
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 23, no. 3, pp. 463–498 (2019)
DOI: 10.7155/jgaa.00499

Short Plane Supports for Spatial Hypergraphs

Thom Castermans 1 Mereke van Garderen 2 Wouter Meulemans 1

Martin Nöllenburg 3 Xiaoru Yuan 4

1TU Eindhoven, the Netherlands
2Universität Konstanz, Germany

3TU Wien, Vienna, Austria
4Peking University, Beijing, China

Abstract

A graph G = (V,E) is a support of a hypergraph H = (V, S) if every
hyperedge induces a connected subgraph in G. Supports are used for cer-
tain types of hypergraph drawings, also known as set visualizations. In
this paper we consider visualizing spatial hypergraphs, where each ver-
tex has a fixed location in the plane. This scenario appears when, e.g.,
modeling set systems of geospatial locations as hypergraphs. Following
established aesthetic quality criteria, we are interested in finding supports
that yield plane straight-line drawings with minimum total edge length
on the input point set V . From a theoretical point of view, we first show
that the problem is NP-hard already under rather mild conditions, and
additionally provide a negative approximability result. Therefore, the
main focus of the paper lies on practical heuristic algorithms as well as
an exact, ILP-based approach for computing short plane supports. We
report results from computational experiments that investigate the effect
of requiring planarity and acyclicity on the resulting support length. Fur-
thermore, we evaluate the performance and trade-offs between solution
quality and speed of heuristics relative to each other and compared to
optimal solutions.

Submitted:
November 2018

Reviewed:
January 2019

Revised:
June 2019

Accepted:
June 2019

Final:
July 2019

Published:
September 2019

Article type:
Regular paper

Communicated by:
T. Biedl and A. Kerren

E-mail addresses: t.h.a.castermans@tue.nl (Thom Castermans) mereke.van.garderen@uni-konstanz.de

(Mereke van Garderen) w.meulemans@tue.nl (Wouter Meulemans) noellenburg@ac.tuwien.ac.at

(Martin Nöllenburg) xiaoru.yuan@pku.edu.cn (Xiaoru Yuan)

http://dx.doi.org/10.7155/jgaa.00499
mailto:t.h.a.castermans@tue.nl
mailto:mereke.van.garderen@uni-konstanz.de
mailto:w.meulemans@tue.nl
mailto:noellenburg@ac.tuwien.ac.at
mailto:xiaoru.yuan@pku.edu.cn

464 Castermans et al. Short Plane Supports for Spatial Hypergraphs

1 Introduction

A hypergraph H = (V, S) is a generalization of a graph, in which each hyper-
edge in S is a nonempty subset of the vertex set V , that is, S ⊆ P(V) \ {∅}.
Furthermore, we assume here that every element v ∈ V is contained in at least
one hyperedge s ∈ S. Hypergraphs arise in many domains to model set sys-
tems representing clusters, groups or other aggregations. To allow for effective
exploration and analysis of such data, visualization is often used. Indeed, draw-
ing hypergraphs relates to set visualization, an active subfield of information
visualization (for more details see the recent survey of Alsallakh et al. [3]). Var-
ious methods have been developed to visualize set systems for elements fixed in
(geo)spatial positions, such as Bubble Sets [9], LineSets [2], Kelp Diagrams [12]
and KelpFusion [21]. These methods make different trade-offs between, e.g.,
Gestalt theory [26] and Tufte’s principle of ink minimization [24] to visually
convey the set structures; user studies have been performed to analyze the ef-
fectiveness of such trade-offs [21]. Rodgers et al. [23] performed a task-based
evaluation of the above methods, but did not discover significant differences
between them.

A hypergraph support is an important concept to model the drawing of
hypergraphs [15]: a support of a hypergraph H = (V, S) is a graph G = (V,E)
on the same vertex set V , such that every hyperedge s ∈ S induces a connected
subgraph in G. In other words, for every hyperedge s, the restriction of G to
only edges that connect vertices in s is connected and spans all vertices in s.
Figures 1(a–b) illustrate a hypergraph with a support. Hypergraph supports
correspond to a prominent visualization style for geospatial sets, namely that of
connecting all elements of a set using colored links, such as seen in LineSets [2]
or Kelp-style diagrams [12, 21] (see also Figure 1(c)).

Thus, finding an embedded support that satisfies certain criteria readily
translates into a good rendering of the spatial set system. A “good” support
should avoid edge crossings, a standard quality criterion in the graph-drawing
literature [22]. Figures 1(b–d) illustrate such plane supports, compared to the
nonplanar supports of Figures 1(c,f). Moreover, as per Tufte’s principle of ink
minimization [24], a support should have small total edge length, where we use
||e|| to denote the Euclidean length of an edge e ∈ E. Of course, one may
argue that edges of the support that are used by multiple hyperedges do not
significantly reduce the “ink” as compared to different edges for each hyperedge,
and thus multiplicity should be considered. However, we observe that such edges
show co-occurrences of elements and thus have a potential added value in the
drawing—user studies that establish the validity of this reasoning are beyond
the scope of this paper.

The shortest support may contain cycles. To further build on this idea of
co-occurrences, one may want to restrict the support to be acyclic—a support
tree (see e.g. Figures 1(d–e) compared to Figures 1(b,f)). The result of such a
restriction is that the common intersection of any number of sets is a connected
subgraph in the support. In other words, the intersection is visually shown as
one component, rather than scattered across multiple pieces.

JGAA, 23(3) 463–498 (2019) 465

(a) (b) (c)

(d) (e) (f)

Figure 1: (a) A set system with colors indicating set membership. (b) The
shortest plane support of the corresponding hypergraph. (c) A Kelp-style ren-
dering of the set system. (d) The shortest plane support tree. (e) The shortest
nonplane support tree. (f) The shortest nonplane support.

In many applications, the vertices have some associated (geo)spatial location,
thereby prescribing their positions in the drawing of the support. We focus on
this case where vertices have fixed positions in the plane and study supports
that are embedded using straight-line edges. Figure 2 shows an example on real-
world data of restaurants, similar to those used in [21], illustrating the result of
various algorithms introduced in this paper.

Contributions The contributions of this paper are two-fold: on the one hand
we fill some gaps in theoretical knowledge about computing plane supports and
support trees; on the other hand, we perform computational experiments to
gain more insight into the trade-offs on the complexity of the visual artifact for
(implicit) support-based set visualization methods. Our focus is on the latter.

In Section 2 we explore computational aspects of the problem and intro-
duce our algorithms. We observe that plane support trees always exist if at
least one vertex is contained in all hyperedges, but show that length minimiza-
tion is NP-hard. Deciding whether a planar support exists otherwise is still an
open problem. Moreover, the natural approach to extend a Euclidean minimum
spanning tree does not even yield a constant-factor approximation.

In Section 3 we present three algorithms. The first is a heuristic improvement
upon a known approximation algorithm. It is based on iteratively computing
minimum spanning trees for a hyperedge, where the weights are initially Eu-
clidean but are later modified to promote using edges already in use by spanning
trees of other sets. The second algorithm we present is a heuristic algorithm
based on local search. The third is an exact algorithm via an integer linear
program (ILP). Both the local-search method and the ILP can be configured
such that they compute a plane or acyclic support (or both).

466 Castermans et al. Short Plane Supports for Spatial Hypergraphs

Input

4–5 stars

$–$$

Japanese

Opt P MSTIteration

LocalSearch PT LocalSearch P

LocalSearch T LocalSearch U

Figure 2: A set system of restaurants in downtown Toronto, visualized using
Kelp-style rendering with the supports computed by the various algorithms
used in this paper. The addition of the letters P and/or T, indicate the use
of constraints forcing the support to be plane and/or a tree. LocalSearch
P and Opt P are the same. MSTIteration and LocalSearch U solve
the same (unconstrained) problem, but the former results in a support that is
approximately 9.5% longer than the support computed by the latter.

JGAA, 23(3) 463–498 (2019) 467

In Section 4 we describe the results of two computational experiments.1 The
first experiment compares the performance of the two heuristic algorithms in
terms of quality and speed. Whereas the local search achieves better quality,
the approximation algorithm is faster. The second experiment compares how
well these algorithms perform compared to the optimum, computed via the ILP,
and investigates the cost in terms of edge length incurred by requiring planarity
or acyclicity. The effect of planarity and acyclicity seems to be predictably
influenced by the number of hyperedges and the number of incident hyperedges
per vertex, but not by the number of vertices. Moreover, the experiment shows
that local search often achieves an optimal result.

Related work Regarding supports for elements with fixed locations, some
results are already known. The results of Bereg et al. [5] imply that existence
of a plane support tree for two disjoint hyperedges can be tested in polyno-
mial time; this implies the same result for a plane support. This problem
has also been studied in a setting with additional Steiner points [4, 13]. Van
Goethem et al. [25] enforce a stricter planarity than that of planar supports
and investigate the resulting properties for elements on a regular grid, where
only neighboring elements can be connected. However, solution length is of no
concern in their results.

Without the planarity requirement, existence and length minimization of a
(nonplane) support tree for fixed elements can be solved in polynomial time [17,
18]. Hurtado et al. [14] show that length minimization of a support for two
hyperedges is solvable in polynomial time. However, for three or more hyper-
edges this problem is NP-hard [1]. We show that this is in fact NP-hard for two
hyperedges if we do require planarity.

Planar supports without fixed elements have also received attention. John-
son and Pollak [15] originally showed that deciding whether a planar support
exists is NP-hard; various restrictions have since been proven to be NP-hard [7].
Contrasting these reductions, our hardness result (Theorem 1) requires only two
hyperedges, but uses length minimization. Buchin et al. [7] show that testing
for a planar support tree with bounded maximum degree is solvable in poly-
nomial time; testing for a planar support tree such that the induced subgraph
of each hyperedge is Hamiltonian can also be done in polynomial time [6]. We
summarize our results and previously known results in Table 1.

Various set-visualization methods [2, 12, 21] implicitly also compute sup-
ports, typically considering a combination of criteria such as length, detour,
shape, crossings, and bends in their methods. There has also been some atten-
tion for visualizing sets and networks simultaneously, e.g. [11, 23]. Typically,
this setting does not prescribe vertex locations.

