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Abstract

The visual complexity of a graph drawing is defined as the number
of geometric objects needed to represent all its edges. In particular, one
object may represent multiple edges, e.g., one needs only one line segment
to draw two collinear incident edges. We investigate whether drawings
with few segments have a better aesthetic appeal and help the user to
assess the underlying graph. We design a user study that investigates
two different graph types (trees and sparse graphs), three different layout
algorithms for trees, and two different layout algorithms for sparse graphs.
We asked the participants to give an aesthetic ranking on the layouts and
to perform a furthest-pair or shortest-path task on the drawings.
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1 Introduction

Algorithms for drawing graphs try to optimize (or give a guarantee on) certain
formal quality measures. Typical measures include area, grid size, angular res-
olution, number of crossings, and number of bends. While each of these criteria
is well motivated, we have no guarantee that we get a clear and legible drawing
by optimizing only one of the measures. This is caused by most measures com-
peting with each other, implying the best score according to one metric may
require sacrificing another. For example, it is known that certain planar graphs
cannot be drawn with good angular resolution and polynomial area [8]. The
question arises how we can select an appropriate algorithm for a given graph
drawing task. Instead of relying on a combinatorial or geometric measure of
the drawing, one could also evaluate the results of the algorithms by measuring
the efficiency of tasks carried out by the observer. Another option would be to
just ask observers which drawing they considers “nicer”. By conducting such
experiments we also hope to learn something about the formal measures. The
goal is to identify formal measures and algorithms that are particularly suitable
for typical tasks performed by using a graph visualization.

A path consisting of several edges may be drawn as a single segment if the
edges happen to align their direction. Although the path may contain many
edges, this can be counted as only one segment in the drawing. The total
number of such segments is known as the visual complexity of the drawing.
Instead of straight-line segments, one could also use other geometric objects to
draw paths. One option that has been introduced by Schulz [12] is using circular
arcs. In this paper our focus lies with drawings using segments.

It is an open question whether a small number of segments is a good quality
measure for graph drawings. We present a study that investigates how drawings
with few segments are perceived by the observer in contrast to other drawing
styles. In other words, we want to find out if this design criterion makes draw-
ings more aesthetically appealing for the observer and/or if they are helpful
for executing tasks. The main difficulty is that we cannot control the visual
complexity of a drawing while keeping other quality measures fixed. One way
to avoid this problem is to adapt existing algorithms in such a way that we can
reduce the number of segments in the final drawing without changing the layout
“style” of the existing drawing too much.

In our study, we focus on two graph classes. The first class is that of (rooted)
trees1, for which many drawing algorithms are known. It is not hard to see that
every tree can be drawn with nodd/2 segments, where nodd denotes the number
of odd-degree nodes in the tree [3]. It is unknown however, if every tree can
be drawn with nodd/2 segments using only a polynomial grid size. We use
a heuristic based on the algorithm of Hültenschmidt et al. [6] that draws a
tree with minimal visual complexity and quasi-polynomial area and compare its
drawing in the user study against drawings of other algorithms. In particular,
we use the algorithms of Walker II [14] and of Rusu et al. [11] as alternatives.

1In the remainder, we use “trees” to refer to rooted trees.
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The former mimics the standard style in which trees are typically drawn in the
computer science literature. The latter aims to draw trees with good angular
resolution on a small grid.

The second class of graphs we consider consists of sparse but not necessarily
planar graphs, as provided by the ROME library [15]. In this setting, it is even
harder to control more than one formal measure. We therefore selected only two
algorithms to compare. The first is the popular Fruchterman-Reingold spring
embedder algorithm [4]. The second is an adaptation of it, aimed at reducing
the visual complexity as measured by the number of segments: this is done by
adding constraints that force certain edges to be collinear and hence form a
straight-line segment. As argued also above, we introduce this new adaptation
in order to generate drawings that have a “similar feel” but use fewer segments.

We selected two tasks for the participants to evaluate the drawings pre-
sented to them. The first task addresses the question which of the drawings
are aesthetically more appealing to the participant. In the second task, we
asked the participants to answer questions. For the trees, we asked to identify
pair of nodes realizing the largest distance; for the sparse graphs we asked to
select a shortest path between two designated vertices. The user study was
implemented as a voluntary online questionnaire in order to reach a significant
number of participants.

2 Algorithms

Trees. For trees, we used three algorithms that produce grid drawings as
illustrated in Fig. 2: Tidier, Quad, and FewSegments. All three algorithms
take as input a rooted tree. Many more examples can be found online [7].

