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A Sparse Stress Model
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Abstract

Force-directed layout methods are among the most common approaches
for drawing general graphs. Among them, stress minimization produces
layouts of comparatively high quality while also imposing comparatively
high computational demands. We propose a speed-up method based on
the aggregation of terms in the objective function. It is akin to aggregate
repulsion from far-away nodes during spring embedding but transfers the
idea from the layout space into a preprocessing phase. An initial experi-
mental study informs a method to select representatives, and subsequent
more extensive experiments indicate that our method yields better ap-
proximations of minimum-stress layouts in less time than related meth-
ods.
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We gratefully acknowledge financial support from Deutsche Forschungsgemeinschaft under

grant Br 2158/11-1

A preliminary version of this paper appeared in the proceedings of 24th Intl. Symp. Graph

Drawing (GD’16) [31]

E-mail addresses: Mark.Ortmann@uni-konstanz.de (Mark Ortmann) mail@mirzaklimenta.com

(Mirza Klimenta) Ulrik.Brandes@uni-konstanz.de (Ulrik Brandes)

http://dx.doi.org/10.7155/jgaa.00440
mailto:Mark.Ortmann@uni-konstanz.de
mailto:mail@mirzaklimenta.com
mailto:Ulrik.Brandes@uni-konstanz.de


792 M. Ortmann, M. Klimenta and U. Brandes A Sparse Stress Model

1 Introduction

There are two main variants of force-directed layout methods, expressed either
in terms of forces to balance or an energy function to minimize [3, 27]. For
convenience, we refer to the former as spring embedders and to the latter as
multidimensional scaling (MDS) methods.

Force-directed layout methods are in wide-spread use and of high practical
significance, but their scalability is a recurring issue. Besides investigations
into adaptation, robustness, and flexibility, much research has therefore been
devoted to speed-up methods [22]. These efforts address e.g., the speed of
convergence [12, 13] or the time per iteration [1, 19]. Generally speaking, the
most scalable methods are based on multi-level techniques [15, 20, 23, 36].

Experiments [5] suggest that minimization of the stress function [29]

s(X) =
∑
i<j

wij(||Xi −Xj || − dij)2 (1)

is the primary candidate for high-quality force-directed layouts X ∈ Rn×2 of a
simple undirected graph G = (V,E) with V = {1, . . . , n}, m = |E|, and Xi being
the two dimensional position of i ∈ V in X. The target distances dij are usually
chosen to be the graph-theoretic distances, the weights set to wij = 1/d2ij , and
the dominant method for minimization is majorization [18]. Several variant
methods reduce the cost of evaluating the stress function by involving only a
subset of node pairs over the course of the algorithm [6, 7, 15]. If long distances
are well represented already, for instance because of initialization with a fast
companion algorithm, it has been suggested that one restricts further attention
to short-range influences from l-neighborhoods only [5].

Here we propose to stabilize the sparse stress function restricted to 1-neigh-
borhoods [5] with aggregated long-range influences inspired by the use of Barnes
& Hut approximation [1] in spring embedders [34]. Extensive experiments sug-
gest how to determine representatives for individually weak influences, and that
the resulting method represents a favorable compromise between efficiency and
quality.

Related work is discussed in more detail in the next section. Our approach
is derived in Section 3, and evaluated in Section 4. We conclude in Section 5.

2 Related Work

While we are interested in approximating the full stress model of Eq. (1), there
are other approaches capable of dealing with given target distances such as the
strain model [4, 10, 26] or the Laplacian [21, 28].

An early attempt to make the full stress model scale to large graphs is
GRIP [15]. Via a greedy maximal independent node set filtration, this multi-
level approach constructs a hierarchy of more and more coarse graphs. While a
sparse stress model calculates the layout of the coarsened levels, the finest level
is drawn by a localized spring-embedder [13]. Given the coarsening hierarchy
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for graphs of bounded degree, GRIP requires O(nq2) time and O(nq) space with
q = log max{dij : i, j ∈ V }.

Another notable attempt has been made by Gansner et al. [17]. Like the
spring embedder, the maxent-model is split into two terms:∑

{i,j}∈E

wij(||Xi −Xj || − dij)2 − α
∑
{i,j}6∈E

log ||Xi −Xj ||

The first part is the 1-stress model [4, 15], while the second term tries to max-
imize the entropy. Applying Barnes & Hut approximation technique [1], the
running time of the maxent-model can be reduced from O(n2) per iteration to
O(m + n log n), e.g., using quad-trees [32, 35]. In order to make the maxent-
model even more scalable, Meyerhenke et al. [30] embed it into a multi-level
framework, where the coarsening hierarchy is constructed using an adapted
size-constrained label propagation algorithm.

Gansner et al. [16], inspired by the idea of decomposing the stress model
into two parts, proposed COAST. The main difference between COAST and
maxent is that it adds a square to the two terms in the 1-stress part and that
the second term is quadratic instead of logarithmic. Transforming the energy
system of COAST allows to apply fast-convex optimization techniques making
its running time comparable to the maxent model.

While all these approaches somewhat steer away from the stress model,
MARS [25] tries to approximate the solution of the full stress model. Building
on a result of Drineas et al. [11], MARS requires only t � n instead of n
single-source shortest path computations. Reconstructing the distance matrix
from two smaller matrices and by setting wij = 1/dij , MARS runs in O(tn +
n log n+m) per iteration with a preprocessing time inO(t3+t(m+n log n)+t2n),
and a space requirement in O(nt).

3 Sparse Stress Model

The full stress model, Eq. (1), is in our opinion the best choice to draw general
graphs, not least because of its very natural definition. However, its O(n2)
running time per iteration and space requirement, and expensive processing
time of O(n(m+ n log n)), hamper its way into practice.

