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Abstract

Beyond-planarity is a collective term for classes of graphs that ex-
tend the planar graphs and are defined by drawings with restrictions on
crossings. Examples are 1-planar, fan-planar, fan-crossing free, and quasi-
planar graphs. We define these and other classes of beyond-planar graphs
by simple first order formulas, using two predicates to express a cross-
ing and an adjacency of two edges, and establish inclusion relationships
between the so obtained graph classes.
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1 Introduction

In the past few years, several classes of graphs have been introduced that extend
the planar graphs and are defined by drawings with restrictions on crossings.
These graphs are studied in Topological Graph Theory, Graph Drawing, and
Computational Geometry. Particular examples, which are defined in Section
2, are 1-planar graphs [31, 32], fan-planar graphs [8, 10, 26], fan-crossing free
graphs [15], quasi-planar graphs [3], and right angle crossing (RAC) graphs [21].
Moreover, there are specializations with all vertices in the outer face, such as
outer 1-planar graphs [6, 24] and outer fan-planar graphs [8, 10].

These definitions are motivated by the need for classes of non-planar graphs
from real world applications and a negative correlation between edge crossings
and the readability of graph drawings by human users. The aforementioned
graph classes aim to meet both requirements. Graphs belonging to these classes
are called beyond-planar graphs [27,29]. From the results obtained so far in this
area, it turned out that most of these graphs have common graph properties,
such as a linear density, an NP-hard recognition problem, and drawings using a
planarization with a dummy vertex for each crossing point.

We aim at a complete list of classes of beyond-planar graphs. This goal
is unreachable, since researchers are creative and there is no limit on restric-
tions of crossings and ways to extend the planar graphs. Here, we introduce
a uniform framework with simple first-order logic formulas that captures the
aforementioned classes of beyond-planar graphs and introduces some new ones.
The formulas are defined in Section 3. In Section 4 we display inclusion relations
in a hierarchy diagram.

2 Preliminaries

In this section, we define some classes of beyond-planar graphs.

A graph G = (V,E) consists of finite sets of vertices and edges. Two vertices
u and v are adjacent if there is an edge e = {u, v} and two edges are adjacent
if they share a common endvertex. We consider undirected graphs that are
simple both in a graph theoretic and in a topological sense. Thus we do not
admit multiple edges and self-loops, and exclude multiple crossings of two edges
and crossings among adjacent edges. The subgraph induced by a subset U of
vertices is denoted by G[U ].

A drawing of a graph G is a mapping of G into the plane such that the
vertices are mapped to distinct points and each edge is mapped to a Jordan arc
between the endpoints. A drawn graph is called a topological graph. In other
works, a topological graph is called an embedding, which is the class of topolog-
ically equivalent drawings of a graph. A drawing may subdivide an edge at its
crossing points. Non-crossed pieces are called edge segments, whose endpoints
are vertices or crossing points. A drawn graph partitions the plane into topo-
logically connected regions, called faces. The boundary of each face consists of
a cyclic sequence of edge segments. It can be specified by the cyclic sequence
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of vertices and crossing points of its edge segments. A vertex, crossing point or
edge is said to be incident to a face if (a segment of) it is part of its boundary.
The unbounded region is called the outer face. If all vertices are incident to
the outer face, then a drawing is called an outer drawing. Outer drawings can
also be specified by an additional vertex that is placed in the outer face and is
connected to all other vertices by non-crossed edges, or by a Hamiltonian cycle
H after an augmentation of the given graph by appropriate edges. The edges
of H are non-crossed and all other edges are routed in the interior of H. For
convenience, we identify vertices and edges of a graph, respectively, as points
and Jordan arcs representing them in a drawing or an embedding.

A fan (or star or radial grid) is a set of edges with a single common endvertex.
Edges are independent if they do not share a common endvertex. A set of
edges is called a tangle if the edges mutually cross each other in a drawing, see
Fig. 1(c). An edge e has a fan-crossing if the edges crossing e form a fan, see
Fig. 1(a), and an independent crossing if the crossing edges are independent,
see Fig. 1(b). Drawings with only independent crossings are commonly called
fan-crossing free [15]. For the definition of fan-planar graphs, Kaufmann and
Ueckerdt [26] imposed a special restriction. Let e, f and g be three edges in a
drawing so that e is crossed by f and g, and f and g share a common vertex z.
Then they form configuration II if one endvertex of e is inside a cycle through z
and consisting of segments of e, f and g, and the other endvertex of e is outside
this cycle, see Fig. 2(a). Then an edge may even cross a triangle, as illustrated
in Fig. 2(b). Note that a triangle is the only configuration in which a crossed
edge does not have a fan-crossing with all its crossed edges and, at the same
time, does not cross any two independent edges.

