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Abstract

A set D ⊆ V of a graph G = (V,E) is called an outer-connected
dominating set of G if for all v ∈ V , |NG[v] ∩ D| ≥ 1, and the induced
subgraph of G on V \D is connected. The Minimum Outer-connected

Domination problem is to find an outer-connected dominating set of
minimum cardinality of the input graph G. Given a positive integer k

and a graph G = (V,E), the Outer-connected Domination Decision

problem is to decide whether G has an outer-connected dominating set of
cardinality at most k. The Outer-connected Domination Decision

problem is known to be NP-complete for bipartite graphs. In this paper,
we strengthen this NP-completeness result by showing that the Outer-

connected Domination Decision problem remains NP-complete for
perfect elimination bipartite graphs. On the positive side, we propose a
linear-time algorithm for computing a minimum outer-connected domi-
nating set of a chain graph, a subclass of bipartite graphs. We show that
the Outer-connected Domination Decision problem can be solved
in linear-time for graphs of bounded tree-width. We propose a ∆(G)-
approximation algorithm for the Minimum Outer-connected Domina-

tion problem, where ∆(G) is the maximum degree of G. On the negative
side, we prove that the Minimum Outer-connected Domination prob-
lem cannot be approximated within a factor of (1−ε) ln |V | for any ε > 0,
unless NP ⊆ DTIME(|V |O(log log |V |)). We also show that the Minimum

Outer-connected Domination problem is APX-complete for graphs
with bounded degree 4 and for bipartite graphs with bounded degree 7.
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1 Introduction

A vertex v of a graph G = (V,E) is said to dominate a vertex w if either
v = w or vw ∈ E. A set of vertices D is a dominating set of G if every
vertex of G is dominated by at least one vertex of D. The domination number
of a graph G, denoted by γ(G), is the cardinality of a minimum dominating
set of G. The Minimum Domination problem is to find a dominating set of
minimum cardinality of the input graph G. Given a positive integer k and a
graph G = (V,E), the Domination Decision problem is to decide whether G
has a dominating set of cardinality at most k. The concept of domination and
its variations are widely studied as can be seen in [10, 11].

For a set S ⊆ V of the graph G = (V,E), the subgraph of G induced by S
is defined as G[S] = (S,ES), where ES = {xy ∈ E|x, y ∈ S}. A set D ⊆ V of
a graph G = (V,E) is called an outer-connected dominating set of G if D is a
dominating set of G and G[V \D] is connected. The outer-connected domination
number of a graph G, denoted by γ̃c(G), is the cardinality of a minimum outer-
connected dominating set of G. The concept of outer-connected domination
number was introduced by Cyman [6] and further studied by others (see [1, 13,
12, 19]). This problem has possible applications in computer networks. Consider
a client-server architecture based network in which any client must be able to
communicate to one of the servers. Since overloading of severs is a bottleneck
in such a network, every client must be able to communicate to another client
directly (without interrupting any of the server). A smallest group of servers
with these properties is a minimum outer-connected dominating set for the
graph representing the computer network.

The Minimum Outer-connected Domination (MOCD) problem is to
find an outer-connected dominating set of minimum cardinality of the input
graph G. Given a positive integer k and a graph G = (V,E), the Outer-

connected Domination Decision (OCDD) problem is to decide whether G
has an outer-connected dominating set of cardinality at most k. The Minimum

Outer-connected Domination problem is studied for some subclasses of
graphs (doubly chordal graphs, undirected path graphs, proper interval graphs
and bipartite graphs) [6, 13].

In this paper, we study the algorithmic aspect of the Minimum Outer-

connected Domination problem. The OCDD problem is known to be NP-
complete for bipartite graphs. We strengthen the NP-completeness result of
the OCDD problem by showing that this problem remains NP-complete for
perfect elimination bipartite graphs. On the positive side, we propose a linear-
time algorithm for computing a minimum outer-connected dominating set of a
chain graph. We show that the OCDD problem can be solved in linear-time for
graphs of bounded tree-width. Here, we also study the approximation aspect
of the problem. We propose a ∆(G)-approximation algorithm for the MOCD
problem, where ∆(G) is the maximum degree of G. On the negative side, we
derive some approximation hardness results.