The reason sparse stress models are still in early stages of development is that
their application to large graphs requires not just a reduction in the running
time per iteration, but also the preprocessing time and its associated space
requirement. Where these problems originate from is best explained by rewriting
Eq. (1) to the following form:

s(X) =
∑
{i,j}∈E

wij(||Xi −Xj || − dij)2 +
∑

{i,j}∈(V2)\E

wij(||Xi −Xj || − dij)2 (2)

As minimizing the first term only requires O(m) computations and all dij
are part of the input, solving this part of the stress model can be done effi-
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ciently. However, the second term requires an all-pairs shortest path computa-
tion (APSP), O(n2) time per iteration, and in order to stay within this bound
O(n2) additional space. We note that the 1-stress approaches presented in Sec-
tion 2 of Gajer et al. [15] and Brandes & Pich [4] ignore the second term, while
Gansner et al. [16, 17] replace it. Discounting the problems arising from the
APSP computation, we can see that the spring embedder suffered from exactly
the same problem, namely the computation of the second term – there called
repulsive forces. Barnes & Hut introduced a simple, yet ingenious and efficient
solution, namely to approximate the second term by using only a subset of its
addends.

To approximate the repulsive forces operating on node i, Barnes & Hut par-
tition the graph. Associated with each of these O(log n) partitions is an artificial
representative, a so called super-node, used to approximate the repulsive forces
of the nodes in its partition affecting i. However, as these super-nodes only have
positions in the Euclidean space, but no graph-theoretic distance to any node in
the graph, they cannot be processed in the stress model. Furthermore, deriving
a distance for a super-node based on the graph-theoretic distances of all the
nodes it represents appears to be both too costly and a poor approximation
since the partitioning is computed in the layout space. Choosing a node from
the partition as a super-node would not solve the problems, not least because
the partitioning changes over time.

Therefore, adapting this approach cannot be done in a straightforward man-
ner. However, the model we are proposing sticks to its main ideas. In order
to reduce the complexity of the second term in Eq. (2), we restrict the stress
computation of each i ∈ V to a subset P ⊆ V of k = |P| representatives, from
now on called pivots. The resulting sparse stress model, where N(i) are the
neighbors of i and w′ip are adapted weights, has the following form:

s′(X) =
∑
{i,j}∈E

wij(||Xi−Xj ||−dij)2 +
∑
i∈V

∑
p∈P\N(i)

w′ip(||Xi−Xp||−dip)2 (3)

Note that the Glint framework [24] uses a similar function. However, in contrast
to our proposal, it does not involve the first term and the set of pivots in the
second term differs for each node i ∈ V . Consequently, this approach requires in
the worst-case an APSP computation and therefore is not a sparse stress model
in the narrow sense of the definition.

Just like Barnes & Hut, we associate with each pivot p ∈ P a set of nodes
R(p) ⊆ V , where p ∈ R(p),

⋃
p∈P R(p) = V , and R(p)∩R(p′) = ∅ for p, p′ ∈ P.

However, we propose to use only one global partitioning of the graph that does
not change over time. Still, just like the super-nodes, we want that the pivots
are representative for their associated region. In terms of the localized stress
minimization algorithm [18], this means that we want for each i ∈ V and p ∈ P∑

j∈R(p)\N(i) wij(X
α
j + dij(X

α
i −Xα

j )/||Xi −Xj ||)∑
j∈R(p) wij

≈ Xα
p +

dip(X
α
i −Xα

p )

||Xi −Xp||
,

where Xα denotes a single dimension of the layout. As the left part is the
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k = 20 k = 25

Figure 1: Nodes to pivot assignment computed via Alg. 2 for (left) plat1919
and (right) bodyy5. Pivots are colored black and nodes belonging to the same
pivot are encoded in the same color.

weighted average of all positional votes of j ∈ R(p) for the new position of i, we
require p to fulfill the following requirements in order to be a good representative:

• The graph-theoretic distances to i from all j ∈ R(p) should be similar to
dip

• The positions of j ∈ R(p) in X should be well distributed in close prox-
imity around p.

We propose to construct the partitioning induced by R only based on the graph
structure, not on the layout space, and associate each node v ∈ V with R(p)
of the closest pivot subject to their graph-theoretic distance. As our algorithm
incrementally constructs R, ties are broken by favoring the currently smallest
partition. Since all nodes in R(p) are at least as close to p as to any other pivot,
and consequently in the stress drawing, it is appropriate to assume that both
conditions are met, cf. Fig. 1.

Even if the positional vote of each pivot is optimal w.r.t. R(p), it is still
not enough to approximate the full stress model. In the full stress model, the
iterative algorithm to minimize the stress moves one node at a time while fixing
the rest. By setting node i’s position in dimension α to

Xα
i =

∑
j 6=i wij(X

α
j + dij(X

α
i −Xα

j )/||Xi −Xj ||)∑
j 6=i wij

,

it can be shown that the stress monotonically decreases [18]. However, in our
model we move node i according to

Xα
i =

∑
j∈N(i)

wij

(
Xα
j +

dij(X
α
i −X

α
j )

||Xi−Xj ||

)
+

∑
p∈P\N(i)

w′ip

(
Xα
p +

dip(X
α
i −X

α
p )

||Xi−Xp||

)
∑

j∈N(i)

wij +
∑

p∈P\N(i)

w′ij
. (4)
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Algorithm 1: Sparse Stress

Input: Graph G = (V,E) with w : E → R>0, and k number of pivots.
Output: 2-dimensional layout X ∈ Rn×2

1 sample P with |P| = k
2 calculate R, all adapted weights w′ip, and all dip via Alg. 2

3 X ←PivotMDS(G) [4]
4 rescale X such that

∑
{i,j}∈E ||Xi −Xj || =

∑
{i,j}∈E wij

5 while relative change in Eq. (3) > 10−4 do
6 foreach i ∈ V do
7 foreach dimension α do

8 tα ←

∑
j∈N(i)

wij

(
Xαj +

dij(X
α
i −X

α
j )

||Xi−Xj ||

)
+

∑
p∈P\N(i)

w′ip

(
Xαp +

dip(X
α
i −X

α
p )

||Xi−Xp||

)
∑

j∈N(i)

wij+
∑

p∈P\N(i)

w′ij

9 Xi ← t

This implies that in order to find the globally optimal position of i, we also

have to find weights w′ip such that
w′ip∑

j∈N(i) wij+
∑
p∈P\N(i) w

′
ip
≈
∑
j∈R(p)\N(i) wij∑

i6=j wij
.