A graph G is planar [23] if it admits a drawing so that edges do not cross,
and it is 1-planar [32] (k-planar [31]) if it admits a drawing so that each edge
is crossed at most once (by at most k edges). If there are no k ≥ 2 pairwise
crossing edges, then G is called k-quasi-planar, where 2-quasi-planar graphs are
planar and 3-quasi-planar graphs are simply called quasi-planar [3]. Hence,
quasi-planar graphs exclude tangles of three or more edges. Conversely, we call
G a tangle graph if it admits a drawing such that for every edge e, the set
of edges crossing e is a tangle. A graph G is fan-crossing free if there are no
fan-crossings [15]. Then there are only crossings of independent edges. We call
G a grid-crossing graph if it has a drawing that is simultaneously quasi-planar
and fan-crossing free. Then the set of edges can be partitioned into non-crossed
edges and sets of independent edges Xi and Yi for some i ≥ 0 with the following
properties: the edges of Xi cross the edges of Yi and do not cross edges of Xi or
Yj for i 6= j, and accordingly for Yi. Moreover, there is no edge that crosses both
an edge of Xi and an edge of Yi. In complement, grid-crossings are excluded
in grid free graphs [1]. A graph G is fan-planar if it admits a drawing that
avoids independent crossings and configuration II [26], see Fig. 2. Then there
are fan-crossings, but only if the crossing edges have a common endvertex on
the same side of the crossed edge. We call a graph fan-crossing if is admits a
drawing in which every crossing is a fan-crossings, and adjacency-crossing if it
can be drawn so that each edge is crossed by edges that are pairwise adjacent,
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(a) (b) (c) (d)
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Figure 1: (a) fan-crossing, (b) fan-crossing free with k ≥ 3 sets of independent
edges, (c) tangle crossing = pairwise crossing edges, (d) quasi-planar = no
three mutually crossing edges, (e) grid-crossing with two sets of crossing edges,
(f) adjacency-crossing with a fan (left) and a crossed triangle (right), and (g)
adjacency-tangle crossings.

as shown in Fig. 1(f). Note that fan-crossing graphs admit configuration II and
exclude edges crossing a triangle, and adjacency crossing graphs only exclude
independent crossings. Finally, a graph G is called an adjacency-tangle crossing
graph if edges f1 and f2 crossing edge e in a drawing of G are adjacent or cross
each other, see Fig. 1(g).

From the aforementioned graph classes, the quasi-planar graphs were studied
first [3]. It has been shown that they have at most 6.5n − 20 edges [2]. Fan-
crossings and fan-crossing free graphs were introduced by Cheong et al. [15], who
showed that fan-crossing free graphs have at most 4n − 8 edges. Graphs with
fan-crossings were studied first by Kaufmann and Ueckerdt [26], who proved that
fan-planar graphs have at most 5n−10 edges. However, the relationship between
fan-planar, fan-crossing, and adjacency-crossing graphs is unclear. Kaufmann
and Ueckerdt observed that configuration II cannot occur in straight-line draw-
ings, so that every straight-line adjacency crossing drawing is fan-planar. They
posed the density of adjacency-crossing graphs as an open problem.

Note that adjacency-crossing and fan-crossing free, as well as quasi-planar
and tangle are complementary pairs with respect to their defining properties,
and 1-planar is a specialization of each of them. Adjacency-tangle crossings
combine adjacency and tangle crossings by a disjunction, and grid-crossing is
the intersection of quasi-planar and fan-crossing free. For an illustration see
Fig. 1 and consider Fig. 5 for inclusion relations between the graph classes.
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Figure 2: (a) configuration II and (b) a triangle crossing. The shaded regions
in (b) represent subgraphs that prevent a rerouting of edge e. Such subgraphs
must also exist in (a).