1The source code and data for these experiments, as well as instructions on how to run the
experiments, can be found on GitHub: https://github.com/Caster/spssh.

https://github.com/Caster/spssh

468 Castermans et al. Short Plane Supports for Spatial Hypergraphs

Table 1: A summary of results, with our results in bold. For two sets (or colors),
a disjoint relation is represented by , overlap by , and containment by .
Condition ? requires a non-empty intersection of all hyperedges.

Planar Nonplanar

k existence length min. existence length min.

Tree 2 P [5] NP-hard yes trivial
yes NP-hard yes trivial
yes NP-hard yes trivial

3+ open (yes?) NP-hard P [18] P [18]

Graph 2 P [5] NP-hard yes trivial
yes NP-hard yes P [14]
yes NP-hard yes trivial

3+ NP-hard [7] NP-hard [7] yes NP-hard [1]

2 Existence, Bounds, and Complexity

Existence The lemma below gives a sufficient (but not necessary) condition
for the existence of a plane support tree. Bereg et al. [5] provide a necessary
condition for two hyperedges (|S| = 2). The problem remains open for |S| > 2.

Lemma 1 Consider a hypergraph H = (V, S) with no three vertices in V on a
line, such that VA =

⋂
s∈S s 6= ∅. Then H has a plane support tree that contains

the Euclidean minimum spanning tree on VA as a subtree.

Proof: We first compute the Euclidean minimum spanning tree (EMST) T on
VA and then connect each vertex in V \ VA by a new edge to a closest vertex
in VA, see Figure 3. We argue that the resulting graph is a plane support tree.
Obviously, the EMST is a plane tree. An edge that connects a vertex v ∈ V \VA
to its closest vertex u ∈ VA cannot cross an edge wz of T , as we know from
the basic properties of the EMST that the circle with diameter ‖wz‖ contains
no other vertex of VA for every edge wz of T . Therefore u would have larger
Euclidean distance to v than w or z, which is a contradiction. Further observe
that no two new edges can cross, as such a crossing implies that at least one of
the crossing edges would not connect to the closest vertex in VA. Finally, since
there are no three collinear vertices, no added edge will contain a vertex and
thus, no two added edges can be overlapping either. As we are attaching only
leaves to a tree, the resulting graph remains a plane tree. 2

If VA is empty, one can immediately construct instances that enforce a cross-
ing in any support, e.g., an X-configuration of two disjoint hyperedges.

Approximation In a support tree the subgraph induced by VA must be a
connected subtree to satisfy the support property for all hyperedges. Next we

JGAA, 23(3) 463–498 (2019) 469

Figure 3: Example of a plane support tree constructed according to Lemma 1.
The EMST on VA is drawn with thick black edges.

1

`

2`/3

ε

w

u v

w

u v

(a)

(b)

Figure 4: An n-point instance with approximation ratio Θ(n) if using an EMST
on VA. All edges are straight-line segments; curvature is used to emphasize the
effect of the convex chain.

consider using the idea of Lemma 1 to start with a Euclidean minimum spanning
tree (EMST) of VA and extend it to a support tree. If we allow intersections, this
leads to an (ρ2 + 1)-approximation algorithm, where ρ is the Steiner ratio [14].
However, we show below that the planarity requirement can cause the resulting
support length to exceed any constant factor of the length of the shortest plane
support tree.

Lemma 2 There is a family of n-vertex hypergraphs H = (V, {r, b}) with VA =
r ∩ b 6= ∅ such that any plane support of H that includes an EMST of VA is a
factor Θ(|V |) longer than the shortest plane support tree.

Proof: The hypergraph family is illustrated in Figure 4. The set VA = {u, v, w}
consists of three vertices whose EMST T has length `+1 and is indicated by the
heavier, two-colored edges in Figure 4a. The remaining vertices in V \ VA are
indicated in red and blue (indicating membership of r and b) and placed inside
a disk of radius ε just left of the midpoint of edge uv. The vertices alternate in
colors from left to right and form two mirrored convex chains.

470 Castermans et al. Short Plane Supports for Spatial Hypergraphs

Since edge uv of T splits the vertices in V \ VA and by their placement on
convex chains, the shortest extension of T into a plane support tree is to connect
every vertex to u (Figure 4a). This yields a total length of the support tree of
Θ(n) · `. If, however, VA is connected by a slightly longer tree, the remaining
vertices in V \ VA can be joined by two comb-shaped structures as shown in
Figure 4b. The resulting plane support tree has a length of Θ(1) · `. 2

Removing vertex w from the construction in Figure 4, we can similarly show
that a plane support tree, which now necessarily includes the edge uv, is a factor
Θ(n) longer than the shortest nonplane support tree.

Corollary 1 There is a family of n-vertex hypergraphs H = (V, {r, b}) with
VA = r ∩ b 6= ∅ such that any plane support tree of H is a factor Θ(n) longer
than the shortest nonplane support tree.

Computational complexity Unfortunately, the problem of finding the short-
est plane support and several restricted variants are NP-hard, as captured in
the theorem below.

Theorem 1 Let H = (V, S) be a hypergraph with vertices V having fixed lo-
cations in R2. Let L > 0. It is NP-hard to decide whether H admits a plane
support with length at most L, even if S = {r, b}, r ⊆ b, and the support is
required to be a tree.

Proof: We first show the reduction for the most restricted case: S = {r, b}
and r ⊆ b, and the support is required to be a tree. We use a reduction
from planar monotone 3-SAT [19]. Here, we are given a 3-CNF formula φ
with n variables v1, . . . , vn and m clauses c1, . . . , cm such that every clause has
either three positive literals or three negative literals. Moreover, we are given
an embedding of φ as a graph, with rectangular vertices for variables on a
horizontal line, and clauses as rectangles above or below the line (depending on
whether the clause is positive or negative). Vertical edges connect clauses to
the variables of their literals.

We must construct a spatial hypergraph H = H(φ) = (V, {r, b}) such that
r ⊆ b. In the remainder of the proof, we assign vertices to either r (red) or b
(blue), understanding that every red vertex in r is also a blue vertex in b. Refer
to Figure 5 for an illustration of the construction.

First, we place 3(n + 1) red vertices using coordinates (3i · (m + 1), y) for
integers i ∈ [0, n] and integers y ∈ [−1, 1]. Furthermore, we place n · (3m + 2)
blue vertices using coordinates (3i(m + 1) + j, 0) for integers i ∈ [0, n − 1] and
j ∈ [1, 3m+ 2].

We now place additional blue vertices for each clause ca. We assume that
this clause has positive literals for variable vi, vj , and vk; the construction for
clauses with negative literals is symmetric, using negative y-coordinates instead.
First, we place 3a+1 blue vertices from (3(i−1)(m+1)+3p, 2) to (3(i−1)(m+
1) + 3p, 2 + 3a) at unit distance, to represent the incidence from ca to variable

JGAA, 23(3) 463–498 (2019) 471

(a)

(b)

Figure 5: Construction for φ = (v2 ∨ v3 ∨ v4) ∧ (v1 ∨ v3 ∨ v4) ∧ (v1 ∨ v2 ∨ v4).
Vertices in r and b are red, vertices in b are blue. A plane support tree with
length at most L is given in black lines. (a) Representation of variable v1; the
solution sets v1 to true. (b) Representation of the first clause.

vi, using the given embedding to determine that ca is the pth clause incident
from above to vi. Analogously, we place the blue vertices for vj and vk. Now,
we place further blue vertices at unit distance with y-coordinate 2+3a from the
leftmost to the rightmost top vertex we just placed.

One clause requires at most 3(3m + 1) vertices for the variable incidence
and less than 3n · (m + 1) for the horizontal line connecting these. We can
now readily measure the length of the minimum spanning tree on the blue
vertices of one clause. We use La to denote this length; note that La is an
integer at most 3(3m + 1) + 3n · (m + 1). The value of L that we select is
2(n+ 1) + 3n · (m+ 1) + n(3m+ 2) + 2m+

∑
a∈[1,m] La.

This finalizes the construction. It is of polynomial size since we placed
3(n+ 1) red vertices and n · (3m− 2) blue vertices for the variables and at most
m · (3(3m+1)+3n · (m+1)) for the clauses: this is O(nm2) vertices. Moreover,
we claim that our constructed hypergraph admits a plane support tree of length
at most L, if and only if φ is satisfiable.

Assume we have a plane support tree of length at most L. First, we observe
that all points in r must be connected: the minimal way of doing so connects
the three vertices with the same x-coordinate and uses one horizontal segment
to connect one triplet to the next. This has exactly length 2(n+1)+3n ·(m+1),
corresponding to the first two terms defining L. The minimal way of connecting
the blue points inside the variables to the red tree takes length n(3m + 2) in
total: this is the third term defining L. Finally, to connect the clause vertices,
we need length at least La per clause, the last term of L. We note that any
solution must use these constructions on the blue vertices, since all vertices are
at unit distance; other blue vertices are at distance at least 2. However, the
support tree is connected: thus it must still have connections from each gadget

472 Castermans et al. Short Plane Supports for Spatial Hypergraphs

to either a red vertex or a blue vertex of a variable. The budget we have for
this is 2m in total. Since each clause needs a connection of length at least 2,
all clauses use exactly length 2. The only vertices within distance 2 of a clause
are the three blue vertices of the variables with y-coordinate zero (one of each
literal of the clause). Thus, each clause must have exactly one length-2 edge
to one of these variable vertices. Since the support tree is plane, this cannot
cross the horizontal links used to connect the red vertices. We can now readily
obtain a satisfying assignment for φ from a plane support tree with length at
most L, by looking at which of the two horizontal edges is used to connect the
red vertices: if the one at the top is used, that variable is set to false; otherwise,
it is set to true.

To prove the converse, assume that we have a satisfying assignment. Using
the same reasoning as above, we construct a plane support tree of length L
by picking the connecting horizontal edges for the red vertices according to the
satisfying assignment: this readily implies that we can connect each clause using
a length-2 connection for one of its satisfied literals that does not intersect the
horizontal edges for the red vertices of the corresponding variable.

