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Abstract

The goal of this paper is to introduce some of the important concepts
in causal graph theory and examine them from combinatorial and com-
putational perspectives. Of fundamental importance in applications of
causal models that use graphs are dependence-separators or, simply, d-
separators. A vertex set Z is a d-separator for a pair of disjoint vertex
sets (X,Y ) if X and Y are independent conditioned on Z. For the case of
a single-setpair it is known that d-separators can be found efficiently by
elegant network flow techniques. In this paper, we consider d-separators
for a collection {(X1, Y1), (X2, Y2), . . . , (Xk, Yk)} of setpairs. We focus on
two classes of combinatorial objects in this multiple-setpair framework:
d-separators and d-super-separators. We say that Z is a d-separator for
multiple setpairs if, for each i, Xi and Yi are independent conditioned on
Z; we say that Z is a d-super-separator if, for each i, there exists Zi ⊆ Z,
such that Xi and Yi are independent conditioned on Zi. For the latter
object, we give an O(log2 k)-approximation algorithm for the problem of
finding a minimum cost d-super-separator. The focus on approximation
algorithms is necessary as we show this problem is NP-complete. For the
former object, we show it is hard to determine whether a d-separator ex-
ists, even when there are just five setpairs. This problem remains hard
even if each setpair consists of singleton vertices, provided the number of
setpairs is large. On the positive side, we show that if there are a fixed
number of singleton setpairs then a d-separator for multiple setpairs can
be found in polynomial time, if one exists.
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1 Introduction

The use of causal graphs is having a profound impact in statistics, medicine,
artificial intelligence, philosophy, and the natural and social sciences (see, for
example, [11], [8], [22], [21], [25], [24] and [10]). Despite encompassing two
topics close to theoreticians’ hearts, namely networks and computation, and
having huge practical application, causality theory has received little attention
in the theory community. The goal of this paper, therefore, is to introduce some
of the important concepts in causality and examine them from combinatorial
and computational perspectives.

A causal graph is a directed, acyclic graph G = (V,A) whose vertices
V1, . . . , Vn represent random variables. Associated with the graph is a joint
probability distribution P . This probability distribution is consistent with the
graph in that it satisfies the Markov condition: each random variable Vi is inde-
pendent of its non-descendants conditional on its parents. Together, the graph
and the probability distribution can be used to model and analyze an extremely
wide range of systems, as illustrated by the applications we describe in Section 3.

Associated with a causal graph are the combinatorial objects dependence-
separators or, simply, d-separators.1 Consequently, d-separators will be the fo-
cus of this paper. A vertex set Z is a d-separator for a pair of disjoint vertex sets
(X,Y ) if X and Y are independent conditioned on Z. Informally, a d-separator
resembles the classical graph theoretic notions of vertex cuts/separators. That
is, we wish to select (condition on) vertices in the graph into order to discon-
nect the paths (carrying a dependency) between X and Y . However, there is an
important difference: vertices may have different types in that they may discon-
nect or reconnect a path! In addition, the type of a vertex may vary depending
upon the path in question. Furthermore, and most unusually, d-separation is
a global property not a local property in that a vertex may reconnect a path
it does not lie upon, even in cases where the path is far from the vertex in
the graph. This may sound complicated but, as we will see in Section 2, d-
separators have a very clean and natural graph theoretic definition. There we
will also illustrate this concept with some simple examples. We emphasize here,
though, that the d-separation property is purely combinatorial: it depends only
upon the causal graph (consistent with the joint probability distribution) and
not on more technical aspects of the probability distribution itself. For this
reason, the exact probability distribution will not concern us for the rest of
the paper. Moreover, the focus of study for this paper are d-separators for a
collection {(X1, Y1), (X2, Y2), . . . , (Xk, Yk)} of setpairs. We consider two classes
of combinatorial objects in this multiple-setpair framework: d-separators and
d-super-separators. We say that Z is a d-separator for multiple setpairs if, for
each i, Xi and Yi are independent conditioned on Z; we say that Z is a d-super-
separator if, for each i, there exists Zi ⊆ Z, such that Xi and Yi are independent
conditioned on Zi. For multiple setpairs, d-separators are combinatorially more

1We remark that, in the literature, the d in d-separator is sometimes described as standing
for “directed”. We will follow the more specific and more natural nomenclature, namely
“dependence”.
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interesting objects but, as we discuss in Section 3, d-super-separators are more
important in applications.

1.1 Overview of the Paper

In Section 2 we explain how dependencies can be transmitted along paths in
causal graphs. This gives the combinatorial motivation underlying the concept
of d-separation. Then in Section 3 we discuss important applications of d-
separators. In Section 4 we quickly review what is known about d-separations for
a single setpair. In particular, we describe an elegant network flow formulation
that allows a minimum cardinality d-separator to be found in polynomial time.
We also derive a combinatorial characterization for when d-separators exist -
this leads to a linear time algorithm to find a (non-minimum) d-separator. Our
main results are given in Section 5 and Section 6.

In Section 5, we consider d-super-separators for multiple setpairs. We show,
on the negative side, that the problem of finding a minimum cost d-super-
separator is NP-complete. On the positive side we present a factor O(log2 k)
approximation algorithm for the problem.

Finally, we consider d-separators for multiple setpairs. In Section 6.1, we
show that, in very sharp contrast to the single setpair case, for multiple setpairs
not only is it hard to find a minimum cardinality d-separator, but it is NP -hard
to determine whether any d-separator even exists in a causal graph. Thus, it is
very unlikely that any approximation algorithm exists for this problem. This
result holds even when there are just five setpairs. In Section 6.2, we consider
the special case when each set in a setpair consists of a single vertex (or at most
a fixed number of vertices). We prove then that it is still hard to determine
whether any d-separator exists if the number of setpairs is large, but that there
is a polynomial time algorithm if the number of setpairs is fixed.

1.2 Graph Theoretic Notation

Here we present some definitions we require from graph theory. We are given
a directed causal graph G = (V,A) and a collection of pairwise disjoint vertex
sets, {(X1, Y1), (X2, Y2), . . . , (Xk, Yk)}. We refer to T =

⋃
i(Xi∪Yi) as terminal

vertices. A path P consists of a collection of vertices P = {v0, v1, v2, . . . , vk}
where for each j, 0 ≤ j ≤ k − 1, we have (vj , vj+1) ∈ A or (vj+1, vj) ∈ A.
The path is simple if all of the vi are distinct. It is directed if all the arcs in P
have the same orientation, that is either (vj , vj+1) ∈ A for all 0 ≤ j ≤ k − 1 or
(vj+1, vj) ∈ A for all 0 ≤ j ≤ k − 1. We call v0 and vk the endpoints of P and
v1, v2, . . . , vk−1 the internal vertices of P . We say that P is a terminal path if
v0 ∈ Xi and vk ∈ Yi, for some i, or vice versa.

For each arc a = (u, v) ∈ A we say that u is the tail and v is the head of
a. The out-degree of a vertex v is the number of arcs that v is the tail for; the
in-degree is the number of arcs it is the head for. For a vertex v on a path P ,
we will be primarily interested in the in-degree and out-degree of v with respect
to the path, that is, counting only the arcs from P .
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2 D(ependence)-Separation

Take a causal graph G and vertex sets X and Y . Now suppose we want to find
a set Z such that X and Y are conditionally independent given Z. Thus, con-
ditioning on Z breaks any existing dependence between X and Y and does not
create any new ones. We denote this by X ⊥⊥ Y |Z, and dub Z a dependence-
separator or, more simply, a d-separator. D-separators were introduced by
Pearl [20]. In this section we give a standard explanation motivating these ob-
jects; for more details on this discussion see the books of Pearl [22] and Sprites
et al. [25].

2.1 Confounders and Colliders

Before giving a formal definition of d-separator, we present a few examples that
will help illuminate the concepts involved. Consider first the graph shown in
Figure 1a). In the late 1940s, it was noted there was a strong association be-
tween the sales of ice cream X and the incidence of polio Y . Indeed this lead to
campaigns against the consumption of ice cream (and fizzy drinks). The asso-
ciation is not causal, however, since both increase in the summer months. Thus
the random variables X and Y are dependent, but they become independent if
we condition on the season Z.