We use names in capital letters for graph classes (with shortcuts) and denote
the aforementioned classes of simple (graph theoretic and topological) graphs by
PLANAR, 1-PLANAR, FAN-PLANAR, FAN-CROSSING, ADJ-CROSSING,
QUASI-PLANAR, FAN-FREE, GRID-CROSSING, TANGLE, and ADJ-TANGLE,
respectively. We add the prefix “outer” for the respective outer classes and de-
note the class of all undirected graphs by GRAPHS. The classes of adjacency-
crossing, fan-crossing, grid-crossing, tangle and adjacency-tangle crossing graphs
have not been studied before.

One may also consider non-simple topological graphs with multiple edge
crossings and crossings among adjacent edges. Clearly, there is no difference
between simple and non-simple planar (1-planar, RAC) graphs. However, there
are non-simple quasi-planar graphs with 7n−O(1) edges whereas simple quasi-
planar graphs have at most 6.5n−20 edges [2]. Non-simple graphs have not yet
been studied in the other cases.

There are further classes of graphs that are beyond-planar in some sense
and are related to the aforementioned graph classes, such as right angle crossing
graphs (RAC) [21], map graphs [14] and several graph classes that are defined
by visibility representations [9,11,20,25,30]. Also, topological graphs that avoid
other crossing patterns, such as grids, are related [1].

3 First-Order Logic Formulas

In algebra and logic, a graph G is a structure with a set of vertices and a
binary relation for the edges such that adj(u, v) if and only if there is an edge
e = {u, v}. An undirected graph satisfies the formula ∀u, v adj(u, v)⇒ adj(v, u)
and it is simple if also ∀v ¬adj(v, v) holds. Multiple edges cannot exist in this
structure. Richer structures with sets of vertices and edges and the incidence
relation are used for the expression of graph properties in monadic second order
logic [16, 19]. In a further generalization, Courcelle [17] introduced predicates
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for a rotation system, i.e., the cyclic ordering of edges at a vertex, and showed
that the unique embedding of 3-connected planar graphs can be specified in
monadic second order logic. Furthermore, he introduced predicates to express
the order in which a directed edge is crossed by other edges and crossings from
left to right [18].

For the definition of some classes of beyond-planar graphs, we use predicates
for adjacency and edge crossings.

Definition 1 For a topological graph G and edges e, f , we say that e and f are
adjacent, denoted α(e, f), if they share a common endpoint. Let χ(e, f) if e and
f cross exactly once in a drawing of G and χ∗(e, f) if e and f cross at least
once.

The adjacency relation α(e, f) is defined on graphs whereas the crossing re-
lation needs a drawing or a topological graph. The relations can be used to
describe simple and non-simple topological graphs.

We consider universally quantified first-order formulas with three variables
e, f and g for edges and the predicates α and χ. For convenience, we use the
same letters for edges and variables for edges. Let Π = {χ(e, f), χ(e, g), χ(f, g),
α(e, f), α(e, g), α(f, g)}. A predicate π ∈ Π can be regarded as a boolean vari-
able so that each formula corresponds to a boolean function over six variables.
In total, there are 22

6

boolean formulas over Π. We wish to define classes of
beyond-planar graphs and therefore restrict ourselves to formulas of the form
∀e, f, g (β ⇒ γ), where the subformula β expresses edge crossings.

Definition 2 For simple topological graphs and three variables for distinct edges
e, f and g we define:

1. ϕ1 = α(e, f).

2. ϕ2 = ¬α(e, f).

3. ϕ3 = χ(e, f).

4. ϕ4 = ¬χ(e, f).

5. ϕ5 = χ(e, f)⇒ χ(e, g).

6. ϕ6 = χ(e, f)⇒ ¬χ(e, g).

7. ϕ7 = χ(e, f) ∧ χ(e, g)⇒ α(f, g).

8. ϕ8 = χ(e, f) ∧ χ(e, g)⇒ ¬α(f, g).

9. ϕ9 = χ(e, f) ∧ χ(e, g)⇒ χ(f, g).

10. ϕ10 = χ(e, f) ∧ χ(e, g)⇒ ¬χ(f, g).