Our proof readily implies that the more general case with |S| ≥ 3 or r 6⊆ b is
also NP-hard. If we also admit supports that are not a tree, the same construc-
tion also works. The converse proof above does not change: we can still find
the same support tree with length L. To show that a plane support of length at
most L must imply a satisfiable formula, we may observe that any valid support
of minimal length must be a tree. Consider a support of minimal length that
is not a tree. Then it must have a cycle. If this cycle contains only vertices
from r, then we can remove an arbitrary edge. If this cycle contains a vertex
from b\ r, then we remove an incident edge of such vertex. Either case shortens
the support while maintaining connected induced subgraphs for r and b (which
also includes the vertices of r). This contradicts that the assumed support has
minimal length. Thus the minimal-length support must be a tree. 2

Note that the construction used in the reduction above is rather degenerate:
it uses many collinear vertices with integer coordinates. This helps us bound
the complexity of the reduction, that is, to show that we do not need many
bits to encode each coordinate. However, the construction does not rely on this
degeneracy. Slightly displacing all vertices keeps the structure intact.

3 Algorithms

We now turn to describe three algorithms. The first is an approximation algo-
rithm, the second uses a local-search heuristic and the third computes optimal
solutions via Integer Linear Programming.

3.1 Iterative Minimum Spanning Trees

Here we focus on computing short supports without requiring planarity. As
described by Hurtado et al. [14], EMSTs can be used to find an approximation

JGAA, 23(3) 463–498 (2019) 473

Algorithm 1 MSTIteration(H,σ)

Input: hypergraph H = (V, S) with vertices in the plane, computation se-
quence σ over S

Output: a support for H

1: Initialize Ts to ∅ for every s ∈ S
2: Initialize graph G = (V, ∅), where each edge has a counter for the number

of MSTs Ts that contain it
3: for s ∈ σ do
4: For every e ∈ Ts, decrease the counter of e by 1; if it reaches 0, remove e

from G
5: Compute an MST Ts of s, where edges in G have weight 0, and other

pairs of vertices have weight equal to their Euclidean distance
6: For every e ∈ Ts, increase the counter on e by 1 if it already exists in G;

otherwise, add e to G and set its counter to 1.
7: return G

of the shortest support. In particular, let H = (V, S) be a hypergraph with
n vertices and k hyperedges; by computing an EMST for each hyperedge and
taking their union, we get a support that is a k-approximation2 of the shortest
support. This algorithm runs in O(kn log n) time.

Suppose that we compute the EMSTs T1, . . . , Tk in that order, for the k
hyperedges in S. The final support is the union of these trees: its length is not
increased by using an edge in Ti that is already present in some Tj (j < i).
Hence, we can consider any pair of vertices that is adjacent in T1 ∪ . . .∪Ti−1 to
have distance zero, when computing Ti. This heuristically reduces the length
of the resulting support (though the approximation ratio remains the same).
However, the order in which hyperedges are considered now matters for the
result. To alleviate this issue, we iteratively recompute the minimum spanning
trees.

Algorithm We define a computation sequence σ of a hypergraph H = (V, S)
as a sequence of hyperedges that contains each hyperedge in S at least once.
Each item s in the sequence σ represents the computation of the (not-quite
Euclidean) MST on the vertices of s, such that edges have weight 0 if they
are part of the current support and a weight equal to the Euclidean distance
between their vertices otherwise. We use Ts to denote the current MST for
hyperedge s ∈ S; the support G is always the union over all Ts. As we compute
a spanning tree for each hyperedge, G is a support for H when the algorithm
terminates. Algorithm 1 provides pseudocode for the described algorithm.

Efficiency Implementing G with adjacency lists, we use O(nk) storage as
each of the k trees has O(n) edges. To compute Ts, we use Lemma 3 below

2One can actually do slightly better, by computing spanning trees on the intersection of
two hyperedges, yielding roughly a (0.8k)-approximation [14] for nonplanar supports.

474 Castermans et al. Short Plane Supports for Spatial Hypergraphs

to conclude that there are O(nk) candidate edges, ensuring that Prim’s MST
algorithm runs in O(nk + n log n) time. To see that we can determine the
weight without overhead, consider all vertices to be indexed with numbers from
1 to n. When adding a vertex u to the current tree in Prim’s algorithm, we first
process the neighbors of u in G (having a weight 0) and mark that these have
been processed in an array using the above mentioned vertex index. Only then
do we process all other vertices (having weight equal to the Euclidean distance)
that are not marked and are not in the current tree. The total algorithm thus
takes O(|σ|(nk + n log n)) time and Θ(nk) space.

In the following, we mention finding the Euclidean MST of a point set,
though the Euclidean MST is generally not unique. It being unique assumes
either unique distances between all pairs of vertices, or a deterministic way of
choosing which edge goes in the MST when multiple have the same minimum
weight. The latter can easily be implemented in practice and is as such a
reasonable assumption to make.

Lemma 3 Let P be a point set and F ⊆ P × P . Consider the MST T on P ,
based on edge weights 0 for edges in F and the Euclidean distance otherwise.
Then T is a subset of the union of F and the Euclidean MST on P .

Proof: Let T ′ denote the Euclidean MST on P . Assume that MST T has some
edge e that is neither in F nor in T ′. Since T is a tree, removing e from it
partitions the tree into two connected components. By definition, T ′ contains
an edge e′ that connects the two components and by assumption e′ 6= e. Since
T ′ is the Euclidean MST, we know that ‖e′‖ < ‖e‖. Since e is not in F , the
weight it contributes to T is ‖e‖ and thus we can find a shorter spanning tree T ∗,
by replacing e with e′ in T . This contradicts that T is the MST, thus proving
the lemma. 2

Properties (k = 2) The main question that arises is how long a computation
sequence σ must be such that that the result stabilizes, that is, any sequence
that extends σ gives a support that has the same total length. We use Gσ to
denote the support resulting from computation sequence σ. With Lemma 4,
we prove that for k = 2, we need to recompute only one hyperedge: sequence
σ = 〈r, b, r〉 or σ = 〈b, r, b〉 is sufficient to obtain a stable result. We can compute
both sequences and use the result with smallest total edge length. In order to
prove the lemma, we use the following observation.

Observation 1 For any number of hyperedges, a computation sequence featur-
ing two consecutive occurrences of the same hyperedge achieves the same result
as the computation sequence in which these consecutive occurrences have been
replaced by a single occurrence.

Lemma 4 Let H = (V, {r, b}) be a hypergraph. All computation sequences σ′

with |σ′| ≥ 4 have a shorter computation sequence σ with |σ| = 3 such that
Gσ = Gσ′ .

JGAA, 23(3) 463–498 (2019) 475

Proof: By Observation 1 we may assume σ′ to be an alternating sequence of
r’s and b’s, so σ′ starts either with 〈r, b, r, b, . . .〉 or with 〈b, r, b, r, . . .〉. Without
loss of generality we consider σ′ to start with 〈r, b, r, b, . . .〉. We show that the
subsequence σ consisting of the first three hyperedges of σ′ achieves the same
support as σ′. Consider all edges (vi, vj) ∈ V × V . There are four cases:

• If both vi and vj are in both r and b, let the edge be in a set P of purple
edges.

• Else, if vi and vj are both in r, let the edge be in a set R of red edges.

• Else, if vi and vj are both in b, let the edge be in a set B of blue edges.

• Else, the edge will never be a part of a support as the vertices do not share
a color.

Let the support constructed after step i of σ be called Gi, so that we have G1,
G2 and G3. We show that P (G2) = P (G3), where P (G) denotes taking the
subset of edges of G that are in P .

P (G3) ⊆ P (G2). Let ep ∈ P (G3). For a contradiction, assume ep 6∈ P (G2).
Edges in P are never removed from the support once they are added,
since they have weight 0. This implies that also ep 6∈ P (G1). As G1 is the
Euclidean MST of r, by the cut property of MSTs there is another edge
e ∈ R ∪ P shorter than ep in the cut induced by ep that must be a part
of the MST instead.3 When constructing G3, again e will be chosen over
ep, and thus ep 6∈ P (G3). Contradiction.

P (G2) ⊆ P (G3). Let ep ∈ P (G2). We already established that edges in P are
never removed from the support once they are added, hence ep ∈ P (G3).

Next, we show that G4 = G3, i.e., Gσ′ = Gσ.

G3 ⊆ G4. Take an edge e ∈ G3. For a contradiction, assume e 6∈ G4. As edges
in P are not removed and edges in R remain untouched, e ∈ B. As e 6∈ G4

and the fourth step calculates MST(b), the cut property tells us that some
other edge e′ ∈ B∪P is shorter and in MST(b) instead. But then e′ would
have been added in G2 and hence e 6∈ G3. Contradiction.

G4 ⊆ G3. Take an edge e ∈ G4. For a contradiction, assume e 6∈ G3. This
means e 6∈ R, as such edges cannot be added when computing MST(b).
Edges in P are never removed, thus e 6∈ G2. The second step of σ com-
puted MST(b), hence by the cut property there must be another edge e′,
shorter than e, part of MST(b) instead. Indeed, this implies e 6∈ MST(b).
However, as G4 is computing an MST for b and we assumed e ∈ G4,
e ∈ MST(b). Contradiction.

As we have now shown that Gσ′ = Gσ, the lemma follows. 2

3This requires the same assumption of unique distances or determinism as Lemma 3.

476 Castermans et al. Short Plane Supports for Spatial Hypergraphs

Choosing a computation sequence The question remains how to deter-
mine a good computation sequence σ for a hypergraph H = (V, {s1, . . . , sk}).
Based on the above, we use σ = 〈s1, s2, s1〉 for k = 2, knowing that longer
sequences do not alter the result. It remains open whether we can prove similar
statements for k > 3. That is, how can we strategically choose a computation
sequence, to get good results with respect to all possible computation sequences?
For our experiments, we use σ = 〈s1, . . . , sk〉k, that is, 〈s1, . . . , sk〉 repeated k
times.

3.2 Local Search

The algorithm described in Section 3.1 appears to perform well in practice,
as shown in Section 4. However, it cannot guarantee that the resulting sup-
port is plane or acyclic. Moreover, one may wonder whether other commonly
employed heuristic approaches outperform it even in the unrestricted case it
solves. We therefore implement a local-search algorithm, specifically a hill-
climbing heuristic, for comparison in the nonplanar case, but also to allow for
computing supports that are plane or acyclic (or both).