Since our goal is only to reconstruct the proportions, and our model only
knows the shortest path distance between all nodes i ∈ V and p ∈ P, we
set w′ip = s/d2ip where s ≥ 1. At first glance, setting s = |R(p)| seems appro-
priate since p represents |R(p)| addends of the stress model. Nevertheless, this
strongly overestimates the weight of close partitions. Therefore, we propose to
set s = |{j ∈ R(p) : djp ≤ dip/2}|. This follows the idea that p is only a good
representative for the nodes in R(p) that are at least as close to p as to i. Since
the graph-theoretic distance between i and j ∈ R(p) is unknown, our best guess
is that j lies on the shortest path from p to i. Consequently, if djp ≤ dip/2,
node j must be at least as close to p as to i. Note that w′pp′ does not necessarily
equal w′p′p for p, p′ ∈ P, and if k = n our model reduces to the full stress model.

Asymptotic running time: To minimize Eq. (3) in each iteration we dis-
place all nodes i ∈ V according to Eq. (4). Since this requires |N(i)|+k constant
time operations, given that all graph-theoretic distances are known, the total
time per iteration is in O(kn + m). Furthermore, only the distances between
all i ∈ V and p ∈ P have to be known which can be done in O(k(m+ n log n))
time and requires O(kn) additional space. If the graph-theoretic distances for
all p ∈ P are computed with a multi-source shortest path algorithm (MSSP),
it is possible to construct R as well as calculate all w′ip during its execution
without increasing its asymptotic running time, see Alg. 2. The full algorithm
to minimize our sparse stress model is presented in Alg. 1.
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Algorithm 2: Multi-Source Shortest Path

Input: Graph G = (V = {0, . . . , n− 1}, E), w : E → R>0, and pivots
{p0, . . . , pk−1}.

Data: Priority-Queue Q containing dummy element (k · n,∞)
Output: distances dip and weights w′ip

1 for 0 ≤ i < k do pP (i)← 0; pD(i)← ∅; upsert(Q, i · n+ pi, 0);
2 oDist← 0; tA← ∅; tC ← ∅;
3 while Q not empty do
4 cInd, cDist← pop(Q);
5 if oDist 6= cDist then
6 assign nodes in tA to pivot of smallest region
7 for each new node in the region of pi do push(pD(i), oDist)
8 for index ∈ tC do
9 pInd← bcInd/nc; v ← cInd− pInd · n; p← ppInd;

10 if v and p not adj. then
11 dv,p = oDist; w′v,p = pP (pInd)/(oDist · oDist);

12 for 0 ≤ i ≤ k do
13 while pD(i)pP (i) ≤ cDist/2 do pP (i)← pP (i) + 1

14 oDist = cDist; tA← ∅; tC ← ∅;
15 if cInd = dummy then continue
16 mark cInd; tC ← tC ∪ {cInd};
17 pInd← bcInd/nc; v ← cInd− pInd · n;
18 if v not assigned to region then tA← tA ∪ {cInd}
19 for w ∈ N(v) do
20 wInd← cInd− v + w
21 if wInd not marked then upsert(Q, wInd, cDist+ w({v, w})

4 Experimental Evaluation

We report on two sets of experiments. The first is concerned with the evaluation
of the impact of different pivot sampling strategies. The second set is designed
to assess how well the different sparse stress models approximate the full stress
model, in both absolute terms and in relation to the speed-up achieved.

For the experiments, we implemented the sparse stress model, Alg. 1, as well
as different sampling techniques in Java using Oracle SDK 1.8 and the yFiles
2.9 graph library (www.yworks.com).1 The tests were carried out on a single
64-bit machine with a 3.60GHz quad-core Intel Core i7-4790 CPU, 32GB RAM,
running Ubuntu 14.10. The reported running times were averaged over 25 iter-
ations and measured using the System.currentTimeMillis() command. We
note here that all drawing algorithms, except stated otherwise, were initialized
with a 200 PivotMDS layout [4]. Furthermore, the maximum number of itera-

1A stand-alone version is available at https://github.com/MarkOrtmann/sparse-stress.

www.yworks.com
https://github.com/MarkOrtmann/sparse-stress
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Table 1: Dataset: n, m, δ(G), ∆(G), and D(G) denote the number of nodes,
edges, the min. and max. degree, and the diameter, respectively. Column
{deg(i)} and {dij} show the degree and distance distribution, respectively. Bi-
partite graphs are marked with ∗ and weighted graphs with ∗∗.

graph n m δ(G) ∆(G) D(G) {deg(i)} {dij}
dwt1005 1005 3808 3 26 34
1138bus 1138 1458 1 17 31
plat1919 1919 15240 2 18 43
3elt 4740 13722 3 9 65
USpowerGrid 4941 6594 1 19 46
commanche 7920 11880∗∗ 3 3 438.00
LeHavre 11730 15133∗∗ 1 7 33800.67
pesa 11738 33914 2 9 208
bodyy5 18589 55346 2 8 132
finance256 20657 71866 1 54 55
btree (binary tree) 1023∗ 1022 1 3 18
qh882 1764∗ 3354 1 14 32
lpship04l 2526∗ 6380 1 84 13

tions for the full stress algorithm was set to 500. As stress is not resilient against
scaling, see Eq. (1), we optimally rescaled each drawing such that it creates the
lowest possible stress value [2].