11. ϕ11 = χ(e, f) ∧ χ(e, g)⇒ α(f, g) ∨ χ(f, g).
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12. ϕ12 = χ(e, f) ∧ χ(e, g)⇒ ¬α(f, g) ∧ ¬χ(f, g).

13. ϕ13 = χ(e, f) ∧ χ(e, g)⇒ ¬α(f, g) ∨ χ(f, g).

14. ϕ14 = χ(e, f) ∧ χ(e, g)⇒ α(f, g) ∧ ¬χ(f, g).

15. ϕ15 = χ(e, f) ∧ χ(e, g)⇒ α(f, g) ∨ ¬χ(f, g).

16. ϕ16 = χ(e, f) ∧ χ(e, g)⇒ ¬α(f, g) ∧ χ(f, g).

17. ϕ17 = χ(e, f) ∧ χ(e, g)⇒ ¬α(f, g) ∨ ¬χ(f, g).

18. ϕ18 = χ(e, f) ∧ χ(e, g)⇒ α(f, g) ∧ χ(f, g).

Formulas ϕ1 to ϕ4 are the basic ones and express that two edges are adjacent
or cross or not. ϕ5 and ϕ6 admit that two edges do or do not cross and if they
cross whether or not a third edge crosses each of them, since e and f can be
exchanged. Finally, ϕ7 to ϕ18 is an exhaustive list of consequents (to the right
of “⇒”) with predicates from the set Π and three variables for edges so that the
antecedent (to the left of “⇒”) expresses that an edge is crossed at least twice.

For each formula ϕ from above there is a set of simple topological graphs G
satisfying the extension of ϕ to a first-order formula Φ so that G � Φ. The first
order formula expresses that edges are distinct and three edges may cross or are
adjacent, where adjacent edges do not cross. In other words, G is a model of Φ
or simply of ϕ [33].

Theorem 1 Consider first order logic formulas with variables for edges in a
topological graph of the form

Φi = ∀e, f, g η(ϕi),
where η(ϕi) = (e 6= f ∧ e 6= g ∧ f 6= g)⇒ (ϕi ∧ β)
and β = (α(e, f) ⇒ ¬χ(e, f)) ∧ (α(e, g) ⇒ ¬χ(e, g)) ∧ (α(f, g) ⇒ ¬χ(f, g)).
Alternatively, one can write:

Φi = ∀e, f (e 6= f ⇒ ¬(α(e, f)∧χ(e, f))) ∧ ∀e, f, g (e 6= f 6= g 6= e⇒ ϕi).
Then we obtain the following characterizations for graphs G:

1. G � Φ1 if and only if G is a fan or a triangle and may have isolated
vertices.

2. G � Φ2 if and only if G consists of isolated edges and vertices.

3. G � Φ3 if and only if G consists of a tangle and isolated vertices.

4. G � Φ4 if and only if G is planar.

5. G � Φ5 if and only if G is planar or consists of a single tangle together
with isolated vertices.

6. G � Φ6 if and only if G is 1-planar.

7. G � Φ7 if and only if G is adjacency-crossing.
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8. G � Φ8 if and only if G is fan-crossing free.