Algorithm This approach assumes that in the given hypergraph H = (V, S),
at least one vertex v ∈ V occurs in all hyperedges s ∈ S such that Lemma 1
applies; let VA =

⋂
s∈S s 6= ∅. We need to initialize our hill climbing approach

with a valid (plane), easy-to-find albeit possibly suboptimal solution. Following
Lemma 1, we obtain this by first calculating an EMST of all vertices in VA, and
subsequently connecting all vertices v 6∈ VA to the nearest v′ ∈ VA.

Afterwards, we iteratively execute rounds until no further improvement is
gained. We provide pseudocode in Algorithm 2. Each round consists of check-
ing for each edge in the support if it can be removed, and if the hyperedges
using it can be reconnected by (one or more) other edges that have a shorter
total length than the removed edge without causing intersections. This check is
nontrivial and done in a brute-force manner, improved by caching and pruning;
more details are given below. At the end of each round, the edge replacement
that reduces the total edge length most is actually executed. More rounds are
evaluated until no single edge replacement reduces the total edge length.

As the initial state is a plane support tree, we can also readily enforce acyclic-
ity, or relax the constraints to allow intersections. In the provided pseudocode,
this implies the following changes. To enforce a plane support, we need to only
change Line 6 to include only edges that do not intersect an edge in E \ {e}.
To enforce a support tree, we need to only change this same line, to include
only edges that connect the two components of all hyperedges in D. Note that
Line 7 can also be simplified in the support tree case: R is now simply the
shortest edge in C and no longer needs the brute-force approach. Though ob-
serve that our implementation readily ensures this same computation with only
minor overhead.

JGAA, 23(3) 463–498 (2019) 477

Algorithm 2 LocalSearch(H)

Input: hypergraph H = (V, S) with vertices in the plane, and VA =
⋂
s∈S s 6= ∅

Output: a support for H

1: Initialize graph G = (V,E), where E is union of the EMST on VA and, for
each u ∈ V \ VA, a shortest edge to a v ∈ VA

2: while G is changed do
3: Remember the best replacement (e∗, R∗, `∗) to (nil, nil, 0)
4: for each e ∈ E do
5: Determine the hyperedges D ⊆ S that do not induce a connected sub-

graph in G if e was removed
6: Find all candidate edges C ⊆ V 2 \ E that connect two components of

some hyperedge in D
7: Find the replacement R ⊆ C with minimum total length that recon-

nects all hyperedges in D
8: Set ` to ‖e‖ −

∑
r∈R ‖r‖

9: If ` > `∗, update (e∗, R∗, `∗) to (e,R, `)
10: Perform the best replacement (e∗, R∗, `∗), if (e∗, R∗, `∗) 6= (nil, nil, 0)
11: return G

Finding the best replacement We are given a set C of candidate edges,
and aim to compute the subset R with minimal length that reconnects the
hyperedges in D. We use the length of a set of edges to refer to its sum of edge
lengths. To this end, we implement a recursive branch-and-bound algorithm,
that builds a set R′, by considering each edge c ∈ C in order of increasing length.
We use D′ to denote the set of hyperedges of D that is not reconnected by R′.
If D′ is empty, R′ reconnects all hyperedges in D and is a solution; we update R
if the length of R exceeds that of R′. If c reconnects one or more hyperedges in
D′, we add c to R′, update D′ accordingly and recurse. Regardless, we recurse
with the original R′ and D′, that is, without adding c to R′.

We prune the recursive search as follows. When the length of R′ plus ‖c‖
exceeds that of R, the algorithm will never find a better solution anymore and
thus the recursion stops. To improve the best replacement found so far, we must
find a subset R such that ‖e‖ −

∑
r∈R ‖r‖ > ‖e∗‖ −

∑
r∈R∗ ‖r‖. That is, we

eventually use R, only if the length of R is at most ‖e‖− ‖e∗‖+
∑
r∈R∗ ‖r‖; we

use this value to compare to, when no R has been found yet.

Analysis We analyze the complexity of one iteration of our local-search al-
gorithm, that is, the time it takes to perform one replacement. We assume a
hypergraph with n vertices and k hyperedges. We use a straightforward im-
plementation. For a given edge e ∈ E, we find D by running a linear-time
breadth-first search for every hyperedge that contains both endpoints of e; this
takes O(kn) time. To find the O(n2) candidate edges C, we can check whether
a candidate edge reconnects the induced graph of a hyperedge in O(1) time,
by inspecting whether one endpoint was reached during the BFS and the other

478 Castermans et al. Short Plane Supports for Spatial Hypergraphs

was not; thus this takes O(kn2) time in total. We then sort the edges of C
according to length, in O(n2 log n) time. We have now spent O(n2(k + log n))
time to prepare for the brute-force search.

We can straightforwardly test in O(k) time whether an edge reconnects any
hyperedges in D′, by storing the reconnecting set for each candidate. Moreover,
a candidate edge may give two recursive calls, but only when |D′| is reduced by
one; and the recursion stops when |D′| = 0. Therefore, in the binary recursion
tree any path from root to leaf has length at most O(|C|) and at most |D| ≤ k
nodes of degree 2. Thus, this tree has O(2k|C|) nodes; processing a node takes
O(k) time. As a result, the total running time is O(k2k|C|) = O(k2kn2) per
iteration.

Note that there may be room to improve this algorithm by first reducing C
such that for every candidate edge c ∈ C, there is not a shorter edge c′ ∈ C that
reconnects (a superset of) the hyperedges reconnected by c. However, we did
not implement this for our experiments. This gives an upper bound of O(2k)
to |C|, which might be beneficial for low values of k. However, this would yield
significant improvements, only if some hyperedges are reconnected only by the
“longer edges” in C.

3.3 Integer Linear Program

Theorem 1 implies that several variants of computing the shortest plane support
are NP-hard. Here we sketch how to obtain an integer linear program (ILP) for
a hypergraph H = (V, S), allowing us to leverage effective ILP solvers, which
can provide exact solutions, albeit not in polynomial time.

We introduce variables eu,v ∈ {0, 1}, indicating whether edge uv is selected
for the support or not. This allows us to represent a graph with fixed vertices.
Because the vertex locations are fixed, we can precompute edge lengths du,v as
well as which pairs of edges intersect. This gives the following basic ILP

minimize
∑
u,v∈V du,v · eu,v

subject to eu,v + ew,x ≤ 1 for all u, v, w, x ∈ V if uv and wx intersect.

What remains is to ensure that the graph is also a support: we need ad-
ditional constraints that imply that each hyperedge in S induces a connected
subgraph. To this end, we construct a flow tree for each hyperedge s. We pick
an arbitrary sink for the hyperedge, σs ∈ s, that may receive flow, and let the re-
maining vertices in s generate one unit of flow that needs to reach σs using only
edges of s. To formalize this, we introduce variables fs,u,v ∈ {0, 1, . . . , |s| − 1}
for each s ∈ S and u, v ∈ s with u 6= v. We now need the following constraints:
(a) the incoming flow at σs is exactly |s| − 1; (b) the outgoing flow at σs is
zero; (c) except for σs, each vertex in s sends out one unit of flow more than it
receives; (d) flow can be sent only over selected edges.

JGAA, 23(3) 463–498 (2019) 479

(a)
∑
u∈s\{σs} fs,u,σs = |s| − 1 for all s ∈ S

(b) fs,σs,v = 0 for all s ∈ S, v ∈ s \ {σs}
(c)

∑
v∈s\{u}(fs,u,v − fs,v,u) = 1 for all s ∈ S, u ∈ s \ {σs}

(d) fs,u,v ≤ eu,v · (|s| − 1) for all s ∈ S, u, v ∈ s with u 6= v

In the analysis below, let n = |V | denote the number of vertices and k = |S|
the number of hyperedges. The basic program already has O(n2) variables and
O(n4) constraints: each potential edge – a pair of vertices with a common set –
results in a variable and every pair of such edges that intersect cause a constraint.
The flow trees to ensure connectivity add, for each edge-set combination, another
variable to capture the flow of that set through that edge. They also add a
constraint for each variable, to limit the flow through the edge (constraint (d)).
More constraints are added ((a)–(c)), but their number is far fewer than one
per edge-set combination. In total we obtain O(kn2) variables and O(n4 +
kn2) constraints. The flow trees are essential for a correct answer, but we
may expect that short supports often avoid many of the potential intersections
automatically. Therefore, we implement the intersections as lazy constraints,
being added to the ILP only if a solution is found that violates the constraint.

The analysis above implicitly assumes that each set spans O(n) vertices.
For hypergraphs with relatively few hyperedges, this may be a reasonable as-
sumption. But we may use a more fine-grained analysis to get better bounds
on the complexity. Specifically, since we add potential edges only if the end-
points have a common set, we have O(|s|2) potential edges in one set and the
same number of variables for the flow tree. The number of candidate edges
is thus upper bounded by

∑
s∈S |s|2 as well as by n2. Note that the for-

mer may exceed the latter, as the summation counts edges with k′ sets in
common between its endpoints k′ times, whereas we add only one candidate
edge. The number of candidate edges is at most min{n2,

∑
s∈S |s|2}. Thus,

the number of variables becomes O(
∑
s∈S |s|2) and the number of constraints

O(min{n2,
∑
s∈S |s|2}2 +

∑
s∈S |s|2) = O(min{n2,

∑
s∈S |s|2}2). For example, if

each set spans only O(
√
n) vertices and the number of sets is small (k = O(n)),

we find that we have O(kn) variables and O((kn)2) constraints.

Variants The described ILP results in the shortest plane support for H. It
is easily modified to allow nonplanar supports by omitting the intersection con-
straints. Similarly, the ILP can be extended to penalize or admit a limited
number of intersections, by adding an indicator variable for each intersecting
pair. However, this increases the number of variables from quadratic to quartic.