The variable season is a special case of a confounder. In graph theory terms,
a vertex z is a confounder for x and y if there is a directed path from z to x
and a directed path from z to y.

Disease 1  Disease 2 

“Sick” 

W 

X  Y 

Season 

Incidence 
of Polio 

Ice Cream 
Sales 

Z 

X  Y 

a)  b) 

Figure 1: A Confounder and a Collider.

On the other hand, consider the example shown in Figure 1b). We have
two diseases that occur independently. However, they will appear (negatively)
dependent if we sample data from hospital patients only; given that a person
is sick, if Disease 1 is not the cause then Disease 2 must be, and vice versa.
To see this, observe that two independent binary random variables, X and Y
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become negatively dependent if we condition on W = X ∨ Y .2 This is known
as Berkson’s Paradox [3] in the medical literature.

Here the variable sick is a collider between x and y. Formally, in graph
theory terms, vertex w is a collider on a simple x− y path P if it has in-degree
exactly two with respect to the path. If w ∈ P is not a collider on P then we
call it a non-collider on P .

2.2 Dependence along Paths

Note that the collider property is defined with respect to a specific path P .
Thus, a vertex can be both a collider on one path and a non-collider on a
different path. Colliders are of interest to us as they determine whether or not a
path P between two vertices x and y carries a dependence along it. This follows
from our discussion in Section 2.1. To see this, take a vertex w with neighbours
a and b on an x− y path P . If w is a child of both a and b then it is a collider
on the path. As seen, the parents of a collider are independent (with respect to
that path) and so w blocks any dependence propagating along a path. On the
other hand, if w is a non-collider on P then it is either a parent of both a and
b, or it is the parent of a and the child of b or vice versa. In the former case,
a and b are dependent along the path via the confounder w. In the later case
a and b are dependent as a is a direct ancestor or b (or vice versa). Repeating
this argument at every vertex along the path, we obtain:

Observation 1 An x − y path induces a dependence between its end-points if
and only if it contains no collider. 2

We remark, in view of what follows, that the term dependence in Observation
1 should be viewed as a dependence assuming that the conditioning set Z is
empty. Now, to understand what this observation implies let us consider the
structure of x − y paths. Note that the arcs of any path can be partitioned
into a set of alternating directed sub-paths called segments. Hence, adjacent
segments meet alternately at colliders and confounders on the path. We then
have the following simple observation.

Observation 2 An x − y path induces a dependence if and only if it consists
of one segment or contains two segments incident at a confounder.

Proof: By Observation 1, we just need to show that an x− y path P contains
no collider if and only if it consists of one segment or contains two segments
incident at a confounder. If the path P has one segment then it is either a
directed path from x to y or a directed path from x to y. In neither case does P
contain a collider. If P contains two segments incident at a confounder c then it
consists of a directed path from c to x and a directed path from c to y (we call
such a path a hill path3 with summit c); thus, it contains no collider. On the

2For example, suppose P (X) = 1
2

= P (Y ), and so P (X ∨ Y ) = 3
4

. Then P (X|(Y ∧ (X ∨
Y )) = P (X|Y ) = 1

2
< P (X|X ∨ Y ) = 2

3
.

3Hill paths are called treks in [25].
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other hand, if P contains two segments that are not incident at a confounder
then they must be incident at a collider. If P contains three or more segments
then clearly it contains at least one collider. 2

Observation 2 immediately tells us that if we want to make X and Y con-
ditionally independent then we must break the dependencies induced by every
directed path and every hill path between x and y. That is, we must condition
on some vertex in all such paths. However, as the example in Figure 1b) shows,
this is not sufficient: conditioning on a vertex may cause dependencies to be in-
duced along other paths that contain that vertex as a collider! More specifically,
colliders block a path but if we conditioned upon them all then we will unblock
the path. Thus we now need to block such paths as well. The question then is
how do we ensure that the set Z we condition on does indeed block every x− y
path? This question is answered by the concept of d-separation.

2.3 D-Separators.

We are finally ready to give a graph theoretic definition of a d-separator [20].

A set Z d-separates x and y if for every x− y path P we have
(i) Some non-collider on P is in Z.
or
(ii) There is a collider c and neither c nor any descendent of c is in Z.

Let’s try to understand why this is the appropriate concept to induce inde-
pendence. As discussed, selecting a non-collider will block dependence propa-
gation along the path. In contrast, selecting a collider c causes a dependence
between the parents of c. But this is also true if we select any descendent of
c: conditioning on a descendent of c creates a dependence between the parents
of c! Thus, for P to be blocked, if no non-collider of P is selected we need to
ensure that there is some collider on P that is not selected nor are any of its
descendants. The definition follows.

Thus, if x is d-separated from y by a set Z then x and y are independent
conditioned on Z. In general, we will be more interested in making two vertex
sets X and Y conditionally independent rather than just two singleton vertices.

A set Z d-separates a setpair (X,Y )
if and only if

Z d-separates every x− y path P , for all x ∈ X, y ∈ Y .

If Z is a d-separator for X and Y then we write X ⊥⊥ Y |Z. For the case of
multiple setpairs (X1, Y1), (X2, Y2), . . . , (Xk, Yk), not just one setpair, we have
the following generalization:

A set Z d-separates multiple setpairs (X1, Y1), . . . , (Xk, Yk)
if and only if

Z d-separates each setpair (Xi, Yi), for all 1 ≤ i ≤ k.
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This naturally leads us to the following questions. Given a causal graph G:
Does a d-separator exist? If so, can we efficiently find one? If so, can we effi-
ciently find a small d-separator? We will address these questions in Section 4 for
a single setpair and in Section 6 for multiple setpairs. Before doing so, however,
let’s discuss how d-separators relate to other types of vertex-separator studied
in the graph theory and applications literature. Familiar vertex separators in-
clude, of course, the standard vertex cuts studied by Menger [17]. Furthermore,
additional properties are often imposed upon the separators. There are nu-
merous famous examples: star cutsets [4]; clique cutsets [5, 29]; stable cutsets
[27]; connected separators [19, 18]. Of particular importance in applications are
balanced separators [16] when the components formed by the separator have
bounded cardinalities, for example in planar graphs [15, 6].

There are, however, important differences between d-separators and these
other types of separator. Firstly, the property of d-separation is non-monotonic:
if Z is a d-separator it need not be the case that Z ∪ {z} is too. Adding z
may unblock a path. A vertex v can simultaneously be a non-collider on one
path and a collider (or the descendent of a collider) on another path. So it
can simultaneously block and unblock paths; in contrast, in standard separator
problems vertices can only block paths.

Secondly, whether or not a path is blocked may depend upon vertices that
do not lie on the path - namely, descendants of colliders on the path. Thus,
d-separation is a global property. In contrast, for standard separator problems,
separation is a local property: whether or not a path is blocked can be deter-
mined by consideration of that path alone. As we will see, these two properties
make d-separators rather tricky to deal with.

Luckily, d-super-separators are slightly easier to deal with as the property
of d-super-separation is monotonic. Formally, we define a d-super-separator as:

A set Z d-super-separates multiple setpairs (X1, Y1), . . . , (Xk, Yk)
if and only if

For all 1 ≤ i ≤ k, ∃Zi ⊆ Z such that Zi d-separates each setpair (Xi, Yi).

Clearly, if Zi ⊆ Z then Zi ⊆ Z∪{z}, for all z /∈ Z. Monotonicity is extremely
helpful in designing algorithms with strong performance guarantees. We show
this via our approximation algorithm for the minimum cost d-super-separator
problem in Section 5. We remark that for multiple setpairs, since d-separators
are combinatorially more complex objects than d-super-separators, we present
our theoretical results on d-separators after those on d-super-separators.

3 Applications of D-Separators

In this section, since it may not be immediately clear how useful d-separators
and d-super-separators are, we give brief descriptions of several very important
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applications.