The algorithm Tidier was presented by Walker II [14] and builds upon
the classic algorithm by Reingold and Tilford [10]. This algorithm produces a
drawing on a O(n) × O(n) size grid that satisfies three criteria: (1) nodes at
the same level of the tree should lie along a straight line, and the straight lines
defining the levels should be parallel; (2) a parent should be centered over its
offspring; (3) a subtree should be drawn the same way regardless of where it
occurs in the tree.

The algorithm Quad was presented by Rusu et al. [11]. This algorithm allows
the user to specify an angular coefficient and draws edges such that the angles
are above the angular coefficient if possible and evenly spread out otherwise. It
also allows the user to specify how many quadrants may be used to place the
children of a vertex. We chose an angular coefficient of 22.5◦ and allowed the
algorithm to use all four quadrants. Higher values for the angular coefficient
would lead to poorer angular resolution in the subtrees; our chosen value gave
a well balanced layout for the tree complexity used in this study. For this
algorithm, no bound on the grid size was given by Rusu et al.

Finally, the algorithm FewSegments is based on the algorithm by Hülten-
schmidt et al. [6] that draws trees on a quasi-polynomial grid with a minimum
number of segments. On a high level, that algorithm uses a heavy path decom-
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Figure 1: One step of the algorithm by Hültenschmidt et al. [6].

position of a tree, which decomposes the tree in heavy edges and light edges.
The paths formed by the heavy edges are drawn as a single segment. It recur-
sively (guided by the heavy-path decomposition) embeds each subtree such that
the heavy path of its root is drawn with a vector specified by the parent edge of
its root and all subtrees lie in disjoint regions. The children around a vertex v
that are not connected by a heavy path edge are evenly placed to the top-right
of v with decreasing y-coordinates from left to right and to the bottom-left of v
with increasing y-coordinates from right to left with common slopes; see Fig. 1
for an illustration. We use three heuristics to reduce the size of the drawing.

The first heuristic is applied during the layout of the tree. When the algo-
rithm assigns a vector to a subtree, we allow it to increase the length of the
vector slightly such that the new vector is an integer multiple of a smaller prim-
itive vector. For example, if the algorithm would assign a vector (6, 11), then
this heuristic would change the vector to (6, 12). This implies that the segments
on the heavy path in this subtree do not have to use vectors that are integer
multiples of (6, 11), but only integer multiples of (1, 2). Although this makes
one segment a bit longer, the subtree might use less area by this change.

In particular, our algorithm takes as an additional parameter some con-
stant s ≥ 0. We place the subtrees in pairs around a vertex from inside to
outside (note that Hültenschmidt et al. [6] placed them from outside to inside,
but the order does not matter for their algorithm). Let S and S′ be the subtrees
to be placed next around p with the same slope, let (x, y) be the vector assigned
to the heavy path of S before applying the heuristic. Hence, the vector assigned
to the heavy path of S′ is (−x,−y). Note that, if p has an odd number of
light children, then S′ might not exist. Assume without loss of generality that
x, y > 0. For all integers 0 ≤ i ≤ s ·x and 0 ≤ j ≤ s ·y with (y+i)/(x+i) ≤ y/x,
the algorithm computes the width wi,j and the height hi,j for the drawing of S
if the vector assigned to the heavy path of S is (x + i, y + j), and the width
w′i,j and the height h′i,j for the drawing of S′ analogously. For every choice of i
and j, the algorithm assigns a cost function

c(i, j) = i + j + max{wi,j + hi,j , w
′
i,j + h′i,j}.
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(a) Tidier Layout (b) Quad Layout (c) FewSegments Layout

Figure 2: A drawing of a tree with each of the three considered layouts.

Then, the algorithm chooses i∗ and j∗ such that

c(i∗, j∗) = max
0≤i≤sx, 0≤j≤sy

c(i, j)

and assigns the vector (x + i∗, y + j∗) to the heavy path of S and the vector
(x− i∗, y − j∗) to the heavy path of S′. By only allowing slopes that are not
larger than y/x, we make sure that the edge from p to the root of S does not
intersect any already drawn edge; since we are placing the subtrees from inside
to outside, all previously drawn ancestors of p that are placed to the top-right
of p lie above e if drawn with vector (x, y), so drawing e with a vector of smaller
slope cannot create any crossings. The symmetric argument applies for the edge
from p to the root of S′. We chose s = 2 for all tree drawings used in this study.

The second and the third heuristic are applied in alternating order after a
layout has been found. We apply both of them five times.