The rest of the paper is organized as follows. In Section 2, some perti-
nent definitions and preliminary results are presented. In Section 3, the OCDD



JGAA, 18(4) 493–513 (2014) 495

problem is shown to be NP-complete for perfect elimination bipartite graphs. In
Section 4, the complexity difference of the Minimum Domination problem and
the MOCD problem are highlighted. In Section 5, a linear-time algorithm for
the MOCD problem in chain graphs, a subclass of perfect elimination bipartite
graphs, is proposed. In Section 6, it is shown that the OCDD problem can be
solved in linear-time for bounded tree-width graphs. In Section 7, an approxi-
mation algorithm for the MOCD problem is presented. We also prove that the
MOCD problem cannot be approximated within a factor of (1 − ε) ln |V | for
any ε > 0, unless NP ⊆ DTIME(|V |O(log log |V |)). In Section 8, it is shown that
the MOCD problem is APX-complete for graphs with bounded degree 4 and for
bipartite graphs with bounded degree 7. Finally, Section 9 concludes the paper.

2 Preliminaries

For a graph G = (V,E), the sets NG(v) = {u ∈ V (G)|uv ∈ E} and NG[v] =
NG(v) ∪ {v} denote the open neighborhood and closed neighborhood of a vertex
v, respectively. For a connected graph G, a vertex v is a cut vertex if G \ {v}
is disconnected. The degree of a vertex v is |NG(v)| and is denoted by dG(v).
If dG(v) = 1, then v is called a pendant vertex. For S ⊆ V , let G[S] denote the
subgraph induced by S on G. A graph G = (V,E) is said to be bipartite if V (G)
can be partitioned into two disjoint sets X and Y such that every edge of G joins
a vertex in X to a vertex in Y . Such a partition (X,Y ) of V of a bipartite graph
G = (V,E) is called a bipartition. A bipartite graph with bipartition (X,Y ) of
V is denoted by G = (X,Y,E). Let n and m denote the number of vertices
and number of edges of G, respectively. A graph H = (V ′, E′) is a spanning
subgraph of G = (V,E) if V ′ = V and E′ ⊆ E. A connected acyclic spanning
subgraph of G is a spanning tree of G. A tree with exactly one non-pendant
vertex is a star and a tree with exactly two non-pendant vertices is called a
bi-star.

Let G be a graph, T be a tree and ν be a family of vertex sets Vt ⊆ V (G)
indexed by the vertices t of T . The pair (T, ν) is called a tree-decomposition of
G if it satisfies the following three conditions:

1. V (G) =
⋃

t∈V (T ) Vt,

2. for every edge e ∈ E(G) there exists a t ∈ V (T ) such that both ends of e
lie in Vt,

3. Vt1 ∩ Vt3 ⊆ Vt2 whenever t1, t2, t3 ∈ V (T ) and t2 is on the path in T from
t1 to t3.

The width of (T, ν) is the number max{|Vt| − 1 : t ∈ T }, and the tree-width
tw(G) of G is the least width of any tree-decomposition of G [7].

In the rest of the paper, by a graph we mean a connected graph with at least
two vertices unless otherwise mentioned specifically. The following observations
regarding outer-connected dominating set of a graph will be used throughout
the paper.
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Observation 1 (a) Let v be a cut vertex of a connected graph G = (V,E)
and let G[V \ {v}] have k components. If v ∈ D for an outer-connected
dominating set D of G, then D contains all the vertices of k−1 components
of G[V \ {v}].

Proof: Suppose that the above statement does not hold. Then there exists
an outer-connected dominating set D containing v, and two vertices vi and
vj belonging to two different components, say, Gi and Gj of G[V \ {v}]
such that vi and vj are not in D. Now there is no path from vi to vj in
G[V \ {v}], and hence there is no path from vi to vj in G[V \D]. Hence
G[V \D] is disconnected, which is a contradiction to the fact that D is an
outer-connected dominating set. This proves the Observation 1(a). ✷

(b) If v is a pendant vertex of G = (V,E), then either v ∈ D or D = V \ {v}
for every outer-connected dominating set D of G.

Proof: Let D be any outer-connected dominating set of G and v be a
pendant vertex of G. If v ∈ D, we are done. Suppose that v /∈ D. Then
the vertex adjacent to the pendant vertex v, say w, must belong to D. But
w is cut vertex and one component of G[V \ {w}] is the vertex v itself. By
Observation 1(a), the vertices of all the components of G[V \ {w}] other
than one component must belong to D. Since v /∈ D,V \ {v} ⊆ D, that is,
D = V \ {v}. This proves the Observation 1(b). ✷

(c) Let G = (V,E) be a connected graph having at least three vertices. Then
there is a minimum outer-connected dominating set of G containing all
the pendant vertices of G.