• Model Testing. How to test the validity of any model is a fundamental is-
sue. Often in the social and health sciences, for example, this task is extremely
difficult. However, d-separators do offer a simple way to refute a hypothesized
causal model. This is because d-separation characterizes exactly the condi-
tional independence relations that follow from applying the Markov condition
to a directed acyclic graph4. Consequently, we can use experimental data on
the probability distribution to evaluate the validity of our causal graph. Sim-
ply find a d-separator in the graph and then test, using the data, whether the
proposed separator does indeed induce conditional independence amongst the
corresponding variables. Furthermore, the cheapest way to increase the relia-
bility of these tests is to collect data related to a d-separator for multiple setpairs.

• Prediction and the Evaluation of Interventions. Causal graphs allow us
to measure the implications of constraining some variables on other variables.
For example, we might wish to estimate the effect on lung cancer rates of a new
smoking policy, or estimate the impact on inflation of a policy of quantitative
easing. To do this we need to be able to formulate the impact of an intervention
in terms of observational data only. At first thought this may appear impossible
since (i) the graph may contain unobserved or immeasurable variables and (ii)
the very fact that some variables are to be constrained may make inference
dubious using only data collected when those variables were unconstrained.
Remarkably, however, these two problems can often be overcome: prediction
may be achieved via algebraic simplifications obtained by the examination of d-
separators in (subgraphs of) the causal graph! See [22] for detailed descriptions
of this approach.

These applications rely upon successful stratification upon variables in a d-
separator Z. To achieve this it suffices to collect sufficient data only for these
variables. If the cost of data collection for a variable v ∈ V is cv then the total
cost will be

∑
v∈Z cv. For large databases that will be queried more than once

we are in the case of multiple setpairs {(X1, Y1), (X2, Y2), . . . , (Xk, Yk)}. There
a cost for variable v is incurred if and only if it is needed for stratification with
respect to at least one setpair, say Zi. Thus Z need only be a d-super-separator
not a d-separator – the information we have on variable v ∈ Z does not hurt
us if we need to stratify on Zj where v /∈ Zj . Our aim therefore is to find a
minimum cost d-super-separator.

•Design of Observational Studies. Consider an observational medical study
where we desire a subset of the variables (upon which we perform stratification)
that allow the true treatment effect to be determined in a population of treated
and untreated subjects. The wrong choice of variables will lead to spurious as-
sociations between treatment and response. Furthermore, some of the variables

4More accurately, any conditional independence relation that is not implied by the Markov
condition is unstable. That is, it ceases to hold given a perturbation to the probability
distribution; see [25] or [22] for specific details.
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may be unmeasurable (or very costly to measure). Given the causal graph, a
correct set of variables to choose corresponds to a d-separator in an auxiliary
graph - such a subset is said to satisfy the backdoor criteria; see [22]. More
broadly, given the expense of medical studies we may wish to design a study
that can address more than one question. Thus we should design the trial to
collect data with respect to a minimum cost d-super-separator.

•Graph Bases. A basis encodes all the statistical claims in a linear Markovian
model [22]. A graph basis is a collection of d-separators for multiple setpairs
that d-separate every non-adjacent pair of vertices in the causal graph and cor-
respond to a basis. A graph basis therefore induces a d-super-separator. The
simplest basis is the collection of parent sets for each vertex, but Pearl and
Meshkat [23] argue that “it may be possible to select a more economical basis”.
Consequently, we again need to focus upon low cost d-super-separators.

4 D-Separators for a Single Setpair

Given a graph G = (V,A) and a single setpair (X,Y ), can we find a set Z that
d-separates X and Y ? To answer this question, we first present a very simple
characterization theorem concerning the existence of d-separators in the case
of a single setpair (X,Y ). Applying the characterization theorem will give a
linear time algorithm to obtain a d-separator if one exists. In this section, we
also briefly discuss a result of Lauritzen et al. [12] that shows how to solve
the harder problem of finding a minimum cardinality d-separator in polynomial
time using network flow techniques. Their result is intriguing in that it shows
the d-separation problem for a single setpair can be formulated as a minimum
s-t cut problem in an auxiliary undirected graph G - this is despite the apparent
additional complexities associated with d-separators previously discussed.

Let’s begin with the characterization theorem. First observe that to obtain
a d-separator it suffices to block only those x− y paths that contain only non-
terminals as internal vertices. To see this, suppose a path P between x and y
contains an internal terminal vertex, without loss of generality x′. Then P has
as a subpath a terminal path P ′ between x′ and y. But if P ′ is blocked by Z
then clearly P is as well. So throughout this section, the terminal paths we
consider will be assumed to contain internally only non-terminal vertices.

We now need a few more definitions. A terminal arc is an arc (x, y) or (y, x)
for some x ∈ X and y ∈ Y , that is, a terminal path with no internal vertices.
A vertex v is called a panoramic collider if it has a parent x ∈ X and a parent
y ∈ Y . A hod is a subgraph connecting three terminal vertices, h1 ∈ X,h2 ∈ Y
and h3 ∈ X ∪ Y , in the following fashion. First, there is a path between h1 and
h2 that consists only of a panoramic collider Υ; we call this path the box of the
hod. Second, there is a path from Υ to h3; we call this path the handle of the
hod. Possibly the handle is empty and Υ = h3. An example of a hod is shown
in Figure 2.
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h1 h2

h3

Υ

Figure 2: A Hod.

Theorem 1 A single setpair (X,Y ) is d-separable if and only if G contains
neither a hod nor a terminal arc.

Proof: If G contains a terminal arc then clearly X and Y are not d-separable.
Suppose G contains a hod. Some vertex on the handle must be selected in any
d-separator Z. But then the box path of the hod is unblocked and there is now
no way to block it. To see this note that the box path has no non-colliders and
exactly one collider c; moreover, all vertices in the handle are descendants of c
and at least one of them is in Z.

On the other hand assume that G contains no hod and no terminal arc.
Consider any panoramic collider c. Observe that c cannot be the ancestor of
any terminal, otherwise we have a hod. Let W be the set of panoramic colliders
and all their descendants. Any terminal path that contains a vertex of W must
contain a collider within W . Consequently, for any proposed d-separator Z, we
see that Z \W blocks every terminal path that intersects W . Hence, it suffices
to find a set Z ⊆ V \W that blocks every terminal path in G \W .

This we can achieve as follows. For any directed terminal path P in G \W ,
select its oldest non-terminal vertex to be in Z; such a vertex exists as P is not
a terminal arc. For any hill path P in G \W select its summit vertex s to be in
Z; this is a feasible choice as all internal vertices of P are non-terminals so s is
a non-terminal. Let Ẑ consist of the vertices in Z and all of their non-terminal
ancestors. We claim that Ẑ is a d-separator.

Thus, it suffices to show that every terminal path in G \W that contains a
collider is blocked by Ẑ. Take such a path P and consider one of its colliders c.
Assume that c has parents v1 and v2 in P . Now c is a non-panoramic collider
as c /∈ W , so at least one of its parents, say v1, is not a terminal. If neither c
nor any of its descendants are in Ẑ then P is blocked. So we may assume that
c is in Ẑ. But v1 is an ancestor of c and, thus, is also in Ẑ by definition. But
v1 is a non-collider on P , so the path is blocked. 2

Thus we have a characterization theorem for d-separability. If X and Y
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consist of single vertices then the characterization theorem has a particularly
simple form.

Corollary 1 If X and Y are singleton-sets then G contains a d-separator if
and only if there are no terminal arcs.

Proof: If X and Y are both singletons then there are no hods as a hod requires
three terminal vertices. The result is then immediate from Theorem 1. 2

Corollary 1 indicates why for graph bases we are interested in non-adjacent
vertices. Furthermore, Theorem 1 allows us to test in linear time (in the number
of edges) whether or not G contains a d-separator for X and Y , and if so to find
such a separator.

Theorem 2 For a single setpair (X,Y ), there is a linear time algorithm to
obtain a d-separator if one exists.