For each of these variants, we can also enforce the support to be a tree (or
forest). To do so, we enforce that the number of selected edges is exactly n− c,
where c is the number of connected components of the graph of potential edges.
Since the flow trees enforce that each such connected component is connected
in the computed support, this is in fact sufficient. Note that if there is a vertex
that is contained in all sets, then c is always equal to one.

480 Castermans et al. Short Plane Supports for Spatial Hypergraphs

4 Experiments

As discussed above, there are various ways of defining and computing good sup-
ports. In this section we discuss several computational experiments that were
performed to gain insight into the trade-offs between the different methods and
properties. In particular, we use two different setups. In the first experiment,
we exclude exact but slow algorithms to extensively compare the heuristic al-
gorithms. In the second experiment, we include exact algorithms to answer
questions about the effect of requiring planarity or support trees, and to inves-
tigate how well heuristic algorithms approximate the optimal solution, albeit
on smaller data sets. We provide selected plots of the experimental data in this
section; the detailed plots of all experiments are found on pages 491 to 494.

Algorithms We shall study four algorithms under various conditions in these
experiments. In particular, we use MSTApproximation to refer to the simple
approximation algorithm of computing a minimum spanning tree for each hyper-
edge and then taking their union [14]. We refer to our heuristic improvement as
MSTIteration (Section 3.1). Finally, we use LocalSearch to indicate our
local search algorithm (Section 3.2) and Opt to denote an exact algorithm for
computing optimal solutions. The latter two allow four different conditions, by
requiring a plane support, a support tree, both (i.e., a plane support tree) or
neither (unrestricted). We append P, T, PT and U to denote these conditions.

Data generation We generate a random hypergraph H = (V, S) via the
procedure below. We use n = |V | and k = |S| to denote the desired number of
vertices and hyperedges, respectively. Moreover, we specify one of four degree-
distribution schemes: even, mid, low or high. Finally, the spatial distribution
of the vertices is determined in one of two ways: uniform or clustered. As
this placement method does not influence the generation process structurally,
we describe this further at the end.

1. Initialize an array D[1 . . . k] such that
∑k
i=1D[i] = n, in which D[i] indi-

cates that we wish to generate D[i] vertices of degree i. To this end, we
define four schemes, where we always restrict the degrees to be between 1
and k.

even All degrees occur equally frequently. If n mod k 6= 0, then degrees
one through n mod k occur once more than the others.

mid We generate n random degrees using a normal distribution. We draw
a random value g from N (0.5, 2/9) and map this to degree 1 + bkgc.
The distribution of degrees is expected to look like a Gaussian curve
with its peak on k/2.

low Similar to the mid scheme, we draw a random value g fromN (0, 2/5)
and map this to degree 1 + bk|g|c. The distribution of degrees is ex-
pected to look like a Gaussian curve with its peak on 1.

JGAA, 23(3) 463–498 (2019) 481

high Similar to the mid scheme, we draw a random value g fromN (0, 2/5)
and map this to degree k − bk|g|c. The distribution of degrees is ex-
pected to look like a Gaussian curve with its peak on k.

2. If D[k] = 0, decrease the maximal degree i for which D[i] > 0 by one and
set D[k] to one.

3. While
∑k
i=1 i ·D[i] < 2k, decrease the minimal degree i for which D[i] > 0

by one and increase D[i+ 1] by one.

4. While
∑
D[i] > 0, let i be a degree such that D[i] > 0, chosen uniformly

at random. Generate vertex v with a random position and add it to V .
Pick i hyperedges uniformly at random from those hyperedges that have
less than two vertices; if there are no such hyperedges left, pick from all
hyperedges instead. Decrease D[i] by one.

To explain the four steps in this process, we treat them in reverse order.

4. We generate all desired n vertices and assign them to hyperedges. We
first pick from those hyperedges that have less than two vertices, to ensure
that each hyperedge contains at least two vertices. This ensures that all
hyperedges have influence on the support. We pick a random degree, to
avoid biasing small hyperedges towards low degree or high degree vertices.

3. We ensure that the sum over all degrees (over all nodes) is at least 2k. We
need this lower bound on the sum of degrees, to ensure that we are able
to pick at least two vertices for every hyperedge.

2. We ensure that there is at least one vertex that occurs in all hyperedges;
this step is optional but necessary to ensure that our local search algo-
rithm can be initialized. It guarantees that a planar solution exists, see
Section 3.2. In our experiments, this step is always performed.

1. We decide on the distribution over the degrees. That is, how many vertices
shall we have of degree i? This can be done according to various schemes.
The four schemes used in this paper are described in the main text.

We place vertices in one of two ways. In the uniform method, we place a
vertex uniformly at random in a square of side length 100. Following the method
of Meulemans [20], the clustered method aims at generating placements that
are more spatially structured as one may expect with real data. Specifically, for
a given instance, we first generate five helper points uniformly at random in a
square of side length 100 and compute the Euclidean minimum spanning tree
on these. We add one extra edge, namely the one that reduces the dilation the
most, that is, that decreases the maximum ratio between the path length in the
tree and the Euclidean distance, over all pairs of helper points. This skeleton is
then used to place the vertices: each placement consists of uniformly at random
picking one of the five edges, and then positioning the vertex close to the chosen
edge. Specifically, for edge (a, b) with vector r = a − b and r′ being r rotated

482 Castermans et al. Short Plane Supports for Spatial Hypergraphs

by 90 degrees, we place the point at a+λ · r+µ · r′ where λ is drawn uniformly
at random from [−0.1, 1.1] and µ from a standard Gaussian distribution with
mean 0 and standard deviation 1.

Analysis Following recommended practices for statistical analysis, we ana-
lyzed the results with an estimation-based approach using confidence inter-
vals (CIs) [10]. Unless indicated otherwise, each of the plots in the following
subsections show the estimated means (black dots) and 99% CIs (colored bars)
for each condition based on 1000 trials. If the CIs of two conditions are disjoint,
the results are significantly different (α = 0.01).

Moreover, rather than analyzing length directly, we always divide lengths
by the length of the Euclidean minimum spanning tree of the vertices. We
refer to this value as the edge length ratio of a solution. Though the EMST
is typically not a support, it provides a lower bound on a support length and
thus allows us to normalize. It eliminates undesirable effects of scale or precise
vertex placement.

4.1 Experiment 1: Comparison of Heuristics

Here we focus on answering the following three questions: (1) how much does
the spanning tree iteration help to reduce the length of the support, compared
to computing the minimum spanning trees in isolation; (2) which heuristic al-
gorithm performs best in terms of support length; (3) which heuristic algorithm
performs best in terms of computation time?

Setup For each combination of n ∈ {20, 40, 60, 80, 100}, k ∈ {2, 3, 4, 5, 6, 7},
d ∈ {even,mid, low,high} and p ∈ {uniform,clustered}, we generate 1000
random hypergraphs with n vertices and k hyperedges according to degree distri-
bution scheme d and placement method p. For each hypergraph, we run six algo-
rithms: MSTApproximation and MSTIteration as well as LocalSearch
U/T/P/PT. This experiment was run on one machine, sequentially in a single
thread to also allow for comparison of runtime performance. The machine was
an HP ZBook with an Intel Core i7-6700HQ CPU, 24 GB RAM and running
Windows 8.1.

Results We first consider question (1) and compare MSTApproximation
and MSTIteration. Since MSTIteration can only improve upon MSTAp-
proximation, we express this as a ratio between 0 and 1. In Figure 6 we show
the results for n = 20, 60, 100 (Figure 11 on page 491 provides the chart for all
cases). Interestingly, the median gain remains roughly equal as we increase the
number of vertices, though the variance becomes lower. Increasing the number
of hyperedges gradually increases the relative gain of MSTIteration. We also
observe a dependency on the degree distribution. In particular, mid and even
systematically benefit more from iteration than low and high. We explain
this by observing that in the extreme cases MSTApproximation is optimal:

JGAA, 23(3) 463–498 (2019) 483

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

20 vertices 60 vertices 100 vertices

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

0.7

0.8

0.9

1.0

Number of hyperedges

R
at

io

Degree distribution EVEN LOW MID HIGH

Figure 6: Ratio between the support length computed by MSTIteration and
by MSTApproximation. Lower values indicate a higher gain of the iteration
method. Shown are the 99% confidence intervals based on 1000 trials with
uniform placement.

l

l l
l l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l l

l

l

l l l l

l

l
l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l l l

l

l l l l

l

l l l l

l

l
l l

l

l

l

l
l

l

l

l

l

l

l

LOW MID HIGH

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7
1.0

1.5

2.0

2.5

3.0

3.5

Number of hyperedges

E
d
g
e

le
n
gt

h
 r

at
io

Algorithm MSTITERATION U PTPTLOCALSEARCH

Figure 7: The support length computed by the algorithms as a ratio to the
EMST length. Shown are the 99% confidence intervals based on 1000 trials
with 100 vertices and uniform placement.

484 Castermans et al. Short Plane Supports for Spatial Hypergraphs

if all vertices have degree 1, then the optimal support is simply the union of
all (disjoint) minimum spanning trees; if all vertices have degree k, then the
optimal support is also simply the minimum spanning tree on the vertices. Dif-
ficulties arise when having many vertices that are part of multiple but not all
hyperedges. This corresponds to the mid and even schemes.

Let us now turn towards question (2), and consider the resulting support
length of the LocalSearch algorithm as well. We omit MSTApproximation
from these comparisons, since MSTIteration always performs at least as well.
In Figure 7 we show the results for n = 100 (Figure 12 on page 492 provides
the chart for all cases). As one may expect, the length increases gradually
with more hyperedges, as the support must use more edges to ensure that each
hyperedge induces a connected subgraph. Moreover, we see that LocalSearch
U consistently outperforms MSTIteration. To be exact, this is the case in
98.5% of all trials; the average ratio of LocalSearch U to MSTIteration
(including those trials in which MSTIteration performs better) is 0.877, that
is, the support length is over 12% shorter on average. The effect of degree
distribution also stands out. In low and mid, requiring planarity or a support
tree has a large effect on the support length, whereas this is not the case in
even and high. To explain this, observe that the minimum spanning tree
on vertices that are in many or all hyperedges is planar and likely a part of
the computed solution; in the even and high cases, there are comparatively
many such vertices which can then serve as places to connect the other vertices
in the support. In the low and mid cases, there are only few such vertices
and thus the shortest connections that can be used to connect these to such
a “backbone” structure are likely to intersect other connections. Though the
number of vertices has little effect on MSTIteration and LocalSearch U,
this does exacerbate the above problem: more vertices leads to a larger increase
in support length when we enforce planarity or a support tree.

