony score of a phylogenetic network. SIAM Journal on
Discrete Mathematics, 29(1):559–585, 2015. doi:10.1137/140959948.

[21] A. Francis, K. Huber, and V. Moulton. Tree-based unrooted phylogenetic
networks. Bulletin of Mathematical Biology, 80(2):404–416, 2018. doi:

10.1007/s11538-017-0381-3.

[22] A. Francis, K. Huber, V. Moulton, and T. Wu. Bounds for phylogenetic
network space metrics. Journal of Mathematical Biology, 76(5):1229–1248,
2018. doi:10.1007/s00285-017-1171-0.

[23] P. Gambette, V. Berry, and C. Paul. Quartets and unrooted phyloge-
netic networks. Journal of Bioinformatics and Computational Biology,
10(4):1250004, 2012. doi:10.1142/S0219720012500047.

[24] A. Grigoriev, S. Kelk, and L. Lekic. On low treewidth graphs and su-
pertrees. Journal of Graph Algorithms and Applications, 19(1):325–343,
2015. doi:10.7155/jgaa.00361.

http://dx.doi.org/10.1016/j.tcs.2005.10.033
http://dx.doi.org/10.1016/j.tcs.2005.10.033
http://dx.doi.org/10.1023/B:JOCO.0000038912.82046.17
http://dx.doi.org/10.1023/B:JOCO.0000038912.82046.17
http://dx.doi.org/10.1016/0890-5401(90)90043-H
http://dx.doi.org/10.1016/0890-5401(90)90043-H
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/s00453-017-0330-4
http://dx.doi.org/10.1007/s00453-017-0330-4
http://dx.doi.org/10.1016/j.dam.2017.05.002
http://dx.doi.org/10.1137/140959948
http://dx.doi.org/10.1007/s11538-017-0381-3
http://dx.doi.org/10.1007/s11538-017-0381-3
http://dx.doi.org/10.1007/s00285-017-1171-0
http://dx.doi.org/10.1142/S0219720012500047
http://dx.doi.org/10.7155/jgaa.00361

742 Janssen et al. Display graphs

[25] M. Grohe, D. Neuen, and P. Schweitzer. A faster isomorphism test for
graphs of small degree. CoRR, abs/1802.04659, 2018. URL: http://arxiv.
org/abs/1802.04659.

[26] A. Gunawan, B. Lu, and L. Zhang. A program for verification of phy-
logenetic network models. Bioinformatics, 32(17):i503–i510, 2016. doi:

10.1093/bioinformatics/btw467.

[27] K. Huber, V. Moulton, and T. Wu. Transforming phylogenetic networks:
Moving beyond tree space. Journal of Theoretical Biology, 404:30–39, 2016.
doi:10.1016/j.jtbi.2016.05.030.

[28] K. Huber, L. van Iersel, V. Moulton, C. Scornavacca, and T. Wu. Recon-
structing phylogenetic level-1 networks from nondense binet and trinet sets.
Algorithmica, 77(1):173–200, 2017. doi:10.1007/s00453-015-0069-8.

[29] D. Huson, R. Rupp, and C. Scornavacca. Phylogenetic Networks: Concepts,
Algorithms and Applications. Cambridge University Press, 2011.

[30] R. Janssen, M. Jones, P. Erdős, L. van Iersel, and C. Scornavacca. Ex-
ploring the tiers of rooted phylogenetic network space using tail moves.
Bulletin of Mathematical Biology, 80(8):2177–2208, 2018. doi:10.1007/

s11538-018-0452-0.

[31] J. Keijsper and R. Pendavingh. Reconstructing a phylogenetic level-1 net-
work from quartets. Bulletin of Mathematical Biology, 76(10):2517–2541,
2014. doi:10.1007/s11538-014-0022-z.

[32] S. Kelk and C. Scornavacca. Constructing minimal phylogenetic net-
works from softwired clusters is fixed parameter tractable. Algorithmica,
68(4):886–915, 2014. doi:10.1007/s00453-012-9708-5.

[33] S. Kelk, G. Stamoulis, and T. Wu. Treewidth distance on phylogenetic
trees. Theoretical Computer Science, 731:99–117, 2018. doi:10.1016/j.

tcs.2018.04.004.

[34] S. Kelk, L. van Iersel, C. Scornavacca, and M. Weller. Phylogenetic in-
congruence through the lens of monadic second order logic. Journal of
Graph Algorithms and Applications, 20(2):189–215, 2016. doi:10.7155/

jgaa.00390.