Proof: First we check every arc to see if it is a terminal arc, that is it connects
a vertex in X to a vertex in Y . If there is such an arc then there can be no
d-separator by Theorem 1. Next we need to test whether there is a hod in G.
Examining all the parents of a vertex we can test if it is a panoramic collider.
We can find all panoramic colliders P in linear time as we need examine each
arc only once. Given the panoramic colliders we need to see if any of them
have directed paths to a terminal vertex. To do this we just need to find the
reachability set from P and this can also easily be done in linear time. If
this reachability set contains a terminal then we have found a hod and so, by
Theorem 1, there is no d-separator.

So assume we find no hod or terminal arc. Then there is a d-separator.
Indeed, by the proof of Theorem 1, we may simply choose Ẑ, that is, all non-
terminal ancestors of the oldest vertex in a hill path or a directed terminal path.
First find the set of vertices that are ancestors of terminals in Y (respectively
X). If a non-terminal vertex is ancestor of both a vertex in X and a vertex in Y
then it is (an ancestor of) a the oldest vertex in a hill path. If it is an ancestor
of only vertices in Y (respectively X) then test if it is a child of a terminals in
X (respectively Y ); if so, it is the oldest vertex in a terminal path. 2

Observe that the d-separator Ẑ may be extremely large. As stated, though,
it may be desirable to obtain a minimum cardinality d-separator. This we can
do by the techniques of Lauritzen et al [12]. To describe their result, let V +

consist of those vertices in G that have a directed path to some vertex in X ∪Y .
Let G+ be the graph induced by V +. Note that the sets of terminals X and Y
are trivially subsets of V +. We then need the following definition:

A d-cut is a set S ⊆ V + such that
(i) S is a vertex-cut between X and Y in G+. That is, the components of G+ \S
can be partitioned into parts CX and CY containing X and Y , respectively.
(ii) For v ∈ S, either δ−(v) = {u : (u, v) ∈ A} ⊆ CX ∪ S, or δ−(v) ⊆ CY ∪ S.
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An example of a d-cut is shown in Figure 3, where the vertices in X are
shaded circles and vertices in X are shaded squares.

S 

V −

CX CY

Figure 3: A d-cut.

Now d-cuts and d-separators are closely related via the following theorem,
whose proof we include for completeness.

Theorem 3 [12] For a single setpair, a set Z ⊆ V + is a d-separator if and
only if it is a d-cut.

Proof: Let Z ⊆ V + be a d-cut. Take any path P between some terminals
x ∈ X and y ∈ Y . Suppose first that P is contained in G+. Then, by (i), Z cuts
X and Y in G+. Hence, the path P must intersect Z. Let P ∩Z = {z1, . . . , zk},
numbered according to their order along P . If any zi is a non-collider on P then
Z separates the path. So assume that every zi is a collider on P . This implies
that zi and zi+1 cannot be adjacent along P , for any 1 ≤ i < k. Therefore the
two parents of z1 on P are both in CX ⊂ CX ∪ S, by (ii) and the fact that P
begins in CX . But then the two parents of z2 on P are also both in CX , etc.
Consequently, the path can never can never enter CY , a contradiction. So Z
does d-separate the path P .

Next, suppose that P uses a vertex v in V −. Observe that v has no directed
path to any vertex in G+ (otherwise it has a directed path to X ∪Y ). It follows
that any subpath of P within V − contains a collider. So, as Z ∩ V − = ∅, we
see that Z again d-separates P .

On the other hand, let Z ⊆ V + be a d-separator. First we need to show
(i), that Z is a vertex-cut between X and Y in G+. If not, there is a path P
between x ∈ X and y ∈ Y in G+ − Z. As Z is a d-separator, P must contain a
collider c for which none of the descendants of c are in Z. We assume P to be
a terminal path in G+ − Z with the fewest colliders having this property. As c
is in G+ it has a directed path Q to X ∪ Y . Without loss of generality, let Q
go to y′ ∈ Y . Then no vertex of Q is in Z. Let P ′ be the subpath of P from x
to c. Then P ′ ∪Q is a path (from x ∈ X to y′ ∈ Y ) in G+ − Z.
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If P ′ ∪ Q contains no collider then it is a hill path. But then Z ∩ P ′ 6= Q,
as Z is a d-separator, a contradiction. Thus, P ′ ∪ Q must contain a collider
none of whose descendants are in Z. However, it has one less collider with this
property than P , a contradiction. Thus (i) holds.

So G+ −Z consists of the components S1, . . . , Sk where none of the compo-
nents contains both X and Y terminals. We next need to show (ii). Towards
this goal, we build an auxiliary graph H as follows. Let the vertices of H be
{S1, . . . , Sk}. There is an edge (Si, Sj) in H if and only if in G there are three
vertices vi ∈ Si, vj ∈ Sj , z ∈ Z where {vi, vj} ⊆ δ−(z).

Let CX consist of those Si that lie in components of H that contain some
vertex of X. We claim that CX contains no vertex of Y . If so we are done as
then CY = V + − CX − Z is non-empty, and, by construction, for any v ∈ Z we
must have δ−(v) ⊆ CX ∪ Z or δ−(v) ⊆ CY ∪ Z.

So let’s prove the claim. If CX contains y ∈ Y , we can build a path P
between from some x ∈ X to y that goes through the components S1, . . . , St,
say, where there is a zi ∈ Z with in-neighbours ui ∈ Si and vi+1 ∈ Si+1. Let
P be such a terminal path containing a minimal number of colliders outside of
Z. Consider the subpath Pi of P in Si from vi to ui. Suppose that Pi contains
a collider c. There is a directed path Q from c to X ∪ Y , say to x′ ∈ X. If Q
goes through Z then c contains a descendant in Z. If Q does not go through Z
then it is a directed path entirely contained within Si. Now replacing P [x, c] by
Q[x′, c] gives a terminal path with fewer colliders than P outside Z. Repeating
this argument gives that every collider on P is in Z or has a decendant in Z.
This contradicts the fact that Z is a d-separator. 2

So, to find a minimum cardinality d-separator, we simply need to obtain a
minimum cardinality d-cut in G+. To do this we create an undirected auxiliary
graph G called the moral graph [13]. This is simply the undirected supergraph
of G+ obtained by adding a edge between each pair of vertices that share a
common non-terminal child in G. We then find a minimum X − Y cut in G.
This finds an optimal d-cut which, in turn, produces a minimum cardinality
d-separator. It is straightforward to verify (albeit perhaps surprising) that this
approach works; see Tian et al. [26] for details on this method.

5 D-Super Separation for Multiple Setpairs

In this section, we consider the problem of finding a minimum cost subset of ver-
tices Z that contains a d-separator for each of the setpairs (X1, Y1), . . . , (Xk, Yk);
we call this the minimum cost d-super-separator problem. Observe that there is
a trivial k-approximation algorithm5 for this d-super-separator problem. Sim-
ply find a minimum cost d-separator Z∗i for each setpair (Xi, Yi) as described in
Section 4, and then output Z = ∪ki=1Z

∗
i . Clearly Z is a d-super-separator whose

5An α-approximation algorithm is a polynomial time algorithm that is guaranteed, on
any problem instance, to output a feasible solution whose objective value is within an α
multiplicative factor of the optimal solution value.
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cost is at most a factor k larger than that of the optimal solution. Here we show
that a much better approximation algorithm exists. Specifically, we give an
O(log2 k) approximation guarantee. The focus upon approximation algorithms
is necessary; we show in Theorem 5 that the minimum cost d-super-separator
problem is NP-complete.

As G = (V,A) is acyclic there is an acyclic ordering of the vertices. When
constructing the ordering, given a comparison between two incomparable ver-
tices, we may assume that a terminal vertex is placed before a non-terminal
vertex. For clarity of presentation, here we consider the case of singleton set-
pairs, that is Xi = {xi} and yi = {yi} for all i; the proof of the general case
is similar. Without loss of generality, for each i, we label the terminals {xi, yi}
such that xi appears before yi in the acyclic ordering. Furthermore, we label
the setpairs so that yi appears before yi+1 in the ordering.