Finally, we briefly consider question (3) and compare the computation times
of the various algorithms (see Figure 8, or Figure 14 on page 494). We see that
the number of hyperedges impacts the computation only slightly, whereas the
number of vertices has a much stronger effect. MSTIteration clearly out-
performs the LocalSearch variants, running on average 95.11% faster than
LocalSearch U over all trials (98.73% faster on trials with n = 100). Another
clear pattern is that requiring planarity with LocalSearch increases the run-
ning time significantly (272.64% slower over all trials, 354.06% on trials with
n = 100); the number of steps to arrive at a local minimum is not sufficiently
reduced to compensate for the time spent on checking intersections. In fact, the
number of iterations may increase as shorter replacements may become admis-
sible later. Interestingly, the running time slightly decreases for the PT case as
the number of hyperedges increases. This is likely due to the severe restrictions
this setting poses: an edge must be replaced by exactly one other edge that is
shorter, free of intersections and connects at least the same sets as the original
edge.

In the above, the supporting figures showcase results of the uniform place-
ment, but our observations generally apply to the clustered case also. There

JGAA, 23(3) 463–498 (2019) 485

l

l l

l l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l

l l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

80 vertices
CLUSTERED UNIFORM

100 vertices
CLUSTERED UNIFORM

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

0

2

4

6

8

Number of hyperedges

R
u
n
ti
m

e
in

 s
ec

o
n
d
s

Algorithm MSTITERATION U PTPTLOCALSEARCH

Figure 8: Computation time of the various algorithms. Shown are the 99%
confidence intervals based on 1000 trials with degree distribution mid.

l l

ll

l l

ll

l l

ll

l l

ll l l

ll l l

ll

l l ll
l l

ll l l
ll

l l ll
l l ll l l ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l
l

l l

l
l

l

l

l

l

l

2 hyperedges

LOW MID

3 hyperedges

LOW MID

C
L
U

S
T

E
R

E
D

U
N

IF
O

R
M

10 15 20 10 15 20 10 15 20 10 15 20

1.0

1.2

1.4

1.6

1.8

1.0

1.2

1.4

1.6

1.8

Number of vertices

E
d
g
e

le
n
gt

h
 r

a
ti
o

Algorithm OPT U OPT T OPT P OPT PT

Figure 9: The support length achieved by Opt in the four conditions
U/T/P/PT as a ratio to the EMST length.

486 Castermans et al. Short Plane Supports for Spatial Hypergraphs

are some small differences comparing the two settings. The edge length ratio for
clustered tend to be slightly higher than for uniform (see Figures 12 and 13).
On the other hand, the computation times for clustered are lower than for
uniform for LocalSearch (see Figure 14). Both phenomena can likely be
explained by the clustered nature of clustered placement: distances within
the clusters (close in the skeleton) are expected to be notably shorter than dis-
tances between clusters. Thus, when edges between clusters are necessary to
obtain a support, this increases the total edge length more significantly. At the
same time, this implies that candidate edges for LocalSearch are often longer
compared to the current edges and replacements are less likely to be performed.

4.2 Experiment 2: Approximation of Optimality

Here we focus on answering two questions: (1) how is the support length affected
by additionally requiring that the support is a tree and/or is planar; (2) how
well do the heuristic algorithms approximate the optimal solution?

Setup For each combination of n ∈ {10, 15, 20}, k ∈ {2, 3}, d ∈ {low,mid}
and p ∈ {uniform,clustered}, we generate 1000 random hypergraphs with
n vertices, k hyperedges according to degree distribution scheme d and place-
ment method p. For each hypergraph, we run the LocalSearch U/T/P/PT
and compute an optimal solution Opt U/T/P/PT4. To obtain a large enough
number of trials, these experiments were run on different machines simultane-
ously and in concurrent threads. As such, we refrain from analyzing algorithm
speed in this experiment.

Results Let us first compare the optimal solutions according to the four dif-
ferent restrictions. In Figure 9 we show the results. For two hyperedges, we see
that there is no significant effect of requiring support trees; however, there is a
small effect on the worst-case edge length ratio observed for the low case. For
three hyperedges, we see that the effects become slightly larger. Most noticeable
is that enforcing support trees has now a slight effect; but this is only signifi-
cant for the clustered- mid case. In terms of plane supports, we see a similar
pattern as before, that is, that of an increase particularly in the low case, but
also some in the mid case. Note that the effects for n = 20 are potentially
underestimated; see the discussion in the next section.

Let us now turn towards how well LocalSearch performs with respect to
the optimal solution. Our results indicate that in a majority of the cases, our
heuristic actually achieves optimal results (see Figure 10; or Figure 15 for a split
according to placement method). For n = 10, 15 we see a clear decrease of this
percentage for plane supports and trees; we attribute the apparent increase at
n = 20 to the failed trials (see discussion in the next section). To further see
how well LocalSearch performs if it fails to achieve optimal results, we look

4For n ∈ {10, 15} and p = uniform, this is a simple branch and bound algorithm; for
n = 20 or p = clustered we use the ILP solution, solved with IBM ILOG CPLEX 12.6.3.

JGAA, 23(3) 463–498 (2019) 487

10 15 20 20 20 20
0

25

50

75

100

Number of vertices

P
er

ce
n
ta

ge
Algorithm U T P PT

2 hyperedges

LOW MID

3 hyperedges

LOW MID

10 15 10 15 10 15

LOCALSEARCH

Figure 10: Percentage of trials of LocalSearch that achieve the optimal so-
lution over 2000 trials (1000 per placement method). Note that LocalSearch
T always achieves optimal results.

at the ratio between the support length it achieves and the optimal support
length. In all cases, we observe a ratio of less than 1.61. The 90-, 95-, and
99-percentile of this ratio was worst for LocalSearch PT, being 1.05, 1.09,
and 1.19, respectively. Again, we have to keep in mind that the data for n = 20
likely exclude some of the more difficult cases and thus the trend in the increasing
ratio might extend further for a larger number of vertices. Shown by the P and
PT cases, uniform placement yields more difficult instances than clustered
placement: the former achieves optimal results less often than the latter.

5 Discussion and Limitations

Failed trials For the experiments described in Section 4.2, not all trials could
be completed. CPLEX was allocated 24GB of RAM and 64GB of file storage.
Nonetheless, the CPLEX computation would run out of memory and therefore
not finish successfully for some cases with n = 20; all instances with n ∈ {10, 15}
solved successfully. For the uniform case, we have therefore ran 1730 trials for
each of the four conditions (k × d) with four settings for Opt; 941 runs out of
these 27, 680 runs failed (approximately 3.4%). This is shown in Table 2. We
filtered out erroneous trials, leaving 1138 trials, 1000 of which were used for the
analysis of the results to match the cases for n = 10, 15. The same approach
was taken for clustered placements.

This may bias the results towards only including the “easier” cases on which
CPLEX was successful; this should be taken into consideration when interpret-
ing the results. To localize and quantify this bias, we counted which conditions
failed and, for each condition, measured the average length of the LocalSearch
results in the successful and failed trials (see Table 2). We note that the tree

488 Castermans et al. Short Plane Supports for Spatial Hypergraphs

Table 2: Number of failed trials for n = 20 per condition for uniform placement.
Ratio indicates the average length of LocalSearch on failed trials, divided by
the average length of LocalSearch on successful trials.

Opt U Opt T Opt P Opt PT all
k d # ratio # ratio # ratio # ratio # ratio

2 low 2 1.11 7 1.26 2 1.12 15 1.23 26 1.22
mid 7 1.10 3 1.26 7 1.10 5 1.22 22 1.15

3 low 0 61 1.20 0 264 1.26 325 1.25
mid 18 1.13 169 1.18 20 1.11 361 1.23 568 1.20

all 27 1.09 240 1.24 29 1.07 645 1.33 941 1.29

and plane tree cases are impacted most. We also see that the ratio is mostly
well above one, suggesting that indeed the more difficult cases have now been
excluded from the analysis.

Implications for set visualization Our work is motivated by the problem
of visualizing set systems with fixed vertex locations. As mentioned earlier,
supports are implicitly used in various techniques to structure such visualiza-
tions [2, 12, 21]. These methods often treat the various sets as independent,
either completely or by fixing their order and computing the support for each
set only after computing (and thereby fixing) the prior sets. Our theoretical
results further support such approaches, as the computational problem where
even only two sets influence each other is NP-hard when minimizing the length
of the support while avoiding crossings (by Theorem 1).

We also considered an approximation algorithm and a simple local-search
method to compute high-quality supports (see Figure 2 for some results on real
data, using a set-visualization rendering). The experiments show that these
methods are indeed effective. Especially the local-search approach can handle
a variety of constraints, while often giving near-optimal solutions. As such,
this type of algorithm seems suitable for computing good supports. At the
same time, we should acknowledge that good supports often make a trade-off
between various criteria beyond length and planarity. Edges of the support
need not be line segments, but may indeed be routed to avoid ambiguity when
a segment would be too close to a vertex that is not the set. When we ignore
crossings, such routings can be precomputed and considered in, e.g., our local-
search method. But the problem becomes more complex when we also consider
intersections, as routes of different length may be needed depending on which
other edges are part of the support. Yet, if the data set is not too dense, the
deviations necessary to reroute can be small. This still allows our methods to
be used to compute a good basic support, of which the edge geometry can be
modified in a postprocessing step to include other criteria.

JGAA, 23(3) 463–498 (2019) 489

6 Conclusion

Motivated by finding structures to visualize set systems, we studied the problem
of computing good supports for hypergraphs. Specifically, we focussed on length
minimization combined with planarity or acyclicity requirements. We showed
that this problem is NP-hard even for two hyperedges with one containing the
other. The acyclic case requires that the elements that are contained in all
sets form a connected subgraph of the eventual support. We showed that the
existence of such elements guarantee that a plane support exists. However,
we also showed that extending the Euclidean minimum spanning tree on those
elements cannot lead to an o(n)-approximation algorithm on a hypergraph with
n vertices.

