
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 21, no. 4, pp. 547–554 (2017)
DOI: 10.7155/jgaa.00428

A Maximum Weight Clique Algorithm For
Dense Circle Graphs With Many Shared

Endpoints

Max Ward 1 Andrew Gozzard 1 Amitava Datta 1

1School of Computer Science and Software Engineering
University of Western Australia

Perth, WA 6009, Australia

Abstract

Circle graphs are derived from the intersections of a set of chords.
They have applications in VLSI design, bioinformatics, and chemistry.
Some intractable problems on general graphs can be solved in polynomial
time on circle graphs. As such, the study of circle graph algorithms has
received attention. State-of-the-art algorithms for finding the maximum
weight clique of a circle graph are very efficient when the graph is sparse.
However, these algorithms require Θ(n2) time when the graph is dense.
We present an algorithm that is a factor of

√
n faster for dense graphs

in which many chord endpoints are shared. We also argue that these
assumptions are practical.

Submitted:
June 2016

Reviewed:
October 2016

Revised:
October 2016

Accepted:
February 2017

Final:
February 2017

Published:
April 2017

Article type:
Concise paper

Communicated by:
S. Kobourov

E-mail addresses: max.ward-graham@research.uwa.edu.au (MaxWard) gozzaa01@student.uwa.edu.au

(Andrew Gozzard) amitava.datta@uwa.edu.au (Amitava Datta)

http://dx.doi.org/10.7155/jgaa.00428
mailto:max.ward-graham@research.uwa.edu.au
mailto:gozzaa01@student.uwa.edu.au
mailto:amitava.datta@uwa.edu.au


548 Max Ward et al. A Maximum Weight Clique Algorithm...

1 Introduction

A circle graph is defined by the intersections of a set of chords on the interior
of a circle (depicted in Figure 1). Each chord is represented by a vertex, and
the intersections of chords define edges. We will call the number of vertices in a
circle graph n. Circle graphs are often used to model problems in VLSI design;
such as channel routing and switch-box routing [9]. In addition they have nat-
ural analogues in bioinformatics and chemistry. The possible base pairings of
RNA nucleotides constitute a circle graph. Finding the maximum independent
set of a circle graph is equivalent to finding a valid RNA secondary structure
with maximum bonds. This is a classic computational problem in RNA bioin-
formatics solved by Nussinov et al. [7]. Similarly, finding the maximum clique
of a circle graph corresponds to finding the most nested pseudoknot for an RNA
molecule. Bonsma & Breuer [3] modeled a similar problem in chemistry using
circle graphs; the enumeration of benzenoid hydrocarbons and fullerenes. In
both of these applications, the endpoints of chords are shared by many other
chords. Indeed, Bonsma & Breuer [3] used density and shared endpoints to
define an algorithm that was faster than conventional circle graph algorithms
for their problem, as did Nussinov et al. [7]. Therefore, we propose that
considering algorithms for dense circle graphs with many shared endpoints is
practical.

Algorithms for finding the maximum weight clique in a circle graph all as-
sume that endpoints are not shared [1, 5, 8]. It is possible to use these algo-
rithms even when endpoints are shared by permuting the endpoints [4]. For
dense graphs (containing Θ(n2) edges) the best known algorithms for this prob-
lem require Θ(n2) time [1, 5, 8]. We present an algorithm that runs in Θ(k3)
time where k is the number of distinct endpoints used by chords. For dense
circle graphs with many shared endpoints n = Θ(k2), so our algorithm is the
fastest known algorithm for finding the maximum weight clique for this circle
graph type. Note that this bound is actually smaller than the size of the graph,
as a dense circle graph might contain Θ(k4) edges. Our findings echo the results
of Bonsma & Breuer [3] and Nussinov et al. [7], who found fast algorithms
for computing the maximum independent set of a dense circle graph with many
shared endpoints.

B

A
F D

C

E

P

A

B C

D

EF

Figure 1: The relationship between a set of chords and a circle graph.