Let Vi consist of yi and all of the vertices before it in the ordering (including
non-terminal vertices). This vertex set underlies the undirected moral graphs
for commodity i. Let the moral graphs be Gi = (Vi, Ei). By the ordering, we
have V1 ⊂ V2 ⊂ · · · ⊂ Vk and thus E1 ⊂ E2 ⊂ · · · ⊂ Ek. Recall, to find an
optimal d-separator for commodity i we need to find a minimum cut in the moral
graph Gi [12]. But how can we find a low cost d-super-separator? Our approach
is to model this problem as an integer program and then relax it to a linear
program (LP). We solve the linear program and round the resultant fractional
solution to an integral solution using the ball-growing method of Garg et al. [7].
Our approximation guarantee will follow as we show that this rounding can be
achieved at a reasonable cost.

We remark that there are several technical difficulties in applying the ball-
growing method to the d-super-separator problem. First the method finds edge
cuts in undirected graphs whereas we have a directed graph and are looking
for vertex separators. This is not a significant barrier. As we have seen, the
consideration of moral graphs allows us to focus upon undirected graphs. Fur-
thermore, a careful modification to the technique allows us to search for vertex
separators. Much more problematic, though, is that the ball-growing method
only applies to a single graph. But we have many graphs as we are working
with the set of moral graphs {G1, . . . ,Gk}. Consequently, the key technical con-
tribution of this section involves showing how to exploit the special structure
inherent in these moral graphs to extend the ball-growing method to multiple
graphs.

So now let’s formulate the linear program relaxation. Let Pi be the set of
paths from xi to yi in the moral graph Gi. Then an integral solution must
select at least one vertex from every path in Pi. In our LP relaxation, we may
fractionally select vertices so that in total at least one unit worth of vertices are
chosen from amongst the interior vertices I(P ) of any path P ∈ Pi. Thus, given
a cost cv for each vertex v, we obtain the following linear program:
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min
∑
v∈V

cv · dv∑
v∈I(P )

dv ≥ 1 ∀P ∈ Pi ∀i

dv ≥ 0 ∀v ∈ V

dxi , dyi = 0 ∀i

This linear program has an exponential number of constraints but it can be
solved in polynomial time via a separation oracle using the ellipsoid method [9]
or via a compact network flow formulation.

Take an optimal solution d to the linear program. Then the optimum LP
value V ∗ =

∑
v∈V cv · dv gives a lower bound on the cost of the optimal d-

superseparator. Furthermore, we can view d as inducing a distance function
in the moral graphs. Specifically, for any path P = {v0, v1, . . . , vr} in Gi, let
li(P ) =

∑
v∈I(P ) dv be the length of the path P . Then the distance di(v0, vr) of

vr from v0 is the minimum of li(P ) over all paths P between v0 and vr in Gi.
Thus di(xi, yi) ≥ 1 by imposition.

Given this distance function the rounding algorithm proceeds in phases as
follows. It will become clear that it is extremely important that the phases
of the algorithm run in reverse acyclic order (the method will fail otherwise).
Consequently, for the first phase we set i = k. Let Bxk

be the set of vertices
(ball) of distance less than rk (to be defined) from xk in Hk = Gk. We say that
a vertex v is on the boundary b(Bxk

) if in Hk we have

d(xk, v) ≤ rk < d(xk, v) + dv (1)

Now set qv = rk−d(xk,v)
dv

. By Inequality (1), it follows that 0 ≤ qv < 1. Thus, we
will view a boundary vertex v ∈ b(Bxk

) as being a qv fraction in Bxi
. Observe

that each vertex v contributes an amount cv · dv to the linear program value;
we call this amount the area of vertex v. The volume of Bxi is then

vol(Bxi
) =

∑
v∈Bxi

qv · cv · dv

We define Byk
and its volume in an analogous fashion. Then amongst Bxk

and
Byk

, we define Bk to be the one of smaller volume.
Similarly, we need to define a ball Bi for each i < k. We do this recursively.

To do this set i := i − 1 and consider Hi = Gi \ ∪kj=i+1b(Bj). If xi and yi are
already disconnected in Hi then let Bi = ∅. Otherwise, define Bxk

and Byk
to

be the set of vertices of distance less than ri from xi and yi, respectively, in Hi.
Again we then let Bi be the ball with smaller volume amongst Bxi and Byi .
This process is repeated until i = 0.

The final output is W = ∪ki=1b(Bi). Now we show W is a d-super-separator,
then we will prove it has low cost.

Claim 1 The set of vertices W forms a d-super separator for (x1, y1), . . . , (xk, yk).
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Proof: Take any pair (xi, yi). Observe that Vi ∩ ∪kj=ib(Bj) ⊆ W = ∪kj=1b(Bj)
is a separator between xi and yi in the moral graph Gi. This must be the case,
since if xi and yi are not already separated in Gi by Vi ∩ ∪kj=i+1b(Bj) then, by
construction, they will be separated when we add b(Bi). 2

Thus W is a feasible solution to our problem. The cost of this solution is

c(W ) =

k∑
i=1

∑
v∈b(Bi)

cv · dv

Moreover, it follows from the ball-growing method [7] (see also [28, 30]) that,
for each i we can efficiently obtain a radius ri ≤ 1

2 such that the corresponding
ball Bi satisfies the property:∑

v∈b(Bi)

cv · dv ≤ 2 ln(k + 1) ·
(
vol(Bi) +

1

k
V ∗
)

(2)

Consequently, to quantify the performance guarantee of the algorithm we
must bound the sum of the volumes of the Bi. Key to doing so, is the following
claim that ensures the balls shrink sufficiently in each iteration.

Claim 2 If xi and yi lie in the same component U of Hi then vol(Bxi
) +

vol(Byi
) ≤∑v∈U cv · dv.

Proof: Suppose v ∈ Bxi
∩Byi

and that v contributes qxi
v · cv ·dv and qyi

v · cv ·dv
to these volumes, respectively. We claim that qxi

v + qyi
v ≤ 1. Suppose not, then

di(xi, yi) ≤ dHi(xi, v) + dv + dHi(v, yi)

< dHi(xi, v) + (qxi
v + qyi

v )dv + dHi(v, yi)

= (dHi(xi, v) + qxi
v · dv) + (qyi

v · dv + dHi(v, yi))

= ri + ri

≤ 1

This contradicts the fact that di(xi, yi) ≥ 1. Thus qxi
v + qyi

v ≤ 1 and so v
contributes at most cv · dv to vol(Bxi

) + vol(Byi
). 2

Corollary 2 If Bi ⊆ Bj for some j > i then vol(Bi) ≤ 1
2vol(Bj).

Proof: We may apply Claim 2 where U = Bj\bd(Bj). Since each non-boundary
vertex is completely in Bj , we have

vol(Bj) =
∑
v∈Bj

qv · cv · dv

≥
∑

v∈Bj\bd(Bj)

cv · dv

≥ vol(Bxi
) + vol(Byi

)

≥ 2 · vol(Bi)
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as desired. 2

Applying Corollary 2 we obtain

Lemma 1
∑k

i=1 vol(Bi) ≤ V ∗ · (1 + log k)

Proof: Take the regions B1, . . . , Bk and designate them small or large according
to the amount of volume they encompass. Specifically, set S = {i ∈ [k] :
vol(Bi) ≤ 1

k · V ∗} and L = {i ∈ [k] : vol(Bi) >
1
k · V ∗}. Thus

k∑
i=1

vol(Bi) =
∑
i∈S

vol(Bi) +
∑
i∈L

vol(Bi)

But clearly, ∑
i∈S

vol(Bi) ≤ |S| ·
V ∗

k
≤ V ∗ (3)

Observe that the regions B1, . . . , Bk form a laminar set. Therefore a vertex
may be in many regions. However, by Corollary 2, those regions that containing
a specific vertex v must iteratively shrink in volume by a factor at least two.
Thus a vertex can be in at most log k large regions. Hence,∑

i∈L
vol(Bi) ≤

∑
i∈L

∑
v∈Bi

cvdv

=
∑
v

∑
i∈L:v∈Bi

cvdv

≤ log k ·
∑
v

cvdv

= V ∗ · log k (4)

Combining Inequalities (3) and (4) we get
∑k

i=1 vol(Bi) ≤ V ∗ · (1 + log k). 2

Putting this all together gives the desired approximation guarantee.