Proof: Let D∗
1 be a minimum outer-connected dominating set of G. If D∗

1

contains all the pendant vertices of G, then we are done. Assume that D∗
1

does not contain a pendant vertex, say v, of G. Then by Observation 1(b),
D∗

1 = V \ {v} and γ̃c(G) = n − 1. Since G is a connected graph having
at least three vertices, G must contain a non-pendant vertex. Let w be the
non-pendant vertex of G. Then the set D∗

2 = (D∗
1 \ {w}) ∪ {v} is also an

outer-connected dominating set of G and |D∗
2 | = n−1 = γ̃c(G). Hence D∗

2

is a minimum outer-connected dominating set containing all the pendant
vertices of G. Hence the Observation 1(c) is proved. ✷

(d) Every outer-connected dominating set D of cardinality at most n− 2 of a
graph G = (V,E) having n vertices contains all the pendant vertices of G.

Proof: Proof follows from Observation 1(b). ✷

(e) γ̃c(G) = n− 1 if and only if G is a star.

Proof: Let G be a star having n vertices. If n = 2, then γ̃c(G) = 1 = n−1.
If n ≥ 3 then by Observation 1(c), γ̃c(G) = n− 1.
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Conversely suppose that γ̃c(G) = n − 1. We need to prove that G is a
star, that is, G contains at most one non-pendant vertex. On the contrary
suppose that G contains two non-pendant vertices say x and y. If xy ∈
E(G), then V \ {x, y} is an outer-connected dominating set of cardinality
n − 2, which is a contradiction. If xy /∈ E(G), then at least one of the
neighbors of x (same for y) must be a non-pendant vertex (otherwise G is
not connected). Let z be the neighbor of x which is a non-pendant vertex.
Then V \ {x, z} is an outer-connected dominating set of cardinality n− 2,
again contradiction arises. Hence G must contain exactly one non-pendant
vertex and hence is a star. ✷

3 NP-completeness proof for perfect elimination

bipartite graphs

Let G = (X,Y,E) be a bipartite graph. Then uv ∈ E is a bisimplicial edge if
NG(u)∪NG(v) induces a complete bipartite subgraph in G. Let (e1, e2, . . . , ek)
be an ordering of pairwise non-adjacent edges (no two edges have a common
end vertex) of G (not necessarily all edges of E). Let Si be the set of endpoints
of edges e1, e2, . . . , ei and let S0 = ∅. Ordering (e1, e2, . . . , ek) is a perfect edge
elimination ordering for G if G[(X ∪ Y ) \ Sk] has no edge and each edge ei is
bisimplicial in the remaining induced subgraph G[(X ∪Y )\Si−1]. G is a perfect
elimination bipartite graph if G admits a perfect edge elimination ordering. The
class of perfect elimination bipartite graphs was introduced by Golumbic and
Goss [9].

To show the NP-completeness of the OCDD problem, we need to use a well
known NP-complete problem, called Vertex Cover Decision problem [8]. A
set S ⊆ V of a graph G = (V,E) is called a vertex cover of G if for every edge
uv ∈ E, either u ∈ S or v ∈ S.
Vertex Cover Decision problem
INSTANCE: A graph G = (V,E) and a positive integer k.
QUESTION: Does G have a vertex cover of cardinality at most k?

We are now ready to prove the following theorem:

Theorem 2 The OCDD problem is NP-complete for perfect elimination bipar-
tite graphs.

Proof: Given a perfect elimination bipartite graph G = (V,E), a positive
integer k and an arbitrary subset D of V , we can check in polynomial time
whether |D| ≤ k and D is an outer-connected dominating set of G. Hence the
OCDD problem for perfect elimination bipartite graphs is in NP. To show the
hardness, we provide the polynomial time reduction from Vertex Cover De-

cision problem in general graphs to the OCDD problem in perfect elimination
bipartite graphs.

Given a graph G = (V,E), construct the graph G′ = (V ′, E′) as follows:
If V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}, define
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Figure 1: An illustration to the construction of G′ from G

V ′ = {vi, xi, yi, wi | 1 ≤ i ≤ n} ∪ {e′i, gi, hi | 1 ≤ i ≤ m} and
E′ = {viwi, vixi, xiyi | 1 ≤ i ≤ n} ∪ {e′ivj , e

′
ivk, gixj , gixk, e

′
igi, gihi | 1 ≤ i ≤ m,

vj and vk are endpoints of edge ei}.