JGAA, 21(4) 547–554 (2017) 549

2 An Algorithm For Maximum Weight Clique

2.1 Interval Model & Definitions

To facilitate discussion of our algorithm, we will assume the interval model of
a circle graph without loss of generality. This is a convenient representation
in which the circle is cut at an arbitrary point. Thus we are left with a set
of intervals on a line. An example can be found in Figure 2. An interval
is analogous to a vertex, and two vertices share an undirected edge iff their
corresponding intervals overlap, but neither is contained by the other. Let us
define an interval as a tuple of its left and right endpoints respectively. If we have
two intervals (i, j) and (i′, j′), then there is an edge between their corresponding
vertices iff i < i′ < j < j′ or i′ < i < j′ < j. A clique is correspondingly a
set of mutually overlapping intervals, such that no interval is contained within
another. Note that when we say that an interval is left or right of another
interval, or leftmost or rightmost in a clique, we do so with the assumption
that intervals are ordered by ascending left endpoint, then by ascending right
endpoint.

P

A B

F
C

E
D

A
B

F
E

C
D

B

A
F D

C

E

P

Figure 2: A circle graph and its interval model representation.

An important observation about our representation is that intervals having
touching endpoints are defined not to overlap, and thus do not share an edge
in their graph representation. In existing maximum clique algorithms on circle
graphs, it has been assumed that endpoints are never shared, and so this part
of the definition is unspecified. Clearly, it would make just as much sense to
define intervals that touch at their endpoints as overlapping. Indeed, this is the
definition used by Nussinov et al. [7], and Bonsma & Breuer [3]. We deviate
from existing definitions on this point, so we shall explain the reason. For
the known applications of algorithms that find a maximum (possibly weighted)
clique on a circle graph, it is more useful to have each endpoint used by at
most one interval in the output. To illustrate, let us consider RNA secondary
structure; endpoints represent nucleotides, chords represent potential bonds,
and a clique is a pseudoknotted structure. Now, observe that, in a valid RNA
secondary structure, a nucleotide can only be involved in a single bond. Thus,
any valid pseudoknotted structure must also have each nucleotide involved in at
most one bond. Therefore, our representation is applicable for this use, which
is for the same domain tackled by Nussinov et al. While we cannot see how



550 Max Ward et al. A Maximum Weight Clique Algorithm...

a clique algorithm could be applied usefully to the work of Bonsma & Breuer,
the application to VLSI is clear. One is often concerned with wire crossings
for VLSI, and for these applications it is useful to consider only intervals that
strictly overlap [6, 2].

Using our representation, let us define some useful terminology. As we are
dealing with the weighted clique problem, every vertex must have a weight.
Let us define W (i, j) to be the weight of the interval (i, j). Furthermore, we
will define endpoints to be in the range [0, k) for k endpoints. This can be
done without loss of generality, even for real numbered endpoints, at the cost
of sorting and relabeling. In addition, we assume that there are no duplicate
intervals as we can always take the maximum weight duplicated interval. Also,
we say that an interval covering no points (i, i) is not a valid interval. In
addition, if the interval (i, j) does not exist, then W (i, j) = −∞. Finally, note
that the weight of a clique is the sum of the weights of its intervals.

2.2 Maximum Weight Clique Algorithm

We shall now define an algorithm capable of finding the maximum weight clique
of a circle graph.

F (l, r, r′) =


max


F (l + 1, r, r′)

F (l, r, r′ + 1)

W (l, r′) + F (l + 1, r, r′ + 1)

if l < r ≤ r′ < k

0 otherwise

(1)

The function F (l, r, r′) returns the maximum weight of a clique in which left
endpoints are in the range [l, r) and right endpoints are in the range [r′, k). Note
that we define F (l, r, r′) = 0 when l < r ≤ r′ < k is not satisfied. Observe that
l ≥ r implies that the range of possible left endpoints comprises no endpoints.
Similarly, if r′ ≥ k, the algorithm would consider having right endpoints that
are not valid endpoints. Finally, if r > r′ then intervals that end before others
start would be permitted.

The algorithm works by considering three cases. A pithy explanation of
these cases is that they find the leftmost interval in an optimal clique that is
not currently included, add it, and then recursively construct the rest of the
optimal clique.

In the first case F (l + 1, r, r′), we consider that the next best interval might
not have its left endpoint at l, but instead in the range [l + 1, r). In the second
case F (l, r, r′ + 1), we consider that the next best interval might not have its
right endpoint at r′.