Theorem 4 There is an 3 log2 k-approximation algorithm for the minimum
cost d-super separator problem.

Proof: We have

c(W ) =

k∑
i=1

∑
v∈b(Bi)

cv · dv

≤
∑
i

2 ln(k + 1) ·
(
vol(Bi) +

1

k
V ∗
)

[by Inequality (2)]

≤ 2 ln(k + 1) ·
(
V ∗ +

∑
i

vol(Bi)

)
≤ 2 ln(k + 1) · (2 + log k) · V ∗ [by Lemma 1]
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Now we may assume that k ≥ 19. Otherwise, we simply get a factor k < 3 log2 k
guarantee by applying the trivial approximation algorithm. Thus

c(W ) ≤ 2 ln(k + 1) · (2 + log k) · V ∗
≤ 3 log2 k · V ∗
≤ 3 log2 k · opt

The result follows. 2

As remarked, no polynomial time algorithm for the minimum cost d-super-
separator problem can exist unless P = NP .

Theorem 5 The minimum cost d-super-separator problem is NP-complete

Proof: The decision problem is to find a d-super-separator of cost at most C,
for a given C. This problem is in NP. Given {Z1, Z2, . . . , Zk} simply check that
Zi is a d-separator for the setpair (Xi, Yi). This can be done in polynomial time
via the techniques shown in Section 4. Then check that the cost of Z = ∪iZi is
at most C.

To show this problem is NP-complete we give a reduction from Vertex Cover:
given an undirected graph H = (U,E) and an integer k, is there a set S ⊆ V
of cardinality at most k such that every edge has an endpoint in S? To do this
we create a causal graph G = (V,A) as follows. The graph is an arborescence
with root vertex r. For each vertex v ∈ U we have two vertices v, v̂ ∈ V along
with the two arcs (r, v̂) and (v̂, v). For each edge (u, v) ∈ E we have a singleton
setpair (Xe, Ye) where Xe = {u} and Ye = {v}. Finally, we set the cost of r to
be infinite and the cost of the other vertices to be one. The result follows from
the fact that an edge (u, v) is covered if and only if we select either û or v̂ in
the d-super-separator. 2

6 D-Separation for Multiple Setpairs

We now examine the Multi-Setpair d-Separator Problem. Given a collection of
setpairs (X1, Y1), . . . , (Xk, Yk), is there a set Z that d-separates Xt and Yt, for
all 1 ≤ t ≤ k?

6.1 A Hardness Result

We will prove in this section that the d-Separator Problem is NP-complete for
multiple setpairs. Indeed, it is hard even when there are just k = 5 setpairs.
This hardness proof is via a reduction from the Planar 3-SAT problem [14].
The Planar 3-SAT Problem: Given n Boolean variables a1, a2, . . . , an and m
clauses C1, . . . , Cm, where each clause contains exactly three literals. Further-
more, the bipartite clause-variable incidence graph, H, is planar6. Does there

6H contains a vertex for each variable and a vertex for each clause; a clause vertex is
adjacent to a variable vertex if and only if the variable appears in that clause.
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exist a true-false assignment of the variables such that every clause is satis-
fied?

Theorem 6 For five or more setpairs, it is NP-hard to determine whether a
graph contains a d-separator.

Proof: Given a planar 3-SAT instance S, we construct a causal graph G and
setpairs {(X1,Y1), . . . , (X5,Y5)} such that S has a satisfying assignment if and
only ifG has a d-separator. The construction ofG involves several gadgets. Each
gadget will contain a collection of terminal-pairs. However, this will produce a
polynomial number of terminal pairs as there will be a polynomial number of
gadgets (and possibly several terminal pairs in each gadget). Thus, we cannot
allow each terminal-pair to form their own individual setpair. Instead, we will
group the terminal-pairs together to form our four setpairs. Observe that each
setpair will then induce numerous new terminal pairings that must be considered
in addition to the original terminal-pairs in the gadgets.

So let’s begin by describing the gadgets. The simplest gadget is a dummy
terminal. The dummy terminal is a vertex d that represents a path between a
terminal-pair, (Xd, Yd), that consists of a single collider. An example is shown
in Figure 4, where we represent the dummy vertex d by a clear square. (Real
terminals are represented by shaded squares, and non-terminals by circles). The
reader should be warned that, here, we use capital letters to denote Xd and Yd
even though they are just singleton vertices (this is because such a terminal pair
will subsequently be used in Corollary 7 to form a singleton setpair).

For each variable ai, there will be a variable gadget, as shown in Figure 5.
The gadget contains two terminal pairs, (Xi, Yi) and (X̂i, Ŷi). We may assume
that variable ai appears in ni clauses, say {Ci,1, Ci,2, . . . , Ci,ni}.

For each clause Ci,r, where 1 ≤ r ≤ ni, we have a clause-variable path
{Xi, ai,r, di,r, āi,r, Yi}. This is a hill path with summit at di,r. Here di,r is a
dummy terminal and ai,r, āi,r are non-terminals. Since this is a hill path at
least one of ai,r, āi,r must be chosen in a separator, as (dummy) terminals can-
not be selected. We would like exactly one to be chosen and for this choice to
be consistent for all r, as this would give a natural way for a d-separator to pro-
duce a variable assignment. To do this we use the other terminal pair (X̂i, Ŷi).

Specifically, the gadget contains a variable path {X̂i, ai, d̂i, āi, Ŷi}, where d̂i is a
dummy terminal and ai, āi are colliders on the variable path. Thus the variable
path is blocked by a separator unless both ai (or a descendant) and āi (or a
descendant) are in the separator.

To complete the description of the variable gadget, we add an arc from ai
to each ai,r, and an arc from āi to each āi,r. It follows that ai,r and āi,r cannot
both be selected in the d-separator or the variable-path is unblocked. Similarly,
ai,r and āi,r′ cannot both be selected in the d-separator, for any r 6= r′. Thus,
the separator contains either all the ai,r and none of the āi,r, or all the āi,r and
none of the ai,r. The former case will correspond to setting ai to true and the
latter case will correspond to setting āi to true. Hence, we obtain a variable
assignment mechanism.
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Figure 4. A Dummy Terminal d.

Xj Yj
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Figure 6. A Clause Gadget:
Cj = a1 ∨ ā2 ∨ a4.
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di,ni

Figure 5. A Variable Assignment
Gadget.

Cj = a1 � ā2 � a4
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Figure 7. Joining the Gadgets.

So we have a mechanism to produce variable assignments. We need them to
satisfy the clauses, so, towards this goal, we have a clause gadget for each
clause Cj . This gadget contains one terminal-pair (Xj , Yj) and a single path
{Xj , lj,1, d

1
j , lj,2, d

2
j , lj,3, Yj} between them. Here d1j , d

2
j are dummy terminals

and lj,1, lj,2, lj,3 are colliders named after the negations of the three literals in
the clause. For example, the gadget for a clause Cj = a1 ∨ ā2 ∨ a4 is shown in
Figure 6.

The motivation behind this gadget is as follows. The path is blocked unless
each collider vertex (or one if its descendants) is selected in the separator. Using
this construction, the selection of a collider vertex (or a descendant) will corre-
spond to the selection of the corresponding literal in Cj . Thus the clause will be
satisfied unless none of the literals in the clause are in the variable assignment,
that is, (decendants of) all three negations of these literals are in the separator.
To enforce this property we need to show how the variable and clause gadgets
connect up. This is simple. For each literal āi in Cj we add an arc from the
collider vertex ai in the clause gadget for Cj to the vertex ai,j in the ith variable
gadget; similarly, for each literal ak in Cj we add an arc from the collider vertex
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āk in the clause gadget for Cj to the vertex āk,j in the ith variable gadget. This
is shown in Figure 7.

This completes the description of the directed graph G. We remark that it
is easy to see that G is also acyclic.