Data: We conducted our experiments on a series of different graphs, see
Tab. 1, most of them taken from the sparse matrix collection [9]. We selected
these graphs as they differ in their structure and size, and are large enough to
compare the results of different techniques. Two of the graphs, LeHavre and
commanche, have predefined edge lengths that were derived from the node co-
ordinates. We did not modify the graphs in any way, except for those that were
disconnected, in which case we only kept the largest component.

4.1 Sampling Evaluation

In Section 3 we discussed how vital the proper selection of the pivots is for our
model. In the optimal case we would sample pivots that are well distributed over
the graph, creating regions of equal complexity, and are central in the drawing
of their regions. In order to evaluate the impact of different sampling strategies
on the quality of our sparse stress model and recommend a proper sampling
scheme, we compared a set of different strategies:

• random: nodes are selected uniformly at random

• MIS filtration: nodes are sampled according to the maximal independent
set filtration algorithm by Gajer et al. [15]. Once n ≤ k, the coarsening
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stops. If n < k, unsampled nodes from the previous level are randomly
added

• max/min Euclidean: starting with a uniform, randomly chosen node, P is
extended by adding arg maxi∈V \P minp∈P ||xi − xp||

• max/min sp: similar to max/min Euclidean, except that P is extended
according arg maxi∈V \P minp∈P dip [4]

Pretests showed that the max/min sp strategy initially favors sampling leaves,
but nevertheless produces good results for large k. Thus, we also evaluated
strategies building on this idea, while trying to overcome the problem of leaf
node sampling.

• max/min random sp: similar to max/min sp, but each node i is sampled
with a probability proportional to minp∈P dip

• k-means layout : the nodes are selected via a k-means algorithm, running
at most 50 iterations, on the initial layout

• k-means sp: initially k nodes with max/min sp are sampled, succeeded by
k-means sampling using the shortest path entries of these pivots

• k-means + max/min sp: P is initialized with k/2 pivots via k-means
layout and the remaining nodes are sampled via max/min sp

Using the k-means algorithm comes with a problem since the representative
computed for each of the k regions, the so-called centroid, is an artificial data
point. Therefore, after every single iteration of the algorithm we replace each
centroid by that node in its region which has the smallest (Euclidean) distance.
This is a reasonable replacement strategy, as the position of a centroid equals
the arithmetic mean position of the points in its region.

To quantify how well suited each of the sampling techniques is for our model,
we ran each combination on each graph with k ∈ {50, 51, . . . , 200} pivots. For
all tests we forced termination of the sparse stress algorithm after 200 iterations
if it did not converge before. Since all techniques at some point rely on a
random decision, we repeated each execution 20 times in order to ensure we
do not rest our results upon outliers. To distinguish the applicability of the
different techniques to our model, we used two measures. The first measure
is the normalized stress which is the stress value divided by

(
n
2

)
. While the

normalized stress assesses the quality of our drawing, we also calculated the
Procrustes statistic [8, 33] which measures how well the layout matches the full
stress drawing. More precisely, the Procrustes statistic R2(X,Y ) ∈ [0, 1] is the
normalized sum of squared (Euclidean) distances of the node positions in layout
X and the (ideal) reference layout Y . In order to minimize the Procrustes
statistic the layout X is transformed under scaling, translation, and rotation
to match Y as best as possible respective R2(X,Y ). This implies that a low
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Figure 2: Comparison of different sampling strategies and number of pivots
w.r.t. the resulting normalized stress value.
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Figure 3: Comparison of different sampling strategies and number of pivots
w.r.t. the Procrustes statistic.
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max/min sp k-means sp

Figure 4: Pivots sampled by (left) max/min sp and (right) k-means sp for pesa.
While the first 50 pivots sampled (red) by max/min sp mostly lie on the contour,
already for 100 pivots (red+purple), the pivots lie central in the left arm and
for k = 200 (red+purple+cyan) the pivots are well distributed all over the arm.
In comparison, k-means sp for k = 200 still mainly samples pivots in the left
arm that are central in the layout.

value R2(X,Y ) indicates that X and Y are very similar. The equation for the
Procrustes statistic incorporating the transformation of X [8] is given by

R2(X,Y ) = 1− [tr(XTY Y TX)
1
2 ]2

tr(XTX) tr(Y TY )

with tr(A) denoting the trace of the squared matrix A and A
1
2 being the square

root of A.
The results of these experiments are presented in Figs. 2 and 3. Each dot in

these plots represents the median and each line starts at the 25%, 75% percentile
and ends at the 5%, 95% percentile, respectively. For the sake of readability
we binned each 25 consecutive sample sizes. Furthermore, the strategies were
ordered according to their overall ranking w.r.t. the evaluated measure. There-
fore, the ordering summarizes the overall performance of each strategy for the
given measure (left plot / top legend lowest performance; right plot / bottom
legend highest performance). For most of the graphs, using k-means sp sam-
pling yields the layouts with the lowest normalized stress value. There are only
two graphs where this strategy performs worse than other tested strategies. The
one graph where k-means sp is outclassed, albeit only for large k by max/min
sp, is pesa. The reason for this result is that k-means sp mainly samples piv-
ots in the center of the left arm creating twists, see Tab. 6. Max/min sp for
small k in contrast mostly samples nodes on the contour of the arm, but once
k reaches a certain threshold, the resulting distribution of the pivots prevents
twists, yielding a lower normalized stress value, see Fig. 4.

The explanation for the poor behavior for lpship04l is strongly related to its
structure. The low diameter of 13 causes, after a few iterations, the max/min
sp strategy to repeatedly sample nodes that are part of the same cluster, see
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Figure 5: Comparison between Glint [24] and our sparse stress model. In (a) the
(median) normalized stress of Glint is plotted against that of our model. Each
point corresponds to a single graph of Tab. 1 in combination with the number
of pivots ([50, 200] binned each 25 consecutive pivot sizes) used to calculate the
drawing. A point lying above the main diagonal (black dashed line) means that
our approach creates a drawing with lower stress than Glint even when using
the lowest performing sampling strategy respective the graph-pivot combination.
The drawing of 3elt created by Glint using 200 pivots is shown in (b).