In the third and final case W (l, r′) + F (l + 1, r, r′ + 1), we consider that the
next best interval is (l, r′). If we are taking (l, r′) to be in a clique, the left
endpoints of any additional intervals must be in the range [l + 1, r), and right
endpoints in the range [r′ + 1, k). If they were not, they would not intersect
(l, r′).



JGAA, 21(4) 547–554 (2017) 551

l r r′ k

F(l, r, r') F(l+1, r, r')

F(l, r, r'+1)

l r r′ k

l r r′ k

W(l, r') + F(l+1, r, r'+1)

l r r′ k

Figure 3: A diagrammatic representation of our algorithm. The diagrams corre-
spond to the terms in the dynamic programming recurrence defined in Equation
1. The grey half-annulus represents an optimal clique such that all left endpoints
are in the left range, and all right endpoints are in the right range. The initial
extent of the half-annulus is represented by grey arcs; this is to help illustrate a
change in half-annulus ranges. Arcs newly added to the clique are denoted by
a darker arc.

The only remaining question is how to extract the solution from our dynamic
programming recurrence. It is enough to consider every possible leftmost inter-
val in a clique, and call F correspondingly. Therefore the solution is encoded
by Equation 2 when S is the set of all intervals in the input circle graph.

max{F (l + 1, r, r + 1) + W (l, r) : (l, r) ∈ S} (2)

2.3 Proof of Correctness

Having defined our algorithm we now provide a formal proof of its correctness.
For l < r ≤ r′ < k, call a clique an (l, r, r′)-clique if its left endpoints are in
the range [l, r) and its right endpoints are in the range [r′, k). This mirrors the
construction for our algorithm (see Equation 1). Now, observe that

F (l, r, r′) ≥ F (l + 1, r, r′)

F (l, r, r′) ≥ F (l, r, r′ + 1)

This is because all (l+1, r, r′)-cliques and (l, r, r′+1)-cliques are also (l, r, r′)-
cliques. Next,

F (l, r, r′) ≥W (l, r′) + F (l + 1, r, r′ + 1)

This follows since any (l + 1, r, r′ + 1)-clique is still a clique after adding the
interval (l, r′).



552 Max Ward et al. A Maximum Weight Clique Algorithm...

This proves that F (l, r, r′) is at least as large as the cases it considers. To
prove that it is also no larger, and therefore equal, consider a maximum weight
(l, r, r′)-clique C. In addition, we consider three cases based on the leftmost
interval (i, j) in C which correspond to the cases in the algorithm. If i = l and
j = r′ then C consists of this interval (l, r′) and an (l + 1, r, r′ + 1)-clique, since
all other chords intersect (i, j). Thus,

F (l, r, r′) ≤W (l, r′) + F (l + 1, r, r′ + 1)

Next, if i > l, then C is also an (l + 1, r, r′)-clique, so, in this case,

F (l, r, r′) ≤ F (l + 1, r, r′)

Finally, if i = l and j > r’ then C is also an (l, r, r′ + 1)-clique, so,

F (l, r, r′) ≤ F (l, r, r′ + 1)

This covers all cases, so,

F (l, r, r′) = max{F (l + 1, r, r′), F (l, r, r′ + 1),W (l, r′) + F (l + 1, r, r′ + 1)}

The correctness of the algorithm is proved.

2.4 Complexity Analysis

Filling the tables for our dynamic programming recurrence takes Θ(k3) time.
There is a single table for F with k3 cells. Each cell requires O(1) time to be
computed as per Equation 1. Extracting the solution from the table takes Θ(n)
time as implied by Equation 2. Thus it follows that the requirements for our
dynamic programming algorithm are Θ(k3) time and Θ(k3) space.

2.5 Practical Implementation

The space requirement is unacceptably large so we will provide a way to improve
it. Observe that any call to the function F will never refer to more than one
value for r. Therefore we can use an Θ(k2) sized table, and recompute it for
each r. While doing this, we can keep track of the best solution we have seen.
This allows us to find the correct maximum. This approach requires only Θ(k2)
space, but the time requirement remains Θ(k3). Note that we also require Θ(k2)
space to store a table for W (i, j), so this space complexity cannot be improved
upon.