The second heuristic tries to compress vectors: given a edge e that is drawn
as a vector −→v that is an integer multiple of a primitive vector −→u , it redraws
the tree such that e is drawn with the smallest integer multiple of −→u without
destroying planarity. This heuristic is applied to every edge in a post-order
traversal of the tree.

The third heuristic takes an edge e that is drawn with a long vector and
tries to find a smaller vector to draw e and all edges drawn with the same
segment as e such that the resulting drawing is still planar. This is a more
drastic approach and can change the way a subtree is drawn completely. Let w
be the width of the current drawing and let h be its height. Let S be a subtree
with root r and parent p such that (p, r) is not a heavy edge, it is drawn with
vector (x, y), and |x| + |y| > (w + h)/5. Depending on the number of children
of r, there might be another subtree S′ with parent p′ such that the edge (p, r′)
drawn with vector (−kx,−ky) for some integer k. For all integers i, j with
0 < |i| + |j| < |x| + |y| (in order of rising |i| + |j|), the algorithm computes a
drawing of the tree where (p, r) is drawn with vector (i, j), the vector (i, j) is
assigned to the heavy path of S, the edge (p, r′) is drawn with vector (−i,−j),



506 Kindermann, Meulemans & Schulz Few Segment Drawings User Study

(a) ForceDir Layout (b) FDFewSeg Layout

Figure 3: ROME graph 2282.20 using both force-directed layouts.

the vector (−i,−j) is assigned to the heavy path of S′, and the drawing of all
other edges does not change. If the resulting drawing is planar and its width
and height are not higher than those of the original drawing, then the algorithm
keeps the drawing; otherwise, it uses the next values of i and j until all of them
are used. This heuristic is again applied to every edge in a post-order traversal
of the tree, but only those that fulfill the required conditions.

Graphs. For sparse graphs we used the algorithms ForceDir and FDFewSeg;
example drawings are provided in Fig. 3 and online [7]. The former is an im-
plementation of the spring embedder by Fruchterman and Reingold [4]. This
algorithm computes a force between each pair of vertices. If there is an edge be-
tween two vertices, then there is an attractive force fa(d) = d2/k between them,
where d is the distance between the vertices and k is their optimal distance
defined as k = C

√
A/n, where C is some constant, A is the maximum area of

the drawing, and n is the number of vertices in the graph. If there is no edge be-
tween two vertices, then there is a repulsive force fr(d) = −k2/d between them.
By an addition of these forces at every vertex v, we obtain a movement ∆v
of the vertex described by a 2-dimensional vector. Fruchterman and Reingold
use simulated annealing to control the movement of the vertices such that the
adjustments become smaller over time and the algorithm terminates.

The FDFewSeg algorithm is an extension of the ForceDir spring embed-
der that we developed for this paper. It takes as an additional input a set of
edge-disjoint paths P. First, the movement ∆v for every vertex is computed.
Let v0, . . . , vk = P ∈ P. The algorithm places the internal vertices v1, . . . , vk−1
evenly spaced onto the segment between the endvertices v0 and vk. To this end,
for every vertex vi, 0 < i < k, the movement becomes

∆vi =
n− i

n
(v0 + ∆v0) +

i

n
(vk + ∆vk)− vi.

Note that this procedure does not necessarily draw all paths in P as segments:
if a vertex u of a path is an internal vertex of another path that is processed
later, then u will be moved away from its path segment. Hence, the user should
input paths in an order that avoids this problem: Let P = P1, . . . , Pm. Every
vertex can be the internal vertex of at most one path. If some vertex If v is an
internal vertex of a path Pi and the endvertex of another path Pj , then Pj has
to be input after Pi.
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For the creation of the drawings for the user study, we picked the paths to
be placed on segments manually; most of the time, we picked paths that are
(somewhat) close to being segments in the drawing of the ForceDir algorithm.

We chose not to use an automated way to select the paths for the FDFewSeg

algorithm. The aim of this paper is to compare the aesthetic criteria of the
drawing styles, which could be negatively influenced by a “bad” path selection
algorithm. Automated strategies for selecting paths only become relevant if the
aesthetic criterion is worthwhile. We note that, since there is some hint on the
criterion being worthwhile, finding a good automated strategy is something to
be done in future work.