Tab. 6, and consequently are structurally very similar. As k-means sp builds on
max/min sp, it can only slightly improve the pivot distribution. The argument
that the problem is related to the structure is reinforced by the outcome of
the random strategy. Still, except for these two graphs, k-means sp generates
the best outcomes, and since this strategy is also strongly favorable over the
others subject to the Procrustes statistics, see Fig. 3, our following evaluation
always relies on this sampling strategy. However, we note that the Procrustes
statistic for btree and lpship04l are by magnitudes larger than for any other
tested graph. While for lpship04l this is mostly caused by the quality of the
drawings, this is only partly true for btree. The other factor contributing to the
high Procrustes statistic for btree is caused by the restricted set of operations
provided by the Procrustes analysis. As scaling, translation, and rotation are
used to find the best match between two layouts, the Procrustes analysis cannot
resolve reflections. Therefore, if in one layout of btree, the subtree T1 of v
is drawn to the right of subtree T2 of v and vice versa in the other drawing,
although the two layouts are identical, the statistic will be high. This symmetry
problem mainly explains the low performance w.r.t. btree.

Recall that the Glint framework [24] samples the set of pivots independently
and uniformly at random, for each node. As a result, this technique requires in
the worst-case an APSP computation and therefore is not a sparse stress model
in the narrow sense of the definition. Fig. 5(a) shows a comparison between
our model and the Glint model. Each point in the figure corresponds to a
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single graph of Tab. 1 in combination with the (binned) number of pivots used
to calculate the drawing. The y-axis shows the (median) normalized stress of
Glint and the x-axis the (median) normalized stress of our model when using
the lowest performing sampling strategy for the given graph - number of pivots
combination. A point lying above the main diagonal indicates that our approach
creates a drawing with lower stress than Glint. As all points except for lpship04l
lie above the main diagonal, we can see that our approach is not only applicable
to large graphs, but also that selecting pivots based on the graph’s structure is
favorable over random assignments. Furthermore, comparing Fig. 5(b) to the
drawing obtained by our approach for 3elt, cf. Tab. 6, we can see that Glint’s
random pivot assignment strategy creates blurred drawings hiding the otherwise
clearly visible graph structure.

4.2 Full Stress Layout Approximation

The next set of experiments is designed to assess how well our sparse stress model
using k-means sp sampling, as well as related sparse stress techniques, resemble
the full stress model. For this we compared the median stress layout over 25
repetitions on the same graph of our sparse stress model with k ∈ {50, 100, 200},
with MARS,2 maxent,3 PivotMDS, 1-stress, and the weighted version of GRIP.4

The number of iterations of our model as well as for MARS and 1-stress have
been limited to 200. Furthermore, we tested MARS with 100 and 200 pivots and
report the layout with the smallest stress from the drawings obtained by run-
ning mars with argument -p ∈ {1, 2} combined with a PivotMDS or randomly
initialized layout.

Besides comparing the resulting stress values and Procrustes statistics, we
compared the distribution of pairwise Euclidean distances subject to their graph-
theoretic distances. Since, as mentioned in the previous subsection, the Pro-
crustes statistic cannot handle reflective symmetries, we propose to evaluate
the similarity of the sparse stress layouts with the full stress layout via Gabriel
graphs [14]. The Gabriel graph GG(X) of a given layout X contains an edge
between a pair of points if and only if the disc associated with the diameter
of the endpoints does not contain any other point. Since the treatment of
identical positions, i.e., nodes with identical coordinates in the layout, is not
defined for Gabriel graphs, we resolve this by adding edges between each pair
of identical positions. We assess the similarity between the Gabriel graph of
the full stress layout (X) and the sparse stress layouts (Y ) by comparing the
l-neighborhoods of a node in the graphs using the Jaccard coefficient. More
formally the l-neighborhood Gabriel graph similarity of a node v ∈ V is defined

as
|NGG(X)(v,l)∩NGG(Y )(v,l)|
|NGG(X)(v,l)∪NGG(Y )(v,l)|

∈ [0, 1] with NG(v, l) = {w ∈ V \ {v} : dG,vw ≤ l}.

2https://github.com/marckhoury/mars
3We are grateful to Yifan Hu for providing us with the code.
4http://www.cs.arizona.edu/~kobourov/GRIP/

https://github.com/marckhoury/mars
http://www.cs.arizona.edu/~kobourov/GRIP/
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Table 2: Stress and Procrustes statistics: sparse model values are written in bold when no larger than
minimum over previous methods.

graph full stress sparse 200 sparse 100 sparse 50 maxent MARS 200 MARS 100 GRIP 1-stress PivotMDS
stress

dwt1005 10 729 10 940 11 081 11 329 21 623 17 660 20 134 52 517 12 495 14 459
1138bus 39 974 40 797 41 471 42 686 44 650 64 363 63 614 54 986 73 512 75 427
plat1919 18 572 18 840 19 072 19 719 23 850 53 246 64 166 113 765 75 973 82 865
3elt 422 940 426 564 430 200 437 051 585 967 503 600 754 134 934 206 555 934 634 401
USpowerGrid 702 055 720 642 731 187 749 464 1 021 457 766 535 783 888 1 495 373 1 111 216 1 123 698
commanche 654 694 677 220 699 890 749 609 1 507 654 2 761 605 3 145 489 1 539 767 2 085 818 2 157 943
LeHavre 439 188 433 030 441 986 454 785 1 231 283 12 012 307 12 570 692 8 658 371 1 255 474 1 305 577
pesa 1 373 514 1 417 449 1 452 975 1 495 512 10 423 779 3 563 772 8 281 116 2 957 738 3 486 176 3 325 889
bodyy5 3 547 659 3 566 636 3 585 087 3 630 380 5 248 755 6 385 559 4 072 905 10 389 846 4 245 006 4 715 728
finance256 6 175 210 6 415 761 6 474 787 6 582 890 8 151 335 7 267 598 8 643 239 19 817 355 12 257 268 11 380 089
btree 60 206 61 839 63 325 66 122 67 871 103 436 100 767 96 235 157 988 164 329
qh882 84 524 86 345 87 695 89 556 103 601 117 195 161 113 127 914 146 935 143 142
lpship04l 250 599 297 547 316 674 343 694 329 255 558 923 542 667 771 284 775 813 793 238