3 Final Remarks

We have presented a fast algorithm for dense circle graphs with many shared
endpoints. Existing algorithms need to examine all the edges in the graph, and



JGAA, 21(4) 547–554 (2017) 553

thus required Θ(n2) time for such graphs. Our algorithm is able to exploit this
graph type, and scales asymptotically slower than the number of edges encoded
in the input. However, previous algorithms are remarkably fast for sparse graphs
where n = O(k). Indeed they are much faster than our algorithm. When the
graph is sparse, the best lower bound is Ω(n log n) [1]. However, a fast algorithm
for sparse and dense graphs might be devised by building upon our algorithm,
and this is certainly an interesting avenue for future investigations. For the
unweighted case, Tiskin recently presented a brilliant algorithm which is able
to find the maximum clique in O(n log2 n) time [10]. It is possible that a faster
algorithm for dense circle graphs with many shared endpoints exists. Indeed,
we conjecture that an O(k2 log k) algorithm might exist for the unweighted case
of the maximum clique problem on circle graphs.

Acknowledgments

The authors wish to thank Eliot Courtney, Zachary Forman, and Connie Pyro-
mallis for their valuable advice and proof reading acumen. Further, we would
like the thank an anonymous reviewer who suggested a vastly improved proof
of correctness formulation.



554 Max Ward et al. A Maximum Weight Clique Algorithm...

References

[1] A. Apostolico, M. J. Atallah, and S. E. Hambrusch. New clique and in-
dependent set algorithms for circle graphs. Discrete Applied Mathematics,
36(1):1–24, 1992. doi:10.1016/0166-218X(92)90200-T.

[2] S. N. Bhatt and F. T. Leighton. A framework for solving vlsi graph layout
problems. Journal of Computer and System Sciences, 28(2):300–343, 1984.
doi:10.1016/0022-0000(84)90071-0.

[3] P. Bonsma and F. Breuer. Counting hexagonal patches and independent
sets in circle graphs. Algorithmica, 63(3):645–671, 2012. doi:10.1007/

s00453-011-9561-y.

[4] F. Gavril. Algorithms for a maximum clique and a maximum independent
set of a circle graph. Networks, 3(3):261–273, 1973. doi:10.1002/net.

3230030305.

[5] W.-L. Hsu. Maximum weight clique algorithms for circular-arc graphs and
circle graphs. SIAM Journal on Computing, 14(1):224–231, 1985. doi:

10.1137/0214018.

[6] F. T. Leighton. Layouts for the shuffle-exchange graph and lower bound
techniques for vlsi. Technical report, DTIC Document, 1982.

[7] R. Nussinov, G. Pieczenik, J. R. Griggs, and D. J. Kleitman. Algorithms
for loop matchings. SIAM Journal on Applied mathematics, 35(1):68–82,
1978. doi:10.1137/0135006.

[8] D. Rotem and J. Urrutia. Finding maximum cliques in circle graphs. Net-
works, 11(3):269–278, 1981. doi:10.1002/net.3230110305.

[9] N. A. Sherwani. Algorithms for VLSI physical design automation. Springer
Science & Business Media, 2012.

[10] A. Tiskin. Fast distance multiplication of unit-monge matrices. In Proceed-
ings of the twenty-first annual ACM-SIAM symposium on Discrete Algo-
rithms, pages 1287–1296. Society for Industrial and Applied Mathematics,
2010. doi:10.1007/s00453-013-9830-z.

http://dx.doi.org/10.1016/0166-218X(92)90200-T
http://dx.doi.org/10.1016/0022-0000(84)90071-0
http://dx.doi.org/10.1007/s00453-011-9561-y
http://dx.doi.org/10.1007/s00453-011-9561-y
http://dx.doi.org/10.1002/net.3230030305
http://dx.doi.org/10.1002/net.3230030305
http://dx.doi.org/10.1137/0214018
http://dx.doi.org/10.1137/0214018
http://dx.doi.org/10.1137/0135006
http://dx.doi.org/10.1002/net.3230110305
http://dx.doi.org/10.1007/s00453-013-9830-z

	Introduction
	An Algorithm For Maximum Weight Clique
	Interval Model & Definitions
	Maximum Weight Clique Algorithm
	Proof of Correctness
	Complexity Analysis
	Practical Implementation

	Final Remarks