The graph G = (V,E), where V = {v1, v2, v3} and E = {e1 = v1v2, e2 =
v2v3, e3 = v3v1} and the associated graph G′ are shown in Fig. 1 to illustrate
the above construction.

ClearlyG′ is a perfect elimination bipartite graph since (x1y1, x2y2, . . . , xnyn,
v1w1, v2w2, . . . , vnwn, g1h1, g2h2, . . . , gmhm) is perfect edge elimination ordering
for G′.

Claim 3.1 G has a vertex cover of size k if and only if G′ has an outer-
connected dominating set of size at most 2n+m+ k.

Proof: Let us first assume that G has a vertex cover say Vc of size k. Then
Vc ∪ {wi, yi | 1 ≤ i ≤ n} ∪ {hi | 1 ≤ i ≤ m} is an outer-connected dominating
set of G′ of size 2n+m+ k.

Conversely suppose that D is an outer-connected dominating set of G′ of
size 2n + m + k. Define S = {hi | 1 ≤ i ≤ m} ∪ {wi, yi | 1 ≤ i ≤ n} and
E′ = {e′i | 1 ≤ i ≤ m}. By using Observation 1(d), all the pendant vertices
must belong to D, hence S ⊆ D. But S does not dominate the vertices of E′.
Define S′ = D \ S. Hence all the vertices of E′ are dominated by vertices in
S′. Now to dominate e′i, either e′i ∈ S′ or gi ∈ S′ or some vj ∈ S′. If e′i ∈ S′

or gi ∈ S′, we remove it from S′ and add vj (i.e. adjacent to e′i) in S′. Do this
for all i between 1 to m. Define Vt = V ∩ S′. Note that |Vt| ≤ k. Since the
vertices in Vt dominates all the vertices of E′ in G′, Vt is a vertex cover of G.
This proves our claim. ✷

Hence our theorem is proved. ✷
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4 Complexity difference in domination and outer-

connected domination

Though outer-connected domination is a variation of domination, the prob-
lems differ in complexity; that is, there are graph classes in which one problem
is polynomial time solvable while the other is NP-hard and vice versa. The
Minimum Domination problem is polynomial time solvable for doubly chordal
graphs [3], but the OCDD problem is NP-complete for this class of graphs [13].
On the other hand we construct a class of graphs for which the MOCD problem
is trivially solvable, but the Domination Decision problem is NP-complete.

Definition 4.1 (GC graph) A graph is said to be GC graph if it can be con-
structed from a general graph G′ = (V ′, E′) where |V ′| = n > 1 in the following
way:

(i) Take a complete graph on 2n vertices, say K2n.

(ii) Take an arbitrary vertex u of G′, an arbitrary vertex v of K2n, join u and
v by a path of length 2 by taking a new vertex w.

An example of GC graph is shown in Fig 3.

b

b b

b

b

b

b

b

b

b

u v
w

Figure 2: An example of GC graph

Theorem 3 Let G be a GC graph constructed from a general graph G′ =
(V ′, E′) (|V ′| = n > 1), by taking a path P = uw,wv, where u is an arbi-
trary vertex of G′ and v is an arbitrary vertex of K2n. Then γ̃c(G) = n+1 and
V ′ ∪ {x} is an outer-connected dominating set of G, where x is any vertex of
K2n except v.

Proof: It is easy to notice that V ′ ∪ {x} is an outer-connected dominating set
of G. Suppose that D∗

o is a minimum cardinality outer-connected dominating
set of G. Then |D∗

o | ≤ |V ′|+ 1. To dominate the vertex w, at least one vertex
from the set {u,w, v} must belong to D∗

o .
If v ∈ D∗

o , then either V ′ ∪{w, v} ⊆ D∗
o or V (K2n) ⊆ D∗

o . In both the cases,
we get a contradiction, since |D∗

o | ≤ n+ 1 and n > 1.
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If w ∈ D∗
o , then either V (K2n) ∪ {w} ⊆ D∗

o or V ′ ∪ {w, y} ⊆ D∗
o (where y is

some vertex ofK2n). Again, in both the cases we get the condition, |D∗
o | > n+1,