Procrustes statistic
dwt1005 0.001 0.005 0.003 0.027 0.008 0.018 0.263 0.004 0.008
1138bus 0.009 0.016 0.025 0.022 0.148 0.145 0.071 0.097 0.102
plat1919 0.000 0.000 0.001 0.015 0.026 0.031 0.236 0.045 0.051
3elt 0.001 0.001 0.002 0.026 0.009 0.029 0.199 0.017 0.023
USpowerGrid 0.006 0.008 0.012 0.068 0.014 0.018 0.256 0.051 0.051
commanche 0.001 0.002 0.005 0.039 0.026 0.167 0.092 0.066 0.066
LeHavre 0.001 0.001 0.001 0.012 0.163 0.173 0.256 0.010 0.010
pesa 0.009 0.010 0.010 0.095 0.025 0.070 0.017 0.021 0.021
bodyy5 0.000 0.000 0.000 0.012 0.011 0.003 0.100 0.004 0.007
finance256 0.009 0.006 0.005 0.013 0.007 0.018 0.206 0.042 0.041
btree 0.748 0.165 0.241 0.233 0.360 0.367 0.386 0.361 0.364
qh882 0.015 0.015 0.021 0.046 0.061 0.114 0.075 0.086 0.079
lpship04l 0.176 0.112 0.148 0.160 0.246 0.587 0.463 0.393 0.401
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Table 3: Runtime in seconds: fastest sparse model yielding lower stress than
best previous method, cf. Tab. 2, is written in bold. Times of implementations
written in C/C++ (marked with ∗) measured via clock() command.

graph full
stress

sparse
200

sparse
100

sparse
50

maxent∗ MARS
200∗

MARS
100∗

GRIP∗ 1-stress Pivot
MDS

dwt1005 1.26 0.33 0.15 0.09 0.47 1.02 2.36 0.06 0.08 0.06
1138bus 2.20 0.41 0.16 0.09 0.91 3.16 1.96 0.20 0.06 0.04
plat1919 9.70 1.00 0.45 0.24 1.15 6.80 4.79 0.19 0.31 0.20
3elt 31.82 2.28 0.93 0.43 2.26 16.31 8.43 0.71 0.37 0.23
USpowerGrid 36.48 1.85 0.67 0.37 2.53 13.54 7.62 1.67 0.28 0.21
commanche 340.10 10.78 3.63 1.51 3.60 22.72 12.43 2.29 0.47 0.35
LeHavre 475.05 12.75 4.90 2.19 6.31 27.57 19.50 10.18 0.81 0.54
pesa 373.23 9.61 4.14 1.50 5.96 50.10 42.68 3.56 0.95 0.60
bodyy5 463.47 12.53 4.31 2.01 9.97 46.63 9.27 10.43 1.64 1.04
finance256 1016.92 10.44 4.27 2.28 14.76 32.16 24.66 12.12 2.51 1.60
btree 7.79 0.42 0.18 0.09 0.63 2.70 1.48 0.06 0.06 0.03
qh882 6.61 0.65 0.28 0.15 0.97 8.45 5.79 0.15 0.17 0.14
lpship04l 18.30 0.73 0.31 0.18 0.99 7.06 7.63 0.16 0.15 0.10

A further measure we introduce evaluates the visual error. More precisely,
we measure for a given node v the percentage of nodes that lie in the drawing
area of the l-neighborhood, but are not part of it. We calculate this value by
computing the convex hull induced by the l-neighborhood and then test for
each other node if it belongs to the hull or not. This number is then divided by
n − |{w ∈ V : dvw ≤ l}|. Therefore, a low value implies that there are only a
few nodes lying in the region while high values indicate we cannot distinguish
non l-neighborhood and l-neighborhood nodes in the drawing. This measure is
to a certain extent similar to the precision of neighborhood preservation [17].
Let CH(N ′G(v, l)) denote the convex hull of v ∈ V induced by N ′G(v, l) =
{v} ∪NG(v, l) in the layout X. Then the distance l visual error of v is given by

|{w ∈ V \N ′G(v, l) : w ∈ CH(N ′G(v))}|
n− |N ′G(v, l)|

∈ [0, 1].

Note that for this evaluation we always calculated NG(v, l) w.r.t. the unweighted
shortest-path distances.

The results of all these experiments, see Tabs. 2 and 6, and Figs. 6 and 7, re-
veal that our model is more adequate in resembling the full stress drawing than
any other of the tested algorithms, while showing comparable running times that
scale nicely with k, cf. Tab. 3. The error plots in Tab. 6 expose the strength of
our scheme. We can see that, while all approaches work very well in represent-
ing short distances, our approach is more precise in approximating middle and
especially long distances of the full stress model, explaining our good results.
As the evaluation clearly shows that our approach yields better approximations
of the full stress model, we rather want to discuss the low performance of our
model for lpship04l and thereby expose one weakness of our approach.