Next we describe how to choose the five setpairs (Xt,Yt), 1 ≤ t ≤ 5. To
define the these setpairs, recall that the clause-variable incidence graph H is
planar. Let H′ be the auxiliary graph created taking each clause vertex in H
and adding a clique on its neighbourhood. Thus, in H′, two variable vertices
are adjacent if and only if their corresponding variables appear together in some
clause.

Claim 3 The auxiliary graph H′ is also planar.

Proof: Each clause vertex in H has three neighbours. Thus each clique we
add is simply a triangle. Consequently, it is straightforward to obtain a planar
drawing of H′ given a planar drawing of H. 2

Thus, by the Four-Colour Theorem ([1], [2]), we can assign the variables and
clauses to four colour groups such that (i) variables of the same colour never
appear in the same clause, and (ii) a variable has a different colour than any
clause it is contained in.

Observe that we have four types of terminal: standard terminals in variable
gadgets (the Xi and Yi); standard terminals in clause gadgets (the Xj and

Yj); “hat” terminals in variable gadgets (the X̂i and Ŷi); dummy terminals in
variable gadgets and clause gadgets. We need to partition these four types of
terminal into the five setpairs. To define the first four setpairs, we will create
one setpair for each colour class, 1 ≤ p ≤ 4. Specifically, let

Xp = {Xi : col(ai) = p} ∪ {Xj : col(Cj) = p} ∪ {X̂i : col(ai) = p+ 1}
Yp = {Yi : col(ai) = p} ∪ {Yj : col(Cj) = p} ∪ {Ŷi : col(ai) = p+ 1}

Finally we have one setpair containing all the dummy terminals.

X5 = {Xd : d is a dummy terminal} Y5 = {Yd : d is a dummy terminal}

This completes the construction. We now have to show that a d-separator
exists in G if and only if a satisfying assignment exists for S. Before doing
this, we emphasize again that each setpair induces many terminal pairs. Paths
between such terminal pairs (called terminal paths) may cross between gadgets
and, indeed, can have endpoints in different gadgets. Thus we will need to be
very careful when examining whether or not a proposed set Z is a d-separator.

Let’s start with the easy direction. Suppose that S is not satisfiable. As
argued above, the variable gadgets ensure that any d-separator must induce a
variable assignment. Since S is not satisfiable this variable assignment must
violate some clause Cj . The corresponding clause-path in the jth clause gadget
will be unblocked. Thus no d-separator can exist.

On the other hand, suppose that S is satisfiable. Then take a satisfying
assignment. If ai is true then select all the ai,r vertices in the clause-variable
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paths, select all ai vertices in a clause path, and select ai in the variable path.
Similarly, if ai is false then select all the āi,r vertices in the clause-variable
paths, select all āi vertices in a clause path and select āi in the variable path.
Call the set of selected vertices Z.

We need to show that every terminal path P is blocked by Z. A terminal
path P can take on many forms, for example, depending upon the types of the
two terminals at its ends and how many gadgets the path crosses. So, in order
to deal with the multitude of possible cases, we present a few structural claims
concerning terminal paths that will help simplify the analysis.

Claim 4 Every terminal path in (X5,Y5) is blocked.

Proof: If a terminal path uses a dummy terminal Yd then it must also use the
collider c between Xd and Yd. Since c is not in Z and has no descendants, the
path is blocked. 2

Claim 5 Any path that internally contains some Xi or some Yi is blocked.

Proof: Without loss of generality, assume that P uses Xi as an internal vertex.
As Xi has no out-neighbours, it must be a collider on P . But Xi is not in Z.
The path is, therefore, blocked. Similarly for Yi. 2

Claim 6 No terminal path can internally contain some X̂i, Ŷi, Xj or Yj.

Proof: The terminal vertices X̂i, Ŷi, Xj and Yj are the endpoints of variable
paths or clause paths. By construction, these vertices all have exactly one
neighbour, so cannot be internal vertices in paths. 2

Claim 7 Any terminal path that contains both ai,r and āi,r′ is blocked.

Proof: As ai,r and āi,r′ are non-terminals they must be internal on the path.
Their only out-neighbours are Xi and Yi, respectively. By Claim 5, Xi and Yi
are not used internally on the path. Thus, either Xi and Yi are not used on P
or they are endpoints of P . This gives three cases.
(i) Xi and Yi are both endpoints of P . Then we may assume, without loss of
generality, that ai,r and āi,r′ are adjacent to Xi and Yi, respectively, on P . But
then ai,r and āi,r′ are both non-colliders on P . Since one of them is also in Z,
the path is blocked.
(ii) Exactly one of Xi and Yi is an endpoint of P . We may assume that Xi is
the endpoint and that ai,r is adjacent to Xi on P . Thus ai,r is a non-collider.
So if ai,r is in Z then the path is blocked. If not, āi,r′ must be in Z. Moreover,
Yi is not on the path, and so āi,r′ must be a collider on P . Now observe that
āi,r′ has at most three other neighbours, namely di,r′ , āi in the variable gadget,
and āi in the clause gadget corresponding to r′. Thus at least one of the two āi
is a non-collider on P . But these are both in Z as āi,r′ is, so the path is blocked.
(iii) Neither Xi nor Yi is an endpoint of P . Then ai,r and āi,r′ must both be
colliders on the path P . We know one of them, say ai,r, is not in Z. The only
descendent of ai,r, namely Xi, is also not in Z. Thus, the path is blocked. 2
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Claim 8 Any terminal path that contains an arc (ai, ai,r) and uses ai,r as a
collider is blocked.

Proof: Recall that the vertex ai refers to a vertex in a variable gadget and in a
clause gadget. The proof is the same in either case. Now ai cannot be a collider
as the arc (ai, ai,r) is used on the path P . Thus, if ai is in Z the path is blocked.
So ai /∈ Z. Therefore, ai,r is not in Z either. But ai,r is a collider on P and
because Xi is the only descendent of ai,r, the path must be blocked. 2

A similar argument gives:

Claim 9 Any terminal path that contains an arc (āi, āi,r) and uses āi,r as a
collider is blocked. 2

Corollary 3 Any terminal path for the setpair (Xt,Yt), 1 ≤ t ≤ 4, is blocked.

Proof: Take a terminal path P . We have two possibilities: either P is entirely
within one gadget or it uses at least two gadgets. In neither case can these be
dummy gadgets. Consider the former case. As P is entirely within a gadget we
have the following possibilities:
(i) It is a clause path from Xj to Yj . As we had a satisfying assignment this
path is blocked.
(ii) It is from X̂i to Ŷi. If it is the variable path then it is blocked as we have
a consistent variable assignment. Otherwise the path must use some ai,r and
some āi,r′ . Thus, by Claim 7, it is blocked.
(iii) It is from Xi to Yi. Again the path must use some ai,r and some āi,r′ so is
blocked.

Consider next the latter case. Observe that clause gadgets are only con-
nected to variable gadgets, and vice versa. Thus, without loss of generality,
P must use an arc (ai, ai,r) where ai is in a clause gadget Cj and ai,r is in a
variable gadget. Now if ai,r is a collider on P then, by Claim 8, it is blocked.
So ai,r is a non-collider on P . It has only one out-neighbour, namely Xi. Thus,
by Claim 5, we may assume that Xi is an endpoint of P . Let Y be the other
endpoint of P . Then we have the following possibilities:
(i) Y = Yj′ for some clause Cj′ . Since variable ai is in clause Cj , we know that
col(ai) 6= col(Cj). Thus j′ 6= j. Consequently the path P must go via the
clause gadget to the variable gadget of another variable ai′ . As ai and ai′ are
both in Cj , we must have col(a′i) 6= col(ai). By Claim 5, P cannot go via Xi′

or Yi′ . Thus, either Claim 8 or Claim 9 applies and the path is blocked.
(ii) Y = Yi′ for some variable ai′ . If i 6= i′ then, as col(ai) = col(ai′), the
variables ai and ai′ are never in the same clause. Therefore, the path P must
also go via the variable gadget of a third variable ai′′ , where col(a′′i ) 6= col(ai).
The path is then blocked via a similar argument to that above. If i = i′ then as
P is not contained within a single gadget, it must still go via such a gadget ai′′ .
(iii) Y = Ŷi′ for some variable ai′ . Then col(ai) 6= col(ai′) and therefore i 6= i′.
By Claim 5, P cannot go via Xi′ or Yi′ . Thus, either Claim 8 or Claim 9 applies
and the path is blocked. 2
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Thus every terminal path is blocked. This completes the proof of Theo-
rem 6. 2

6.2 Singleton Setpairs

The setpairs used in the proof of Theorem 6 are very large. So it is reasonable to
ask if the multi-setpair d-separation problem can be solved efficiently if the sets
in the setpairs are constrained to be small, for example, singletons. It is easy
to see that the problem remains hard if there is allowed to be a large number
of setpairs. Observe that the terminals in the construction came in pairs, so
simply let each such pair form a singleton setpair. Thus we have:

Corollary 4 For multiple setpairs, it is NP-hard to determine whether or not a
d-separator exists even if every setpair consists of a pair of singleton vertices. 2

On the other hand, positive results can be obtained if the number of setpairs
is also fixed. Indeed, the other main result of this section shows that efficient
algorithms are then achievable.