3 Hypotheses

We designed a user study to compare aesthetics and legibility of drawings pro-
duced by the above-described algorithms. For the study we posed the following
four hypotheses:
H1. For trees, the aesthetics ranking is

a Tidier > FewSegments > Quad for people with a mathematics or com-
puter science background, and

b FewSegments > Tidier > Quad for people from a different background.
H2. For trees, path finding is easiest with the FewSegments layout, followed

by Tidier, and hardest with Quad.
H3. For sparse graphs, the ForceDir layout is more aesthetically pleasing than

the FDFewSeg layout.
H4. For sparse graphs, path finding is easier with the FDFewSeg layout than

with the ForceDir layout.
For Hypothesis H1, we expect that the uniformity of the Tidier and the
FewSegments layout make them preferred over the Quad layout. For mathe-
maticians or computer scientists, we expect that the Tidier layout is preferred,
since it creates a drawing in the standard way that trees are drawn in the liter-
ature. For people with different background, we expect that the FewSegments

layout is preferred, because it seems to be more schematic. Hence, this hypoth-
esis is split into two parts, H1a and H1b.

The same idea underlies Hypotheses H2 and H4: placing paths onto few
segments makes it easier for the user to follow a path between two nodes, since
the eye only has to move along few directions and can traverse several nodes
quickly along a segment. Evenly distribution the nodes along a path in the
force-directed layout should help the reader to quickly determine the number of
nodes on a segment and thus to judge the combinatorial length of such a path.

For Hypothesis H3, we think that the smooth curves in the ForceDir layout
look nicer to a reader than the drawings of the FDFewSeg layouts because the
latter ones can have sharp corners at the meeting point of two path segments;
for example, Bar and Neta [1] argue that sharp corners have a negative effect on
aesthetics as such bends are identified with threat. On the other hand, Vessel
and Rubin [13] studied the objectiveness of taste—their conclusion is that there
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is typically agreement for natural images, abstract depictions are influenced
more by individual taste. Though they cannot fully be eliminated, we believe
that the uniformity of graphical presentation may mitigate personal preferences
to allow for investigating an overall agreement in aesthetics.

4 Experimental design

Selecting tasks. We used two tasks in the study: Aesthetics and Query.
We created different graphs for each task. For the Aesthetics task, we showed
the participant one drawing for each layout of the same graph next to each
other. The order of the drawings was determined randomly. The participant
was asked to determine a ranking on the aesthetics of the drawings by clicking
on them in the desired order.

We used different Query tasks based on the graph class. We showed the
participant one drawing at a time. Over the course of the experiment, every
graph was presented to the participant once with each layout.

For the sparse graphs, we asked the participants to find the shortest path
between two randomly marked vertices that have distance at least 3 (the pair
of vertices was the same for each layout and each participant). The participant
solved this task by clicking on the vertices (or edges) in the order that they
appear on this path. To make sure that a participant does not get stuck on a
question, we allowed them to submit their answer even if no path was found.
We helped the participant with this task by marking (in a different color) the
valid nodes and edges they can click on, which are those that are adjacent to
the endpoint of one of the two paths starting in the two marked vertices.

For trees, shortest paths are uniquely defined which makes it unsuitable as
a task. Hence, we asked the participant to find the furthest pair of vertices,
that is, the pair of vertices such that the distance between them is maximized.
Like finding shortest paths in general graphs, this also requires the participant
to inspect several paths to determine the answer. The participant then had to
click on the vertices that they determined as the furthest pair.

Generating stimuli. All stimuli and their drawings have been made available
online [7]. For trees, we have the following two variables for the stimuli:
• Size. Two different sizes: (1) 20 nodes and (2) 40 nodes.
• Depth. Three different tree depths as defined by the length of the longest

root–leaf paths: (D) deep trees of depth 8 for size 1 and of depth 14 for
size 2, (B) balanced trees of depth 5 for size 1 and of depth 9 for size 2,
and (W) wide trees of depth 3 for size 1 and of depth 5 for size 2.

We use rejection sampling to construct random trees of given size and depth.
We first create a uniformly distributed random Prüfer sequence [9] and the
corresponding labeled unrooted tree. We always choose the vertex with label 1
as the root to create a rooted tree and then check whether it has the given
depth. It is known that Prüfer sequences provide a bijection between the set of
labeled trees on n vertices and the set of sequences of n− 2 integers between 1
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and n. Hence, this algorithm gives us uniformly distributed random trees of
a given depth. For each size and depth, we created four different graphs for
the Aesthetics task and two different graphs for the Query task. This gives us
2 · 3 · 4 = 24 graphs for the Aesthetic tasks (4 repetitions) and 2 · 3 · 2 = 12
graphs for the Query task (2 repetitions).