Looking at the sparse 50 drawing of lpship04l in Tab. 6, we can see that a
large portion of nodes has a similar or even the same position. This is because
lpship04l has a lot of nodes that share very similar graph-theoretic distance vec-
tors, exhibit highly overlapping neighborhoods, and are drawn in close proximity
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Figure 6: The similarity of the Gabriel graph of the full stress layout and the
Gabriel graph of the layout algorithms under consideration as a function of l.
For each node of the graph the l-neighborhood in the Gabriel graph of the full
stress layout and the layout algorithm are compared by calculating the Jaccard
coefficient. A higher value indicates that the nodes share a high percentage of
common neighbors in the different Gabriel graphs.
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Figure 7: Error charts as a function of l. For each node of the graph, the convex
hull w.r.t. the coordinates of the nodes in the l-neighborhood is computed. For
each of the convex hulls the error is calculated by counting the number of non
l-neighborhood nodes that lie inside or on the contour of this hull divided by
their total number.
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Figure 8: Running time composition of sparse 50, sparse 100, sparse 200 with k-
means sp (c = k) respective the times shown in Tab. 5. For increasing number of
pivots, the time of k-means sp with c = k starts dominating the overall running
time of the sparse stress model.

in the initial PivotMDS layout. While our model would rely on small variations
of the graph-theoretic distances to create a good drawing, we diminish these
differences even further by restricting our model to P. Consequently, the posi-
tional vote for two similar non-pivot nodes i and j that lie in the same partition
will only slightly differ, mainly caused by their distinct neighbors. However, as
these neighbors are also in close proximity in the initial drawing of lpship04l,
the distance between i and j will not increase. Therefore, if the graph has a lot
of structurally very similar nodes and the initial layout has poor quality, our ap-
proach will inevitably create drawings where nodes are placed very close to one
another. Note that this also explains the good performance of Glint compared
to our model for lpship04l, see Fig. 5(a).

4.3 Runtime Improvement

While k-means sp is preferable over other sampling techniques, as shown in
Figs. 2 and 3, it has one serious drawback. Since the input for the k-means
algorithm used by this sampling strategy is an n× k matrix, the running time
complexity is O(nk2). This implies that the preprocessing time of our sparse
stress model using k-means sp is O(max{nk2, k(m + n log n)}). Consequently,
at some point the running time of the sparse stress model is entirely dominated
by k-means sp. The composition of the running times (Tab. 5) shown in Fig. 8
draws a clear picture, namely that already for 100/200 pivots the sparse stress
model mostly spends 25%/50% of its overall running time for the sampling via
k-means sp.

The simplest way to resolve this issue is to sample only a constant number,
c, shortest-path entries via max/min sp and then use this n× c matrix as input
for the k-means algorithm. We will in the following show that setting c = 25
clearly reduces the running time, while the results compared to the c = k version
of k-means sp used in the above evaluation stay approximately the same.
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Figure 9: Running time composition of sparse 50, sparse 100, sparse 200 with k-
means sp (c = 25) respective the times shown in Tab. 5. Increasing the number
of pivots does not affect the share of the total running w.r.t. k-means sp with
c = 25.

In order to evaluate the impact of setting c = 25, we reran the exact same
evaluation process using the above given parameters and graphs. Looking at
Fig. 9, we can see that fixing the number of features stabilizes the share of the
total running time w.r.t. k-means sp. Furthermore, Fig. 9 shows that minimizing
Eq. (3) takes most of the time, yet as the number of pivots raises the share of
MSSP increases. We note that for bodyy5 the portion of minimizing Eq. (3) is
comparably small, as Alg. 1 converges after only a small number of iterations.

Tabs. 4 and 5 show the results w.r.t. stress, Procrustes statistic and the
running time in seconds using k-means sp with c = k and c = 25. Looking
at the running times (Tab. 5) we can see that fixing the number of features
reduces the overall running time and the speed-up raises as the number of pivots
increases. While this is not a surprising result, taking a closer look at the stress
values (Tab. 4) reveals that, except for btree and lpship04l, the difference in
these values is below 0.5%. This and the fact that the Procrustes statistics are
also very similar implies that reducing the running time by setting c to a small
constant does not necessarily come at the cost of a lower layout quality. Since
the results for c = 25 are approximately the same as for c = k, except for btree
and lpship, we omit showing the results of the evaluation via Gabriel graphs
and convex hulls as well as the drawings and distance-error charts. However, it
should be emphasized that k-means sp with a constant number of features still
outperforms all the other considered sampling techniques.
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Table 4: Comparison of the stress and Procrustes statistics of the sparse stress model with k ∈ {50, 100, 200} for k-means sp
sampling using c = k and c = 25. The smaller of the two values is written in bold.

graph sparse 200 sparse 100 sparse 50
stress

c = k c = 25 difference % c = k c = 25 difference % c = k c = 25 difference %
dwt1005 10 940 10 953 0.119 11 081 11 112 0.280 11 329 11 323 -0.053
1138bus 40 797 40 965 0.412 41 471 41 459 -0.029 42 686 42 548 -0.323
plat1919 18 840 18 858 0.096 19 072 19 121 0.257 19 719 19 780 0.309
3elt 426 564 426 621 0.013 430 200 430 701 0.116 437 051 437 379 0.075
USpowerGrid 720 642 721 206 0.078 731 187 732 818 0.223 749 464 751 848 0.318
commanche 677 220 678 432 0.179 699 890 700 412 0.075 749 609 746 150 -0.461
LeHavre 433 030 433 000 -0.007 441 986 442 242 0.058 454 785 457 175 0.526
pesa 1 417 449 1 409 833 -0.537 1 452 975 1 447 871 -0.351 1 495 512 1 492 049 -0.232
bodyy5 3 566 636 3 567 009 0.010 3 585 087 3 587 358 0.063 3 630 380 3 629 886 -0.014
finance256 6 415 761 6 391 041 -0.385 6 474 787 6 458 748 -0.248 6 582 890 6 562 610 -0.308
btree 61 839 63 509 2.701 63 325 63 906 0.917 66 122 66 993 1.317
qh882 86 345 86 397 0.060 87 695 87 449 -0.281 89 556 89 622 0.074
lpship04l 297 547 308 109 3.550 316 674 317 765 0.345 343 694 350 164 1.882