Motivated by the NP-hardness of computing shortest plane supports, we
conducted a computational experiment to investigate the quality of supports
that can be computed via heuristic algorithms. To this end we introduced two
heuristic algorithms and evaluated these with respect to each other and to exact
solutions computed by an integer linear program. Our experiments showed that
the heuristic LocalSearch often achieves the optimal solution, and otherwise
computes a support that is less than 20% longer than the optimal solution in
99% of the cases. Moreover, our experiments showed that LocalSearch per-
forms better than MSTIteration, which in turn is a k-approximation for k
hyperedges. But recall that MSTIteration does not support computing pla-
nar or acyclic supports. We can also guarantee that LocalSearch (without
restrictions) is a k-approximation by initializing it using either MSTApproxi-
mation or MSTIteration. However, it is not clear whether this change will
generally improve the result of LocalSearch. There is a trade-off between
speed and support length, where MSTIteration is faster and LocalSearch
yields shorter supports. We also observed that the increase in support length
caused by additional requirements, depends both on the number of sets and the
number of set memberships per element, but this behavior seems predictable
and not to depend on the number of elements.

Future work From the theoretical side, several questions remain open. For
example, can we efficiently decide whether a plane support tree exists? We
currently know how to answer this only for two hyperedges (using Lemma 1
and a result of Bereg et al. [5]). In terms of length minimization of a plane
support, the question of whether the problem can be efficiently solved for two
disjoint hyperedges remains open.5 Recently, Kindermann et al. [16] studied this
problem of disjoint hyperedges in the case of many small hyperedges, as opposed
to few large hyperedges. Finally, we may also investigate how many iterations
we need for MSTIteration with more than two hyperedges to guarantee that
the computation stabilizes.

Our experiments indicate that our local search algorithm does not always

5In an earlier version [8], we claimed that this was NP-complete. However, a flaw was
found in the construction.

490 Castermans et al. Short Plane Supports for Spatial Hypergraphs

perform optimally, especially when requiring plane supports. It is, however,
based on simple hill climbing. Can we employ better search techniques such as
simulated annealing to efficiently find better solutions?

Finally, we chose to generate random hypergraphs for our experiments, as
to not depend on particular properties of (geospatial) configurations that may
be inherent to some real-world data sets. While this reduces the explanatory
power with respect to real-world data sets, it provides us with more insight into
the structural problem, unbiased by unknown or hidden structures of real-world
data. We leave it to future work to further dive into real-world data sets, to see
if similar trends and patterns emerge or more difficult structures arise and to
evaluate in a user study the impact of the different heuristics on readability.

Acknowledgments

This work started at Dagstuhl seminar 17332 “Scalable Set Visualizations”.
The authors would like to thank Nathalie Henry Riche for providing the data
for Figure 2. TC was supported by the Netherlands Organisation for Scientific
Research (NWO, 314.99.117). MvG received funding from the European Union’s
Seventh Framework Programme (FP7/2007-2013) under ERC grant agreement
no 319209 (project NEXUS 1492) and the German Research Foundation (DFG)
within project B02 of SFB/Transregio 161. WM was partially supported by the
Netherlands eScience Centre (NLeSC, 027.015.G02).

JGAA, 23(3) 463–498 (2019) 491

CLUSTERED UNIFORM

20 v
ertices

40
 v

ertices
60 vertices

80 vertices
100 v

ertices

2 3 4 5 6 7 2 3 4 5 6 7

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

Number of hyperedges

R
a
ti
o

Degree
distribution

EVEN

HIGH

LOW

MID

Figure 11: Ratio between the support length computed by MSTIteration and
by MSTApproximation. Lower values indicate a higher gain of the iteration
method.

492 Castermans et al. Short Plane Supports for Spatial Hypergraphs

l

l l l l

l

l l l l

l

l l l l

l

l
l l

l

l

l
l l

l

l

l

l
l

l

l

l l l l

l

l l l l

l

l l l l

l

l
l l

l

l

l

l l

l

l

l

l
l

l

l

l l l l

l

l l l l

l

l l l l

l

l
l l

l

l

l
l

l

l

l

l

l
l

l

l

l l l l

l

l l l l

l

l l l l

l

l
l l

l

l

l

l
l

l

l

l

l
l

l

l

l l l l

l

l l l l

l

l l l l

l

l
l l

l

l

l

l
l

l

l

l

l
l

l

l

l l
l l

l

l
l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l
l l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l
l

l

l

l l
l l

l

l
l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l
l

l

l

l

l
l

l

l

l l
l l

l

l
l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l
l

l

l

l

l
l

l

l

l l
l l

l

l
l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l l

l

l

l

l l

l

l

l l l l

l

l
l l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l l l l

l

l
l l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l l l l

l

l
l l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l l l l

l

l
l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l l l

l

l
l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l l l

l

l l l l

l

l l l l

l

l l l l

l

l
l

l
l

l

l

l
l

l

l
l l l l

l

l l l l

l

l l l l

l

l l l l

l

l
l

l
l

l

l

l
l

l

l
l l l l

l

l l l l

l

l l l l

l

l l l l

l

l
l

l
l

l

l

l
l

l

l
l l l l

l

l l l l

l

l l l l

l

l l l l

l

l
l

l
l

l

l
l

l

l

l
l l l l

l

l l l l

l

l l l l

l

l l l l

l

l
l

l
l

l

l
l

l

l

EVEN LOW MID HIGH

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Number of hyperedges

E
d
g
e

le
n
gt

h
 r

a
ti
o

20
 v

ertices
40 v

ertices
60 vertices

80 vertices
10

0 v
ertices

Algorithm MSTITERATION U PTPTLOCALSEARCH

Figure 12: The support length computed by the various algorithms as a ratio
to the EMST length for varying values of n, k and d with uniform placement.

JGAA, 23(3) 463–498 (2019) 493

l

l l l l

l

l l l l

l

l l l l

l

l
l l

l

l

l
l l

l

l

l

l
l

l

l

l l l l

l

l l l l

l

l l l l

l

l
l l

l

l

l

l l

l

l

l

l
l

l

l

l l l l

l

l l l l

l

l l l l

l

l
l l

l

l

l
l l

l

l

l

l
l

l

l

l l l l

l

l l l l

l

l l l l

l

l
l l

l

l

l
l l

l

l

l

l
l

l

l

l l l l

l

l l l l

l

l l l l

l

l
l l

l

l

l
l l

l

l

l

l
l

l

l

l l

l l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l l

l

l

l

l

l

l l
l l

l

l
l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l
l l

l

l
l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l
l l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l
l l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l l l l

l

l
l l

l

l

l

l
l

l

l

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l l l l

l

l
l l

l

l

l

l
l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l l l l

l

l
l l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l l l l

l

l
l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l l l

l

l
l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l l l l

l

l l l l

l

l l l l

l

l l l
l

l

l
l

l
l

l

l

l
l

l

l
l l l l

l

l l l l

l

l l l l

l

l l l l

l

l
l l

l

l

l
l

l

l

l
l l l l

l

l l l l

l

l l l l

l

l l l l

l

l
l l

l

l

l
l

l
l

l
l l l l

l

l l l l

l

l l l l

l

l l l l

l

l
l l

l

l

l
l

l
l

l
l l l l

l

l l l l

l

l l l l

l

l l l l

l

l
l l

l

l

l
l

l
l

EVEN LOW MID HIGH

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Number of hyperedges

E
d
g
e

le
n
gt

h
 r

a
ti
o

20
 v

ertices
40 v

ertices
60 vertices

80 vertices
10

0 v
ertices

Algorithm MSTITERATION U PTPTLOCALSEARCH

Figure 13: The support length computed by the various algorithms as a ratio to
the EMST length for varying values of n, k and d with clustered placement.

494 Castermans et al. Short Plane Supports for Spatial Hypergraphs

l l l

l l

l
l l

l l

l
l l

l
l

l

l l

l
l

l

l l

l
l

l

l l

l

l

l
l l

l l

l

l l

l
l

l

l l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l l

l l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l

l l

l
l l

l l

l
l l

l
l

l
l l

l
l

l
l l

l
l

l

l l

l
l

l

l l

l
l

l

l l

l

l

l

l l

l

l

l

l
l

l

l

l

l
l

l

l

l

l
l

l

l

l

l l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l l

l l

l
l l

l
l

l

l l

l

l

l

l l

l

l

l

l
l

l

l

l

l
l

l

l

l
l l

l l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l l
l l

l l l

l l

l
l l

l l

l
l l

l
l

l
l l

l

l

l

l l

l

l

l l l

l l

l
l l

l l

l

l l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l
l l

l l

l

l l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

EVEN LOW MID HIGH

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

0

2

4

0

2

4

0

2

4

6

8

Number of hyperedges

R
u
n
ti
m

e
in

 s
ec

on
d
s

60 vertices
8
0
 vertices

100 v
ertices

Algorithm MSTITERATION U PTPTLOCALSEARCH

l l l

l l

l
l l

l l

l
l l

l l

l

l l

l
l

l

l l

l
l

l

l l

l

l

l
l l

l l

l

l l

l
l

l

l l

l

l

l

l
l

l

l

l

l
l

l

l

l

l
l

l

l

l

l l

l l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l

l l

l
l l

l l

l
l l

l
l

l
l l

l
l

l
l l

l
l

l

l l

l
l

l

l l

l
l

l

l l

l

l

l

l
l

l

l

l

l
l

l

l

l

l
l

l

l

l

l
l

l

l

l

l l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l l

l l

l
l l

l
l

l

l l

l

l

l

l l

l

l

l

l l

l

l

l

l
l

l

l

l
l l

l l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l l
l l

l l l

l l

l
l l

l l

l
l l

l
l

l

l l

l

l

l

l l

l

l

l l l

l l

l
l l

l l

l

l l

l
l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l
l l

l l

l

l l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

EVEN LOW MID HIGH

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

0

2

4

0

2

4

0

2

4

6

8

Number of hyperedges

R
u
n
ti
m

e
in

 s
ec

on
d
s

60 vertices
80 vertices

100
 v

ertices

UNIFORM

CLUSTERED

Figure 14: Computation time of the various algorithms for varying values of n,
k and d. Computation times for n = 20 and n = 40 are all close to 0 (below
0.036 seconds for n=20 and below 0.425 seconds for n = 40).