For the sparse graphs, we have the following two variables for the stimuli:

• Size. Two different sizes: (1) 20 nodes and (2) 40 nodes.
• Type. Two different types: (A) graphs from the ROME library and (B)

random graphs.

For graphs of type A, we randomly picked graphs of the given size from the
ROME library [15] that consists of 11,535 sparse, but not necessarily planar,
graphs with 10 to 100 vertices. For graphs of type B, we created a random
graph by creating a number of nodes specified by the size and picking 30 random
edges for graphs of size 1 and 60 random edges for graphs of size 2; we used the
resulting graph if and only if it is connected. Our choice leads to comparatively
sparse but not necessarily planar graphs, to ensure legible layouts for the user
study. For each size and type, we again created four different graphs for the
Aesthetics task and two different graphs for the Query task. This gives us
2 ·2 ·4 = 16 graphs for the Aesthetic tasks (4 repetitions) and 2 ·2 ·2 = 8 graphs
for the Query task (2 repetitions).

We stored the graphs as JSON files, which contained the coordinates of the
vertices and the set of edges. During the study, the graphs were drawn using
the JavaScript library D3.js [2] as SVG figures to allow arbitrary resizing. The
nodes were drawn using blue circles. Links were drawn in black with a small
halo to increase separability between crossing links. The selected vertices and
links in both Query tasks were marked in green and the selectable vertices and
links in the shortest path task were marked in light blue.

Further considerations. For trees, we created 24 stimuli for the Aesthetics
task and 36 stimuli for the Query task (one per graph and layout algorithm). For
the sparse graphs, we created 16 stimuli for the Aesthetics task and 16 for the
Query task. This gives us 92 stimuli in total. This is beyond what is reasonable
for an online study, assuming 15 to 25 seconds per trial. Since the study has
two different graph classes with different tasks, we used the graph class as a
between-subjects measure. This still leaves 60 stimuli for the tree tasks. Since
the size of a graph is very likely to be an overall factor by the larger difficulty
of the Query task on a larger graph, we used the size as an additional between-
subjects measure for trees. This way, we obtain three groups of stimuli: (1) 30
stimuli for trees of size 1, (2) 30 stimuli for trees of size 2, and (3) 32 stimuli for
sparse graphs. A pilot study showed a completion time of about 15 minutes for
each group.

We first show the Aesthetics task and then the Query task. We did this such
that the participant does not get a bias for a specific drawing style based on the
difficulty of the Query task and instead of the most aesthetic one picks the one
that they preferred in the Query section. Though explicitly asking for visual
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preference could bias performance in the following Query section, we expect this
effect to be negligible, since only one drawing is shown at any given time; and in
any case less strong than the potential bias if the sections were to be inverted.

In order to account for learning effects, the orders of the stimuli for each task
were randomized for each participant. Before each stimulus, the participant was
given a pause screen to reduce memory effects and at the same time allow them
to pace themselves and reduce the possible impact of interruptions. The partic-
ipants received one example question with an answer revealed after providing
one, from which they could go back to task description, to ensure that the task
was understood before starting the actual questions. We opted not to provide
a longer series of training questions to keep time investment to a minimum.

Setup. We developed our user study with PHP and the JavaScript library
D3.js. The study was hosted on a web server2 and the data was stored in a
MySQL database. Since the questionnaire was conducted online, we had no
control over many parts of the experimental environment, e.g., device, point-
ing device, operating system, browser, screen size, interruptions. We asked the
participants to fill in the questionnaire using a desktop or laptop computer, not
a tablet or phone, and to use the pointing device they are most comfortable
with. To make sure that the browser is suitable to run the questionnaire, the
participants first had to set a slider to the value depicted in an SVG figure.
We could not control the screen size, resolution, or distance of the participant
to their screen, so we let the participant control the scale of the web page by
providing a Shrink and a Grow button. Further, we asked them to put their
browser in full-screen mode to reduce distractions. We requested the partici-
pants to not engage in other activities during the questionnaire and to minimize
interruptions. At the end of the study, we asked participants to specify if any
interruptions occurred during the questionnaire.

We recruited the voluntary participants of the user study using a mix of mail-
ing lists, social networks, and social media. Some background and preference
information was asked upon completion, although this remained optional for
what may considered sensitive information (age, gender, country of residence).