Procrustes statistic
c = k c = 25 difference c = k c = 25 difference c = k c = 25 difference

dwt1005 0.001 0.003 0.002 0.005 0.003 -0.002 0.003 0.003 0.000
1138bus 0.009 0.010 0.001 0.016 0.011 -0.005 0.025 0.019 -0.006
plat1919 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000
3elt 0.001 0.001 0.000 0.001 0.001 0.000 0.002 0.002 0.000
USpowerGrid 0.006 0.007 0.001 0.008 0.008 0.000 0.012 0.013 0.001
commanche 0.001 0.001 0.000 0.002 0.002 0.000 0.005 0.003 -0.002
LeHavre 0.001 0.001 0.000 0.001 0.001 0.000 0.001 0.001 0.000
pesa 0.009 0.009 0.000 0.010 0.008 -0.002 0.010 0.009 -0.001
bodyy5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
finance256 0.009 0.006 -0.003 0.006 0.006 0.000 0.005 0.006 0.001
btree 0.748 0.133 -0.615 0.165 0.244 0.079 0.241 0.208 -0.033
qh882 0.015 0.015 0.000 0.015 0.015 0.000 0.021 0.030 0.009
lpship04l 0.176 0.103 -0.073 0.112 0.125 0.013 0.148 0.127 -0.021
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Table 5: Comparison of the runtime in seconds of the sparse stress model with
k ∈ {50, 100, 200} for k-means sp sampling using c = k and c = 25. The smaller
of the two values is written in bold.

graph sparse 200 sparse 100 sparse 50
c = k c = 25 speed-up c = k c = 25 speed-up c = k c = 25 speed-up

dwt1005 0.33 0.17 1.94 0.15 0.11 1.36 0.09 0.08 1.12
1138bus 0.41 0.25 1.64 0.16 0.13 1.23 0.09 0.08 1.12
plat1919 1.00 0.59 1.69 0.45 0.34 1.32 0.24 0.22 1.09
3elt 2.28 1.04 2.19 0.93 0.58 1.60 0.43 0.38 1.13
USpowerGrid 1.85 0.85 2.18 0.67 0.49 1.37 0.37 0.33 1.12
commanche 10.78 5.96 1.81 3.63 2.73 1.33 1.51 1.38 1.09
LeHavre 12.75 7.78 1.64 4.90 3.87 1.27 2.19 2.14 1.02
pesa 9.61 4.50 2.14 4.14 2.79 1.48 1.50 1.39 1.08
bodyy5 12.53 4.00 3.13 4.31 2.35 1.83 2.01 1.58 1.27
finance256 10.44 5.82 1.79 4.27 3.28 1.30 2.28 2.12 1.08
btree 0.42 0.24 1.75 0.18 0.14 1.29 0.09 0.08 1.12
qh882 0.65 0.38 1.71 0.28 0.21 1.33 0.15 0.14 1.07
lpship04l 0.73 0.55 1.33 0.31 0.26 1.19 0.18 0.17 1.06

5 Conclusion

In this paper we proposed a sparse stress model that requires O(kn+m) space
and time per iteration, and a preprocessing time of O(k(m + n log n)). While
Barnes & Hut derive their representatives from a given partitioning, we argued
that for our model it is more appropriate to first select the pivots and then
to partition the graph only relying on its structure. Since the approximation
quality heavily depends on the proper selection of these pivots, we evaluated
different sampling techniques, showing that k-means sp works very well in prac-
tice. Additionally, we showed that using only a constant number of features for
k-means sp in general does not reduce the quality of the resulting layout but
decreases the overall running time.

Furthermore, we compared a variety of sparse stress models w.r.t. their per-
formance in approximating the full stress model. We therefore proposed two new
measures: the first one assesses the similarity of two layouts of the same graph
via Gabriel graphs and the second one quantifies the visual error in a layout us-
ing convex hulls. For the tested graphs, all our experiments clearly showed that
our proposed sparse stress model exceeds related approaches in approximating
the full stress layout without compromising the computation time.
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Table 6: Layouts and error charts of the algorithms. Each chart shows the zero y coordinate (black horizontal line), the median
(red line), the 25 and 75 percentiles (black/gray ribbon) and the min/max error (outer black dashed line). The error (y-axis) is
the difference between the Euclidean distance and the graph-theoretic distance (x-axis). 1000 bins have been used for weighted
graphs.
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Table 6 (cont.): Layouts and error charts of the algorithms. Each chart shows the zero y coordinate (black horizontal line),
the median (red line), the 25 and 75 percentiles (black/gray ribbon) and the min/max error (outer black dashed line). The
error (y-axis) is the difference between the Euclidean distance and the graph-theoretic distance (x-axis). 1000 bins have been
used for weighted graphs.
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Table 6 (cont.): Layouts and error charts of the algorithms. Each chart shows the zero y coordinate (black horizontal line),
the median (red line), the 25 and 75 percentiles (black/gray ribbon) and the min/max error (outer black dashed line). The
error (y-axis) is the difference between the Euclidean distance and the graph-theoretic distance (x-axis). 1000 bins have been
used for weighted graphs.
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Table 6 (cont.): Layouts and error charts of the algorithms. Each chart shows the zero y coordinate (black horizontal line),
the median (red line), the 25 and 75 percentiles (black/gray ribbon) and the min/max error (outer black dashed line). The
error (y-axis) is the difference between the Euclidean distance and the graph-theoretic distance (x-axis). 1000 bins have been
used for weighted graphs.
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Table 6 (cont.): Layouts and error charts of the algorithms. Each chart shows the zero y coordinate (black horizontal line),
the median (red line), the 25 and 75 percentiles (black/gray ribbon) and the min/max error (outer black dashed line). The
error (y-axis) is the difference between the Euclidean distance and the graph-theoretic distance (x-axis). 1000 bins have been
used for weighted graphs.
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