9. G � Φ9 if and only if G is a tangle graph.

10. G � Φ10 if and only if G is quasi-planar.

11. G � Φ11 if and only if G is an adjacency-tangle graph.

12. G � Φ12 if and only if G is grid-crossing.

13. G � Φ13 if and only if G is fan-crossing free.

14. G � Φ14 if and only if G is adjacency-crossing.

15. G � Φ15 if and only if G is quasi-planar.

16. G � Φ16 if and only if G a tangle graph.

17. G � Φ17 if and only if G is a simple topological graph.

18. G � Φ18 if and only if G is 1-planar.

Proof: The characterization for Φ1, . . . ,Φ4 and Φ6 are obvious. If there is a pair
of crossing edges, then all edges must cross if Φ5 holds. A graph G satisfying
Φi for i = 7, . . . , 18 has the following properties: if an edge e is crossed by
edges from a set F = {f1, . . . , fk} with k ≥ 2, then every pair of edges in the
set F must satisfy the consequent of ϕi. Then two edges cross at most once
and adjacent edges do not cross so that G is simple. Now suppose that e is
crossed by the edges of F . If G satisfies Φ7, then the crossing edges f1, . . . , fk
are adjacent and G is adjacency-crossing. For i = 8, 10 and 12, the graphs are
fan-crossing free, quasi-planar and grid-crossing, respectively. The edges of F
cross pairwise and form a tangle together with e if i = 9. There may be several
tangles. If two edges from two tangles cross, then all edges of the tangles must
cross. Hence, distinct tangles are edge disjoint and G is a tangle graph. For
i = 11 the edges of F cross or are adjacent so that G is an adjacency-tangle
graph. Since adjacent edges do not cross, the formula α(e, f)⇒ ¬χ(e, f) leads
to a simplification of the consequent of Φi for i = 13, 14, 15, 16, 18 which can
be replaced by ¬α(f, g), α(f, g),¬χ(f, g), χ(f, g), and true, respectively so that
the model coincides with the specified graph class. In other words, Φ13 ≡ Φ8,
Φ14 ≡ Φ7, Φ15 ≡ Φ10, Φ16 ≡ Φ9, and Φ18 ≡ Φ6, where “≡” means equivalence
[33]. In particular, if G satisfies Φ14, then the edges of F crossing e are adjacent
and do not cross each other. However, adjacent edges do not cross so that G
is adjacency-crossing. Finally, ϕ18 is false, since adjacent edges do not cross.
Hence, there cannot be two such edges so that each edge is crossed at most
once. In complement, ϕ17 is true so that Φ17 describes every simple topological
graph. This concludes the proof of the only-if direction.

The if-direction is clear from the definitions. 2

Note that the consequents of ϕi and ϕi+1 are complementary for i = 2j − 1
and j = 1, . . . , 9 so that ϕi+1 = γ ⇒ ¬η if ϕi = γ ⇒ η. The defining property



JGAA, 22(1) 51–66 (2018) 59

of the graphs satisfying Φi+1 is the negation of the defining property of the
graphs satisfying Φi. However, the graph classes are not complementary and
each includes the 1-planar graphs.

There are no more formulas of the form Φ = η(ϕ) with ϕ = χ(e, f) ∧
χ(e, g) ⇒ β for some boolean formula β over Π, since ¬(χ(e, f) ∧ α(e, f)) is
assumed for any two edges e and f . However, there are more formulas of the
form ϕ = χ(e, f) ⇒ β. For example, let β = χ(e, g) ∨ α(e, g). If a graph G
satisfying Φ with Φ = η(ϕ) has edges e1, . . . , ek for some k ≥ 3 and e1 and e2
cross, then the remaining edges e3, . . . , ek must cross e1 and e2 or they must
be adjacent. It is unclear which of these formulas is meaningful and leads to
the definition of a useful class of beyond-planar graphs. Non-crossed edges are
possible by the implication.

Also, note that the use of χ(e, f) and χ∗(e, f) distinguishes between simple
and non-simple topological graphs, which is relevant, in particular, for quasi-
planar graphs [2].

The graph classes ADJ-CROSSING, FAN-CROSSING, GRID-CROSSING,
TANGLE and ADJ-TANGLE are new. Each class contains the 1-planar graphs.
The classes ADJ-CROSSING and FAN-CROSSING are an extension of the class
of fan-planar graphs introduced by Kaufmann and Ueckerdt [26], since trian-
gle crossings and configuration II are allowed. The set of all simple topological
graphs is the model of Φ17, since the restrictions on crossings are vacuous. How-
ever, we do not consider the class GRAPHS to be beyond-planar.

A topological graph G = (V,E) is outer-γ for a graph property γ if G admits
a drawing with all vertices in the outer face so that the drawing satisfies γ. The
outer restriction can be expressed by a formula with variables for vertices and
edges and the relations α(e, f), χ(e, f) and inc(e, v), where inc(e, v) describes
the incidence between an edge e and an endvertex v. There must be a new ver-
tex w 6∈ V in the outer face that is adjacent to all other vertices by non-crossed
edges. However, structures with variables for edges and vertices and three pred-
icates are richer than the ones used in our framework. Another description of
outer-γ graphs is given by Courcelle [18] using a Hamiltonian cycle.