5 Results

The data set for the analysis as well as all stimuli have been made available on-
line [7]. In total, 84 people volunteered and completed the online questionnaire,
which was open for participation for two weeks. We inspected all comments left
by participants. One participant had a longer break during one of the questions,
rendering this particular question unsuitable for the analysis. As to maintain a
balanced design to allow for stronger analysis methods, we excluded this par-
ticipant from the analysis. This gave us 21 participants for both group 1 and
group 2, and 41 participants for group 3. Of the 83 participants, 75 provided

2http://tutte.fernuni-hagen.de/web/userstudy/fewarcs
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their age with an average of 36.87, a median of 33, and a standard deviation
of 11.41. In terms of country of residence, a majority of the participants live in
Europe (63), predominantly in Germany (42).

For Hypothesis H1, we expected different results for people from mathe-
matics or computer science background (H1a) than for people from a different
background (H1b). However, we asked for the background of the participants
only after they completed the questionnaire, so we could not influence the distri-
bution between the three different groups. Unfortunately, this resulted in only
two participants without a mathematics of computer science background to be
assigned to the groups for drawings of trees, so we could not claim a significant
effect for H1b. Hence, we started a follow-up study that consisted only of the
aesthetics task on tree drawings, but for trees of both sizes. We advertised this
study on Reddit3 to specifically get people from more diverse backgrounds. This
resulted in 24 additional participants, 14 of them did not have a mathematics
or computer science background. Of these participants, 23 provided their age
with an average of 27.65, a median of 25, and a standard deviation of 6.63. The
countries of residence also turned out to be more diverse, with 8 participants
from Europe, 7 from USA, 4 from Canada, 2 from Australia, 1 from Japan,
and 2 unspecified. The results from the follow-up study helped us to evaluate
Hypothesis H1 more precisely, compared to the conference version where that
data was not available yet.

Hypothesis H1. For the tree aesthetics task, we had 42 participants from
groups 1 and 2 and each of them was shown 12 stimuli, and we had 24 partic-
ipants from the follow-up study and each of them was shown 24 stimuli. This
gave us a total of 1,080 rankings between the three layouts. We used loglinear
Bradley-Terry (LLBT) modeling [5] of the 3,240 pairwise aesthetic preference
comparisons to produce ranked worth scores for each of the three layouts. The
worth score allows the consistency of preference to be assessed in forming an
overall ranking of the three classes. Fig. 4 shows the ranking of the three layouts
in terms of aesthetic preference, broken down by the balance of the graph and
by the background of the participants.

Consistently, the Quad layout was considered as the least aesthetic tree lay-
out. Over all answers, the Tidier layout performed the best. There was some
effect based on the balance of the graph. For each balance, we received 360 rank-
ings. However, the ranking for each balance is the same as the overall ranking,
they differ only in the effect size. For balanced trees, the effect is the largest
with worth scores 0.5845 (Tidier), 0.3337 (FewSegments), and 0.0817 (Quad).
For deep trees, we have worth scores 0.5288 (Tidier), 0.3782 (FewSegments),
and 0.0931 (Quad). For wide trees, the effect is the smallest, but still significant,
with worth scores 0.4709 (Tidier), 0.3238 (FewSegments), and 0.2053 (Quad).

The hypothesis was split into two parts, depending on the background of
the participants. Let us first consider the participants with a mathematics
or computer science background. There were 286 rankings by 19 people with

3https://www.reddit.com/r/SampleSize/
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Figure 4: Worth scores of the three tree layout methods: overall and partitioned
by tree balance or participant background.

a mathematics background, but not computer science; for those, the Tidier

layout was clearly preferred with a worth score of 0.6231 over 0.3136. There
were 648 rankings by 45 participants with a computer science background, but
not mathematics; for those, the Tidier layout was also clearly preferred with
a worth score of 0.6533 over 0.2434. There were 192 rankings by 13 partici-
pants with both mathematics and computer science background; those slightly
preferred the Tidier layout with a worth score of 0.4273 over 0.3914. Over-
all, this suggests that the suspected preference of the Tidier layout over the
FewSegment layout, and of both layouts over the Quad layout exists; hence, we
accept Hypothesis H1a.

Hypothesis H1b is about participants from neither mathematics nor com-
puter science background. There were 336 rankings by 15 people with neither
a mathematics background, nor a computer science background. These partic-
ipants indeed preferred the FewSegment layout over the Tidier layout with a
worth score of 0.4714 over 0.4054. This therefore also confirms Hypothesis H1b,
so we may accept Hypothesis H1.