which is a contradiction.
If u ∈ D∗

o , then either V (K2n) ∪ {u,w} ⊆ D∗
o or V ′ ⊆ D∗

o . If V (K2n) ∪
{u,w} ⊆ D∗

o , then |D∗
o | > n + 1, a contradiction. Thus the only possibility is

V ′ ⊆ D∗
o . Now, to dominate all the vertices of clique K2n, at least one vertex

of K2n should also belong to D∗
o . Hence |D∗

o | ≥ n + 1, and this completes the
proof of the theorem. ✷

Lemma 1 Let G be a GC graph constructed from a general graph G′ = (V ′, E′)
(|V ′| = n > 1), by taking a path P={uw,wv}, where u is an arbitrary vertex
of G′ and v is an arbitrary vertex of K2n. Then G′ has a dominating set of
cardinality k if and only if G has a dominating set of cardinality k + 1.

Proof: Let D′ be a dominating set of G′ of cardinality k, then, clearly D =
D′ ∪ {v} is a dominating set of G of cardinality k + 1.

Conversely, suppose that D is a dominating set of G of cardinality k + 1.
Then at least one vertex from the set V (K2n) must be contained in D. Define
D′ = D \ V (K2n). If w ∈ D′, then define D′ = (D′ \ {w}) ∪ {u}. D′ is a
dominating set of G′ of cardinality at most k. ✷

The following result for the Domination Decision problem is well known.

Theorem 4 [8] The Domination Decision problem is NP-complete for gen-
eral graphs.

Theorem 5 The Domination Decision problem is NP-complete for GC graphs.

Proof: The proof directly follows from Lemma 1 and Theorem 4. ✷

5 Outer-connected domination in chain graphs

We have already seen that the OCDD problem is NP-complete even for
perfect elimination bipartite graphs. In this section, we show that the problem
of computing a minimum outer-connected dominating set of a chain graph can
be solved in polynomial time.

A bipartite graph G = (X,Y,E) is called a chain graph if the neighborhoods
of the vertices of X form a chain, that is, the vertices of X can be linearly
ordered, say x1, x2, . . . , xp, such that NG(x1) ⊆ NG(x2) ⊆ . . . ⊆ NG(xp). If
G = (X,Y,E) is a chain graph, then the neighborhoods of the vertices of Y
also form a chain [20]. An ordering α = (x1, x2, . . . , xp, y1, y2, . . . , yq) of X ∪ Y
is called a chain ordering if NG(x1) ⊆ NG(x2) ⊆ · · · ⊆ NG(xp) and NG(y1) ⊇
NG(y2) ⊇ · · · ⊇ NG(yq). It is well known that every chain graph admits a chain
ordering [20, 14].

First we prove the following lemma, which will be helpful in proving the
main result of this section.
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Lemma 2 Let G = (X,Y,E) be a chain graph. If every vertex of G is either a
pendant vertex or is adjacent to some pendant vertex, then G is either a star or
bi-star.

Proof: Suppose that to the contrary G is neither a star nor a bi-star. Then
G contains at least three non-pendant vertices (that is, vertices of degree 2 or
more), and at least two non-pendant vertices are present on same partite set.
Let xi and xj be the non-pendant vertices belonging to the same partite set,
say X . Since both xi and xj are not pendant vertices, they must be adjacent
to some pendant vertices. By the definition of chain ordering, either NG(xi) ⊆
NG(xj) or NG(xj) ⊆ NG(xi). Without loss of generality we may assume that
NG(xi) ⊆ NG(xj). Then every vertex adjacent to xi is also adjacent to xj .
Hence every vertex adjacent to xi is of degree greater than or equal to 2. Thus
xi is neither a pendant vertex nor is adjacent to some pendant vertex, which is
contrary to the assumptions of the theorem. This proves that G is either a star
or bi-star. ✷

We are now ready to characterize the outer-connected domination number
of a chain graph in terms of r, the number of pendant vertices it has. In fact,
the γ̃c(G) of a chain graph can take one of the four values r − 1, r, r + 1, and
r + 2. The following figure contains chain graphs with γ̃c(G) taking these four
distinct values.