The formulas in Theorem 1 with three or k+2 universally quantified variables
for edges describe the case k = 1. It is the first layer of classes of beyond-
planar graphs. Formulas with (k + 2) variables are more powerful and admit
the expression of k-planar [31], k + 2-quasi-planar [3], and k-fan-crossing free
graphs [15] on the k-th layer of classes of beyond-planar graphs. In this way,
many new classes of beyond-planar graphs can be defined.

4 Classification

The 1-planar graphs are the best known class of beyond-planar graphs. They
were introduced by Ringel [32] and have intensively been studied since then.
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Figure 3: A tangle graph that is not 1-planar

In an annotated bibliography, Kobourov et al. [27] summarize the state on 1-
planar graphs. The listed problems can be used as a guideline for a study of
beyond-planar graphs. We restrict ourselves to inclusion relations between the
aforementioned and some graph classes and leave typical problems of beyond-
planar graphs, such as upper and lower bounds on the number of edges of
maximal graphs (density and sparsity), the recognition problem, unique embed-
dings, alternative drawings and other representations, graph parameters, and
the closure under graph operations, for further studies.

There are obvious inclusion relations between classes of beyond-planar graphs
by the definition. Non-inclusions can be derived from the density bounds and
from counter-examples, which are often hard to obtain, and results are rare.
Some other graph classes come into play.

A graph is called right-angle crossing (RAC) if it admits a straight-line
drawing in the plane so that edges may cross at a right angle [21]. RAC graphs
are defined by a geometric property and not by a topological one. A graph is
1-bend-RAC [22] if it admits a polyline drawing with at most one bend per edge
and segments may cross at a right angle. A 1-planar graph is IC-planar [5, 12]
(NIC-planar [7,34]) if each vertex is incident to at most one crossing edge (each
pair of vertices is incident to at most one pair of crossing edges).

Before we display our hierarchy diagram we need a technical result.

Lemma 1 Graph N from Fig. 3 is a tangle graph and not 1-planar.

Proof: Graph N = (V,E) consists of an inner hexagon with vertices u0, . . . , u5,
two rings of six K4 with vertices ui, ui+1, vi, vi+1 and vi, vi+1, wi, wi+1 for i =
0, . . . , 5, and two outer K4 with vertices w0, w1, w2, w3 and w0, w5, w4, w3. All
indices are modulo 6. The drawing proves that N is a tangle graph and 1-planar
except for the triple of crossing edges {ui, ui+3} for i = 0, 1, 2. We shall show
that the embedding of N is almost unique if it shall be 1-planar.
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Figure 4: The two possible embeddings of K4 as a (planar) tetrahedron or as a
kite

There are two embeddings or topological graphs of K4 [28], as a tetrahedron
(where the non-crossed planar edges may be crossed by other edges) and as a
kite (augmented X-configuration [4]) with one pair of crossing edges as shown
in in Fig. 4. Then the other edges are non-crossed, since N is 3-connected and
the embedding can be transformed into normal form [4].

We claim that each K4 with vertices vi, vi+1 for i = 0, . . . 5 must be embed-
ded as a kite. Otherwise, there is no 1-planar embedding of N . Let E(N) be any
1-planar embedding. Suppose that the K4 subgraph induced by v2, v3, u2, u3 is
embedded as a tetrahedron T with u2 in the interior of the triangle of u3, v2, v3.
All other cases are similar, since N has many symmetries. Every proper sub-
graph N [U ] with U ⊂ V has at least six neighbors in N [V − U ] and it has at
least seven neighbors if U 6= {ui} or V − U 6= {ui} for i = 0, . . . , 5. Hence, the
remaining vertices must be placed in the outer face of E(N) or in the triangle
(u2, v2, v3) of T , since an edge of T would be crossed at least twice, otherwise.
Suppose the vertices are placed in the outer face of E(N), otherwise exchange
the roles of u2 and u3. Since u2 has degree six, each outer edge of T is crossed
by one edge incident to u2 in E(N). The K4 subgraph N [v2, v3, w2, w3] must be
embedded as a kite, since w2 (or symmetrically w3), as a center of a tetrahe-
dron, cannot be connected to its neighbors in E(N). This implies that the edge
{v2, v3} is non-crossed, but it must be crossed by an edge from {u2, u1}, {u2, v1}
or {u2, u5}, a contradiction.