JGAA, 23(3) 463–498 (2019) 495

10 vertices 15 vertices 20 vertices
L
O

W

2 hy
p
ered

ges

M
ID

2 hy
p
ered

ges

L
O

W

3 hy
p
ered

ges

M
ID

3 hy
p
ered

ges

CLUSTERED UNIFORM

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

Point distribution

P
er

ce
n
ta

ge
 o

f
tr

ia
ls

 w
it
h
 o

p
ti
m

a
l
so

lu
ti
on

s

CLUSTEREDUNIFORMCLUSTERED UNIFORM

Algorithm U T P PTLOCALSEARCH

Figure 15: Percentage of the trials where LocalSearch found the optimal
solution.

496 Castermans et al. Short Plane Supports for Spatial Hypergraphs

References

[1] H. A. Akitaya, M. Löffler, and C. D. Tóth. Multi-colored spanning graphs.
In Graph Drawing and Network Visualization (GD’16), volume 9801 of
LNCS, pages 81–93. Springer, 2016. doi:10.1007/978-3-319-50106-2_7.

[2] B. Alper, N. Henry Riche, G. Ramos, and M. Czerwinski. Design study
of LineSets, a novel set visualization technique. IEEE Transactions on
Visualization and Computer Graphics, 17(12):2259–2267, 2011. doi:10.

1109/TVCG.2011.186.

[3] B. Alsallakh, L. Micallef, W. Aigner, H. Hauser, S. Miksch, and P. Rodgers.
The state of the art of set visualization. Computer Graphics Forum,
35(1):234–260, 2016. doi:10.1111/cgf.12722.

[4] S. Bereg, K. Fleszar, P. Kindermann, S. Pupyrev, J. Spoerhase, and
A. Wolff. Colored non-crossing Euclidean Steiner forest. In Algorithms and
Computation (ISAAC’15), volume 9472 of LNCS, pages 429–441. Springer,
2015. doi:10.1007/978-3-662-48971-0_37.

[5] S. Bereg, M. Jiang, B. Yang, and B. Zhu. On the red/blue spanning tree
problem. Theoretical Computer Science, 412(23):2459–2467, 2011. doi:

10.1016/j.tcs.2010.10.038.

[6] U. Brandes, S. Cornelsen, B. Pampel, and A. Sallaberry. Path-based sup-
ports for hypergraphs. Journal of Discrete Algorithms, 14:248–261, 2012.
doi:10.1016/j.jda.2011.12.009.

[7] K. Buchin, M. van Kreveld, H. Meijer, B. Speckmann, and K. Verbeek.
On planar supports for hypergraphs. Journal of Graph Algorithms and
Applications, 15(4):533–549, 2011. doi:10.7155/jgaa.00237.

[8] T. Castermans, M. van Garderen, W. Meulemans, M. Nöllenburg, and
X. Yuan. Short plane supports for spatial hypergraphs. In Graph Drawing
and Network Visualization (GD’18), volume 11282 of LNCS, pages 1–14.
Springer, 2018. doi:10.1007/978-3-030-04414-5_4.

[9] C. Collins, G. Penn, and S. Carpendale. Bubble Sets: Revealing set
relations with isocontours over existing visualizations. IEEE Transac-
tions on Visualization and Computer Graphics, 15(6):1009–1016, 2009.
doi:10.1109/TVCG.2009.122.

[10] G. Cumming. Understanding the new statistics: Effect sizes, confidence
intervals, and meta-analysis. Routledge, 2013.

[11] K. Dinkla, M. El-Kebir, C.-I. Bucur, M. Siderius, M. J. Smit, M. A. Westen-
berg, and G. W. Klau. eXamine: Exploring annotated modules in networks.
BMC Bioinformatics, 15:201, 2014. doi:10.1186/1471-2105-15-201.

http://dx.doi.org/10.1007/978-3-319-50106-2_7
http://dx.doi.org/10.1109/TVCG.2011.186
http://dx.doi.org/10.1109/TVCG.2011.186
http://dx.doi.org/10.1111/cgf.12722
http://dx.doi.org/10.1007/978-3-662-48971-0_37
http://dx.doi.org/10.1016/j.tcs.2010.10.038
http://dx.doi.org/10.1016/j.tcs.2010.10.038
http://dx.doi.org/10.1016/j.jda.2011.12.009
http://dx.doi.org/10.7155/jgaa.00237
http://dx.doi.org/10.1007/978-3-030-04414-5_4
http://dx.doi.org/10.1109/TVCG.2009.122
http://dx.doi.org/10.1186/1471-2105-15-201

JGAA, 23(3) 463–498 (2019) 497

[12] K. Dinkla, M. van Kreveld, B. Speckmann, and M. Westenberg. Kelp
Diagrams: Point set membership visualization. Computer Graphics Forum,
31(3pt1):875–884, 2012. doi:10.1111/j.1467-8659.2012.03080.x.

[13] A. Efrat, Y. Hu, S. G. Kobourov, and S. Pupyrev. MapSets: Visualizing
embedded and clustered graphs. Journal of Graph Algorithms and Appli-
cations, 19(2):571–593, 2015. doi:10.7155/jgaa.00364.

[14] F. Hurtado, M. Korman, M. van Kreveld, M. Löffler, V. Sacristán, A. Sh-
ioura, R. I. Silveira, B. Speckmann, and T. Tokuyama. Colored spanning
graphs for set visualization. Computational Geometry: Theory and Appli-
cations, 68:262–276, 2018. doi:10.1016/j.comgeo.2017.06.006.

[15] D. S. Johnson and H. O. Pollak. Hypergraph planarity and the complexity
of drawing Venn diagrams. Journal of Graph Theory, 11(3):309–325, 1987.
doi:10.1002/jgt.3190110306.

[16] P. Kindermann, B. Klemz, I. Rutter, P. Schnider, and A. Schulz. The parti-
tion spanning forest problem. Computing Research Repository (arXiv.org),
1809.02710, 2018. URL: https://arxiv.org/abs/1809.02710.

[17] B. Klemz, T. Mchedlidze, and M. Nöllenburg. Minimum tree supports for
hypergraphs and low-concurrency Euler diagrams. In Algorithm Theory
(SWAT’14), volume 8503 of LNCS, pages 253–264. Springer, 2014. doi:

10.1007/978-3-319-08404-6_23.

[18] E. Korach and M. Stern. The clustering matroid and the optimal clustering
tree. Mathematical Programming, 98(1–3):385–414, 2003. doi:10.1007/

s10107-003-0410-x.

[19] D. Lichtenstein. Planar formulae and their uses. SIAM Journal on Com-
puting, 11(2):329–343, 1982. doi:10.1137/0211025.

[20] W. Meulemans. Efficient optimal overlap removal: Algorithms and exper-
iments. Computer Graphics Forum, 38(3):713–723, 2019. doi:10.1111/

cgf.13722.

[21] W. Meulemans, N. Henry Riche, B. Speckmann, B. Alper, and T. Dwyer.
KelpFusion: A hybrid set visualization technique. IEEE Transactions on
Visualization and Computer Graphics, 19(11):1846–1858, 2013. doi:10.

1109/TVCG.2013.76.

[22] H. Purchase. Metrics for graph drawing aesthetics. Journal of Visual Lan-
guages and Computing, 13(5):501–516, 2002. doi:10.1006/jvlc.2002.

0232.

[23] P. J. Rodgers, G. Stapleton, B. Alsallakh, L. Micallef, R. Baker, and S. J.
Thompson. A task-based evaluation of combined set and network visual-
ization. Information Sciences, 367–368:58–79, 2016. doi:10.1016/j.ins.
2016.05.045.

http://dx.doi.org/10.1111/j.1467-8659.2012.03080.x
http://dx.doi.org/10.7155/jgaa.00364
http://dx.doi.org/10.1016/j.comgeo.2017.06.006
http://dx.doi.org/10.1002/jgt.3190110306
https://arxiv.org/abs/1809.02710
http://dx.doi.org/10.1007/978-3-319-08404-6_23
http://dx.doi.org/10.1007/978-3-319-08404-6_23
http://dx.doi.org/10.1007/s10107-003-0410-x
http://dx.doi.org/10.1007/s10107-003-0410-x
http://dx.doi.org/10.1137/0211025
http://dx.doi.org/10.1111/cgf.13722
http://dx.doi.org/10.1111/cgf.13722
http://dx.doi.org/10.1109/TVCG.2013.76
http://dx.doi.org/10.1109/TVCG.2013.76
http://dx.doi.org/10.1006/jvlc.2002.0232
http://dx.doi.org/10.1006/jvlc.2002.0232
http://dx.doi.org/10.1016/j.ins.2016.05.045
http://dx.doi.org/10.1016/j.ins.2016.05.045

498 Castermans et al. Short Plane Supports for Spatial Hypergraphs

[24] E. Tufte. The Visual Display of Quantitative Information. Graphics Press,
2001.

[25] A. van Goethem, I. Kostitsyna, M. van Kreveld, W. Meulemans,
M. Sondag, and J. Wulms. The painter’s problem: covering a grid with
colored connected polygons. In Graph Drawing and Network Visualiza-
tion (GD’17), volume 10692 of LNCS. Springer, 2018. doi:10.1007/

978-3-319-73915-1_38.

[26] M. Wertheimer. Untersuchungen zur Lehre von der Gestalt. Psychologische
Forschung, 4(1):301–350, 1923.

http://dx.doi.org/10.1007/978-3-319-73915-1_38
http://dx.doi.org/10.1007/978-3-319-73915-1_38

	Introduction
	Existence, Bounds, and Complexity
	Algorithms
	Iterative Minimum Spanning Trees
	Local Search
	Integer Linear Program

	Experiments
	Experiment 1: Comparison of Heuristics
	Experiment 2: Approximation of Optimality

	Discussion and Limitations
	Conclusion