Hypothesis H2. For the tree query task, we had 42 participants from groups 1
and 2 and each of them was shown 18 stimuli. This gave us a total of 756 tasks
between the three layouts with 252 tasks per layout. We analyzed the error rates
for finding a furthest pair for the three tree layouts defined by the difference of
the distance between the picked pair and the distance between a furthest pair
in the graph, broken down by the balance and by the size of the trees. The
maximum response time was 53 seconds, so we did not have to exclude any
participants. Fig. 5 shows the error rates and the answer times.

We used a two-way RM-ANOVA test to analyze the effects of the layouts,
tree balance, tree size, and their interaction. We used the logarithm of the
response times to normalize the distribution. For the error rate, there are no
interaction effects between layout, balance, and size. The analysis showed a
weak effect of the layout on the error rate (F (2, 80) = 3.636, p < 0.05). A post-
hoc Tukey HSD test with Bonferroni adjustment showed a significant difference
between layout Quad and FewSegments in favor of FewSegments (p < 0.01) and
a significant difference between layout Quad and Tidier in favor of Tidier (p <
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Figure 5: Error rates and answer times for finding a furthest pair for the three
tree layout methods: overall and partitioned by tree balance or size group. Error
bars indicate 95% confidence intervals.

0.001), but no significant difference between layout Tidier and FewSegments.
Further, a post-hoc test showed a weak difference between the tree sizes (p <
0.05) in favor of smaller trees. For small trees, there is some evidence that
FewSegments outperforms Tidier (p < 0.05); for large trees the error rate seems
lower for Tidier, though no statistically significant effect was found (p > 0.15).
We conclude that the layouts FewSegments and Tidier perform better than
the layout Quad, while the participants performed better on small trees than on
large trees.

For the response time, there is some interaction between tree size and tree
balance (F (4, 160) = 2.524, p < 0.05), so we split according to sizegroup for
further analysis. For small trees, there are no interaction effects between layout
and tree balance. The analysis showed a very weak effect of layout (F (2, 40) =
2.523, p < 0.1) on response time. A post-hoc test showed a very weak difference
between layout Tidier and FewSegments in favor of Tidier (p < 0.1) and no
significant difference between the other two layout pairs. We conclude that
the participants performed slightly faster for the Tidier layout than for the
FewSegments layout

For large trees, there are also no interaction effects between layout and tree
balance. The analysis showed significant effect of layout (F (2, 40) = 9.667,
p < 0.001) on response time. A post-hoc test showed a weak difference between
layout Quad and FewSegments in favor of Quad (p < 0.05) and a significant
difference between layout Tidier and FewSegments in favor of Tidier (p <
0.001). We conclude that the participants performed slightly faster for the Quad
layout than for the FewSegments layout and significantly faster for the Tidier
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layout than for the FewSegments layout.

Since the error rate was smaller for the FewSegments and Tidier layouts
than for the Quad layout, but the response time for FewSegments was worse
than for the other two, we can only partially accept Hypothesis H2: the layouts
FewSegments and Tidier both outperform the layout Quad, but the layout
Tidier outperforms the layout FewSegments.

Though not initially hypothesized, we also found a significant effect of the
tree balance on the error rate (F (2, 80) = 14.867, p < 0.001). A post-hoc test
showed a significant difference between tree balances balanced and deep in favor
of balanced (p < 0.001) and a significant difference between tree balances wide
and deep in favor of wide (p < 0.001), but no significant difference between tree
balances wide and balanced.

For small trees, we found a significant effect of balance (F (4, 80) = 65.07,
p < 0.001) on the response time. There is a significant difference between
both balances wide and balanced and the balance deep in favor of the former
(p < 0.001 for both).

For large trees, the analysis showed a significant effect of balance (F (4, 80) =
1.808, p < 0.001) on the response time. A post-hoc test showed a significant
difference between balance wide and balanced in favor of balanced (p < 0.001), a
significant difference between balance wide and deep in favor of deep (p < 0.01),
and a weak difference between balance deep and balanced in favor of the balanced
(p < 0.05).

This analysis suggests that it is easier to find a furthest pair in balanced and
wide trees. We believe that this effect comes from a correlation between the
distance of a furthest pair and the depth of the tree and that finding a furthest
pair seems to be easier the shorter the distance between them is. However, since
we have no hypothesis on this behavior, we cannot claim the statistical effect
as a strong evidence of an effect.

Hypothesis H3. For the sparse graph aesthetics task, we had 41 participants
from group 3 and each of them was shown 16 stimuli. This gave us a total of 656
rankings between the two layouts. We again used LLBT modeling of the 656
pairwise aesthetic preference comparisons to produce ranked worth scores for
both layouts. Fig. 6 shows the ranking of the both layouts in terms of aesthetic
preference, broken down by the graph class and the size of the graph.