Hence, the rings of K4 of N have a unique 1-planar embedding so that the
edges {ui, ui+1}, {vi, vi+1}, {wi, wi+1} and {ui, vi}, {vi, wi} are non-crossed for
i = 0, . . . , 5 (mod 6). Then E(N) is unique up to the choice of the outer face.
Now, the edges {ui, ui+3} of the inner crossed hexagon cross pairwise in E(N)
so that E(N) is not 1-planar. 2

Note that there is a quasi-planar drawing of N by routing, e.g., edge {u0, u3}
around u1 and thereby avoiding a crossing with {u1, u4}.

We now display the inclusion relationship of the aforementioned classes of
beyond-planar graphs.

Theorem 2 A graph class G is contained in a graph class G′, G ⊆ G′, if there
is an arrow from G to G′ in Fig. 5, and the inclusion is proper, G ⊂ G′, if there
is a thick arrow. There is an incomparability, if there is a dotted line.
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outer 1-PLANAR
2.5n-4

1-bend RAC
6.5n-13

FAN-FREE

4n-8
ADJ-TANGLE

>5n-10

QUASI-PLANAR

6.5n-20

PLANAR

3n-6

TANGLE

4n-8

GRID-CROSSING

4n-8

RAC

4n-10

1-PLANAR
4n-8

NIC-PLANAR
3.6(n-2)

IC-PLANAR
3.25n-6

FAN-CROSSING

> 5n-10

ADJ-CROSSING

>5n-10

FAN-PLANAR

5n-10

Figure 5: A hierarchy of classes of beyond-planar graphs and their density. A
(thick) arrow indicates a (proper) inclusion and red, dotted lines an incompa-
rability between the graph classes.

Proof: We scan the diagram form bottom to top. Auer et al [6] have shown
that every outer 1-planar graph is planar. The hierarchy from planar to tangle
is obvious by definition and it is proper due to the density and by Lemma 1.

Since our graphs are simple topological graphs, a tangle consists of inde-
pendent edges. Hence, every tangle graph is fan-crossing free, and thereby
tangle graphs of size n have at most 4n − 8 edges [15]. Clearly, TANGLE ⊂
ADJ-TANGLE, where the proper inclusion is due to the density. Every RAC-
drawing is simultaneously fan-crossing free and quasi-planar, and therefore RAC
⊂ GRID-CROSSING holds. The inclusion is proper, since every 1-planar graph
is grid-crossing and 1-planar and RAC graphs are incomparable [21]. The in-
comparability has been extended to NIC and RAC by Bachmaier et al. [7]
who showed that there are mutual counterexamples. On the other hand, every
IC-planar graph admits a RAC-drawing [12], and every 1-planar graph admits
a 1-bend RAC drawing [22], and the properness of the inclusions is due to
the density. Clearly, every 1-planar graph is grid-crossing but not conversely.
Since grid-crossing graphs are fan-crossing free, their density is 4n − 8, which
is less than the density of quasi-planar graphs. The inclusion relations from
1-PLANAR to ADJ-TANGLE are obvious and every adjacency-crossing graph
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is quasi-planar, since three edges do not cross pairwise in an adjacency-crossing
of a simple topological graph. 2

The displayed hierarchy diagram can be extended by outer graph classes,
such as outer-RAC, outer FAN-PLANAR, etc. Such classes are candidates for a
recognition in polynomial time, as shown for outer 1-planar [6,24] and maximal
outer fan-planar graphs [8].

We conjecture that the diagram is complete in the sense that there is a
proper inclusion between graph classes G and G′ if there is a path from G to
G′ and an incomparability otherwise. For proofs of an incomparability we wish
to use path-additions [13] to distinguish beyond-planar graph classes and to
construct counterexamples and graphs with an almost unique embedding.

5 Conclusion

We have defined some classes of beyond-planar graphs by a uniform framework
of simple first-order logic formulas and have established inclusion relationships
among the defined graph classes. The approach can be extended to introduce
many more classes of beyond-planar graphs, including classes of outer graphs
and graph classes on larger layers with k ≥ 2. It opens a very broad field for
studies of problems that are typical for beyond-planar graphs.
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