Theorem 7 For multiple setpairs, there is a polynomial time algorithm for
finding a d-separator (if one exists) if there are a fixed number of singleton
setpairs.

Before proving Theorem 7, we will need a few structural lemmas. Given a
vertex set S, let A(S) be the set of vertices that are ancestors of at least one
vertex in S. Similarly, let D(S) be the set of vertices that are descendants of
at least one vertex in S. We assume that a vertex is both an ancestor and a
descendant of itself. Now let T be the set of terminals.

Lemma 2 Let Z be a d-separator. Then, for any z ∈ Z we have that Z ∪
(A({z}) \ T ) is a d-separator.

Proof: Take any terminal path P . If P contains a vertex of Z as a non-collider
then it clearly contains a vertex of Z ∪ (A({z}) \ T ) as a non-collider. Hence,
P is blocked by Z ∪ (A({z}) \ T ).

So, assume that no non-collider of P is in Z. Thus there is some collider c
of P such that D({c}) ∩ Z = ∅. Suppose there is a v ∈ D({c}) ∩ (A({z}) \ T ).
But then, since v is a descendant of c and an ancestor of z, we have that
z ∈ D({c}). Thus D({c}) ∩ Z 6= ∅. This contradiction shows that P is blocked
by Z ∪ (A({z}) \ T ). 2

We immediately obtain the following corollary.

Corollary 5 If Z is a d-separator then A(Z) \ T is a d-separator. 2

Given a set of vertices W , we say that F is a feasible augmentation of W if
W ∪F is a d-separator. Lemma 2 then has the following important consequence.

Corollary 6 Suppose that W has a feasible augmentation and that every fea-
sible augmentation F contains some vertex in a set S. If there is an s ∈ S \ T
with S ⊆ D({s}) then W ∪ (A({s}) \ T ) has a feasible augmentation.
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Proof: Let F be a feasible augmentation containing s′ ∈ S. So by Lemma 2,
W ∪ F ∪A(s′) \ T is a d-separator. Now s′ ∈ D(s), and so A(s) ⊆ A(s′). Thus
W ∪ (A({s}) \ T ) has a feasible augmentation. 2

Corollary 6 tells us that if we can ever find such a set S then, if our goal is
simply to find any d-separator (rather than the smallest d-separator), it cannot
hurt us to select A({s}) \ T . We will use this fact repeatedly.

Proof of Theorem 7. First we emphasize that whenever our algorithm selects
a vertex s it will also select A({s}) \ T .

Now, we say that a path B is a buffer path if
(i) The endpoints b1, b2 of B both have out-degree one (equivalently, in-degree
zero) on the path.
(ii) Every non-collider on B is a terminal. (Its colliders may or may not be
terminals).
We remark that the endpoints of a buffer may be terminals of different types.

Next take any terminal path P . Call the first and last segments of P the
outer segments, The remaining segments are termed inner and these form the
inner path of P . For technical reasons, we allow for the possibility that the
outer segments are empty; this allows us to assume that the endpoints of the
inner path are summits within P .

Buffer paths are of interest to us because:

Claim 10 Any terminal path whose inner segments do not form a buffer path
is blocked.

Proof: By construction, every non-collider in the inner path is the ancestor of a
collider in P . As the inner path is not a buffer it contains a non-terminal vertex
x that is not a collider. Let c be the collider on P that has x as an ancestor. If
no vertex in D(c) is selected then the path is blocked. If some vertex y ∈ D(c)
is selected then so must x be; hence, the path is blocked. 2

By Claim 10, we need only concern ourselves with terminal paths that are
either directed paths or hill paths or whose inner paths are buffers.

Suppose we find a directed terminal path P from xi to yi 1 ≤ i ≤ k whose
oldest non-terminal is v (if no such vertex exists then clearly there can be no
d-separator). Then by Corollary 6, we may select A({v}) \ T . Similarly, if we
find a hill path between xi and yi whose summit s is not a terminal, then we
may select A({s}) \ T .

Thus the only difficult case is what to do with terminal paths whose inner
paths are buffers or with hill paths whose summits are terminals. It will become
apparent that the latter may be viewed as a special case of the former. So let’s
take a terminal path P whose inner path Q is a buffer - for clarity call this an
extended buffer path. Let the outer segments of P be P1 and P2; call these the
left segment and the right segment, respectively If P1 and P2 both contain no
non-terminals then P cannot be blocked. If only P1 (respectively, P2) contains
a non-terminal then we select A({v}) \ T , where v is the oldest non-terminal in
P1 (respectively, P2) .
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Therefore, we only have a choice when both P1 and P2 contain non-terminals:
we can take the oldest non-terminal in P1 and its ancestors or take the oldest
non-terminal in P2 and its ancestors. But, there could be an exponential num-
ber of such paths so we need an efficient way to deal with such paths. To do
this observe that we can classify these paths according to the type of the ter-
minal path and the endpoints of their inner paths. There are k terminal types,
and there are then 2(k − 1) possible choices for each inner path endpoint (we
allow both endpoints to be the same, in which case the extended buffer path
is a hill path). Thus, there are at most 4k3 classes of extended buffer paths.
For any extended buffer path in the same class we will always make the same
choice, either alway choose from the left segment or always choose from the
right segment. Therefore, there are 24k

3

possible ways to make these choices.
The algorithm will be run once for each of these 24k

3

combinations. For a given
combination, the algorithm will greedily search for unblocked extended buffer
paths and block them in accordance with the combination. The algorithm runs
in polynomial time since, for each combination, every time we find an unblocked
path we either add a new vertex to the potential d-separator or, if no such ver-
tex is available, we move onto the next combination as the current combination
cannot be consistent with any d-separator. A more careful analysis shows that
the algorithm can be implemented in linear time.

It remains to prove correctness of the algorithm. To do this, we claim that if
a d-separator exists then, for at least one combination, the algorithm will find a
feasible solution. To prove this we need to show that if there is a d-separator Z
then there is a d-separator that is consistent with some combination. Suppose
not. Then there must be a terminal pair {xi, yi} and terminals b1, b2 that induce
two extended buffer paths P = (P1, B, P2) and P ′ = (P ′1, B

′, P ′2) where the left
segment P1 is chosen for P and the right segment P ′2 is chosen for P ′. Thus,
no non-terminal vertex on P2 or on P ′1 is selected in Z. Suppose P ′1 and P2

intersect. If s is their first point of intersection then Q = P ′1[xi, s] ∪ P ′1[s, yi] is
a hill path with summit s; here P [a, b] denotes the subpath of P between the
vertices a and b. Furthermore Z ∩Q = ∅, contradicting the fact that Z is a d-
separator. Thus, we may assume that P ′1 and P2 are vertex disjoint. Note that,
by definition, B is disjoint from P2. If B is also disjoint from P ′1 then (P ′1, B, P2)
is unblocked by Z, a contradiction. So, assume that P ′1 first intersects B at y.
But then the path Q = P ′1[xi, t] ∪B[t, b2] ∪ P2 is unblocked by Z. 2
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