[35] E. Luks. Isomorphism of graphs of bounded valence can be tested in poly-
nomial time. Journal of Computer and System Sciences, 25(1):42–65, 1982.
doi:10.1016/0022-0000(82)90009-5.

[36] D. A. Morrison. An introduction to phylogenetic networks. RJR Pro-
ductions, 2011. Available from http://www.rjr-productions.org/

Networks/.

http://arxiv.org/abs/1802.04659
http://arxiv.org/abs/1802.04659
http://dx.doi.org/10.1093/bioinformatics/btw467
http://dx.doi.org/10.1093/bioinformatics/btw467
http://dx.doi.org/10.1016/j.jtbi.2016.05.030
http://dx.doi.org/10.1007/s00453-015-0069-8
http://dx.doi.org/10.1007/s11538-018-0452-0
http://dx.doi.org/10.1007/s11538-018-0452-0
http://dx.doi.org/10.1007/s11538-014-0022-z
http://dx.doi.org/10.1007/s00453-012-9708-5
http://dx.doi.org/10.1016/j.tcs.2018.04.004
http://dx.doi.org/10.1016/j.tcs.2018.04.004
http://dx.doi.org/10.7155/jgaa.00390
http://dx.doi.org/10.7155/jgaa.00390
http://dx.doi.org/10.1016/0022-0000(82)90009-5
http://www.rjr-productions.org/Networks/
http://www.rjr-productions.org/Networks/

JGAA, 23(4) 715–743 (2019) 743

[37] A. Raspaud and W. Wang. On the vertex-arboricity of planar graphs.
European Journal of Combinatorics, 29(4):1064–1075, 2008. doi:10.1016/
j.ejc.2007.11.022.

[38] C. Semple and M. Steel. Phylogenetics. Oxford University Press, 2003.

[39] P. Seymour and R. Thomas. Graph searching and a min-max theorem for
tree-width. Journal of Combinatorial Theory, Series B, 58(1):22–33, 1993.
doi:10.1006/jctb.1993.1027.

[40] C. Soĺıs-Lemus and C. Ané. Inferring phylogenetic networks with maximum
pseudolikelihood under incomplete lineage sorting. PLoS Genetics, 12(3):1–
21, 2016. doi:10.1371/journal.pgen.1005896.

[41] M. Steel. Phylogeny: Discrete and random processes in evolution. SIAM,
2016.

[42] S. Vakati and D. Fernández-Baca. Graph triangulations and the compatibil-
ity of unrooted phylogenetic trees. Applied Mathematics Letters, 24(5):719–
723, 2011. doi:10.1016/j.aml.2010.12.015.

[43] L. van Iersel, S. Kelk, and C. Scornavacca. Kernelizations for the hybridiza-
tion number problem on multiple nonbinary trees. Journal of Computer and
System Sciences, 82(6):1075 – 1089, 2016. doi:10.1016/j.jcss.2016.03.
006.

[44] L. van Iersel, S. Kelk, G. Stamoulis, L. Stougie, and O. Boes. On un-
rooted and root-uncertain variants of several well-known phylogenetic net-
work problems. Algorithmica, 80(11):2993–3022, 2018. doi:10.1007/

s00453-017-0366-5.

[45] L. van Iersel, C. Semple, and M. Steel. Locating a tree in a phylogenetic
network. Information Processing Letters, 110(23):1037–1043, 2010. doi:

10.1016/j.ipl.2010.07.027.

http://dx.doi.org/10.1016/j.ejc.2007.11.022
http://dx.doi.org/10.1016/j.ejc.2007.11.022
http://dx.doi.org/10.1006/jctb.1993.1027
http://dx.doi.org/10.1371/journal.pgen.1005896
http://dx.doi.org/10.1016/j.aml.2010.12.015
http://dx.doi.org/10.1016/j.jcss.2016.03.006
http://dx.doi.org/10.1016/j.jcss.2016.03.006
http://dx.doi.org/10.1007/s00453-017-0366-5
http://dx.doi.org/10.1007/s00453-017-0366-5
http://dx.doi.org/10.1016/j.ipl.2010.07.027
http://dx.doi.org/10.1016/j.ipl.2010.07.027

	Introduction
	Preliminaries
	Recognizing display graphs of pairs of trees
	The fixed parameter tractability of recognizing display graphs of bounded treewidth

	Display graphs formed from trees and networks
	Treewidth upper bounds
	An algorithmic application
	Treewidth lower bounds

	Discussion and conclusions
	Appendix
	Unrooted tree containment (UTC) is FPT when parameterized by treewidth: a proof via Courcelle's Theorem
	MSOL proof for recognizing display graphs