Over all 656 rankings, the ForceDir layout was preferred with a worth score
of 0.5246 over the FDFewSeg layout with a worth score of 0.4754. For graphs
from the ROME library, the FDFewSeg layout was slightly preferred by the
participants. For small ROME graphs, the layouts were perceived similar, with
worth scores of 0.5089 (FDFewSeg) and 0.4911 (ForceDir), but for large ROME
graphs, there is a clearer (although still small) preference for FDFewSeg (worth
score 0.5268) over ForceDir (worth score 0.4732). On the other hand, for
randomly generated graphs, there is a clear preference for the ForceDir layout
over the FDFewSeg layout. The effect is the largest for small random graphs with
a worth score of 0.5977 over 0.4023; for large random graphs, the worth scores
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are 0.5357 (ForceDir) and 0.4643 (FDFewSeg). Hence, we accept Hypothesis H3,
although we remark that for the real-world graphs from the ROME library the
layouts performed similary with a slight preference for FDFewSeg.

Hypothesis H4. For the sparse graph query task, we had 41 participants from
group 3 and each of them was shown 16 stimuli. This gave us a total of 656 tasks
between the two layouts with 328 tasks per layout. We analyzed the error rates
for finding a shortest path for the two layouts defined by the difference between
the length of the selected path and the length of a shortest path, broken down
by the four graph types (ROME small, ROME large, Random small, Random
large). Fig. 7 shows the error rates and answer times by the participants.

We used the same analysis as for the tree query task. For the error rate, there
is some interaction between layout and graph type (F (3, 120) = 3.313, p < 0.05),
so we split according to graph type. For Random small graphs, we found a
significant difference between the layouts in favor of ForceDir (F (1, 40) = 9.949,
p < 0.01); for the other graph types, there is no significant effect of the layouts.

For the response time, there is a strong interaction between layout and
graph type (F (3, 120) = 21.06), p < 0.001), so we split according to graph
type. For ROME small (F (1, 40) = 9.317, p < 0.01) and Random small graphs
(F (1, 40) = 7.474, p < 0.01), there is a significant effect of the layouts on the re-
sponse time in favor of ForceDir. For ROME large graphs, there is a very weak
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effect of the layouts on the response time in favor of ForceDir (F (1, 40) = 3.901,
p < 0.1). For Random large graphs, there is a significant effect of the layouts
on the response time in favor of FDFewSeg (F (1, 40) = 24.56, p < 0.001).

Since the ForceDir layout outperformed the FDFewSeg on three of the four
graph layouts, we have to reject Hypothesis H4 in general. However, the
FDFewSeg performed better on large random graphs, so there is some evidence
that this layout can give better results if the input graph has many vertices.
The reason for this may be that the ROME graphs tend to have many degree-2
vertices. Similar effects can be observed for the small random graphs. Conse-
quently, paths become easily traceable for these instances even if drawn with
many segments.

6 Conclusion

We compared various graph layout algorithms to assess the effect of low visual
complexity on aesthetics and performance. We have confirmed Hypothesis H1:
people with a math or computer science background tend to prefer the classi-
cal top-down layout for trees, and people with no such background prefer the
layouts produced by the algorithm assuring low visual complexity. We have
also partially confirmed Hypothesis H2, by discovering evidence that finding a
furthest pair is the easiest with the classical tree layout. We confirmed Hypoth-
esis H3: for sparse graph the traditional force-directed layout is more aestheti-
cally appealing than its modification to reduce the visual complexity, although
there is some evidence that for real-world graphs the effect is very small and
might even be in favor of the layout with small visual complexity. We rejected
Hypothesis H4 in general, but rather found that it is typically easier to find
the shortest paths between two nodes with the traditional force-directed layout
than the modification, though our hypothesis was found to hold for large ran-
dom graphs. This leaves the possibility open that using few segments can be
beneficial for graphs that are more intertwined.

In short, our findings suggest that visual complexity may positively influence
aesthetics, depending on the background of the observer, as long as it does not
introduce unnecessarily sharp corners. Hence, drawings trees with few segments
give a more schematic alternative over the classic drawing style without the risk
of harming the aesthetic perception. However, few-segment drawings tend not to
improve task performance. It is worth noting that we did not provide training
to our participants, as to suggest how the segments can for example help to
easily assess the length of a subpath. Providing such clues may have a positive
effect on the performance, but at the same time would also result in an unfair
comparison, if no training or strategies for the traditional layout were to be
suggested.
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