 

 

 

 

 

   

  

 

 

  

    

    

 

 

   

x1
x1 x1 x1 x1

x2 x2 x2
x3 x3 x3 x4
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γ̃c(G) = r − 1 = 1 γ̃c(G) = r = 3 γ̃c(G) = r = 4 γ̃c(G) = r + 1 = 3 γ̃c(G) = r + 2 = 4

Figure 3: Chain graphs with their γ̃c(G)

Theorem 6 Let G = (X,Y,E) be a connected chain graph and α = (x1, x2, . . . , xp,
y1, y2, . . . , yq) is chain ordering of X ∪ Y . Then r− 1 ≤ γ̃c(G) ≤ r+2, where r
is the number of pendant vertices of G. Furthermore, the following are true.

(a) γ̃c(G) = r − 1 if and only if G = K2.

(b) γ̃c(G) = r if and only if G is a star or bi-star of order greater than 2.

(c) Let P denotes the set of all pendant vertices of G and PA denotes the set
of vertices adjacent to the vertices of P . Then γ̃c(G) = r + 1 if and only
if G′ = G[V \ (P ∪ PA)] is a star.
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(d) If G is a graph other than the graphs described in the above statements
then γ̃c(G) = r + 2.

Proof: Suppose that D is a minimum outer-connected dominating set of G.
Then |D| = γ̃c(G). Now by using Observation 1(b), either D contains all the
pendant vertices of G or D = V \ {v}, where v is some pendant vertex. Thus
either γ̃c(G) ≥ r or γ̃c(G) = n− 1 ≥ r − 1. Hence γ̃c(G) ≥ r − 1.

Let P denotes the set of pendant vertices of G. Now D = P ∪ {xp, y1} is an
outer-connected dominating set of G. Hence γ̃c(G) ≤ r + 2.

(a) If G = K2. Then r = 2 and γ̃c(G) = 1 and hence γ̃c(G) = r − 1.
Conversely suppose that γ̃c(G) = r − 1 and D be a minimum outer-connected
dominating set of G. This implies that D does not contain at least one pendant
vertex. Then by using Observation 1(b), D contains all the vertices of G other
than one pendant vertex and hence |D| = n− 1. This implies that r− 1 = n− 1
and hence r = n. Thus all the vertices of G are pendant vertices. Since K2 is
the only such graph, G = K2.

(b) If G is a star or a bi-star having at least 3 vertices, then clearly γ̃c(G) = r.

Conversely suppose that γ̃c(G) = r. If r = 1, then G contains at least one
non-pendant vertex and hence n ≥ 3. If r ≥ 2, then since γ̃c(G) ≤ n− 1, n ≥ 3.
Hence G has at least three vertices. Now let D be a minimum outer-connected
dominating set of G and P be the set of all pendant vertices of G. Since |D| = r,
either D = P or |D| = r = n− 1. If γ̃c(G) = n− 1, then by Observation 1(e),
G is a star. If D = P , then every non-pendant vertex of G is adjacent to some
pendant vertex, and hence by Lemma 2, G is either a star or bi-star. Hence in
both the cases, G is a star or a bi-star.

(c) First suppose that G′ = G[V \ (P ∪ PA)] is a star. Note that P is not
a dominating set. Since by Observation 1(c), P is properly contained in some
minimum outer-connected dominating set of G, say D, γ̃c(G) ≥ r+1. Let u be
the star center of G′. Then D = P ∪ {u} dominates all the vertices of G. Now
the vertex adjacent to the pendant vertices in X , say v, is adjacent to all the
vertices of X and the vertex adjacent to the pendant vertices in Y , say w, is
adjacent to all the vertices of Y . Also v and w both are not taken in D. Hence
G[V \D] is connected. So D is an outer-connected dominating set of G. Hence
γ̃c(G) = r + 1.

Conversely suppose that γ̃c(G) = r + 1. By Observation 1(c), there is a
minimum outer-connected dominating set, say D, of G such that P ⊆ D. Now
the vertices of V \ (P ∪ PA) are dominated using only one vertex. This implies
that G[V \ (P ∪ PA)] is a star as it is a bipartite graph.

(d) Proof directly follows from above statements. ✷

A chain ordering of a chain graph G = (X,Y,E) can be computed in linear-
time [18]. The set P of pendant vertices of G can be computed in O(n + m)
time. If |V (G)| = 2, then take D = {v}, v ∈ V (G). It can be checked in
O(n + m) whether G is a star or a bi-star. In that case, take D = P . If
G′ = G[V \ (P ∪ PA)], where PA be the set of vertices adjacent to a vertex
in P , is a star with star-center v, then take D = P ∪ {v}, otherwise take
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D = P ∪{y1, xp}. By Theorem 6, D is a minimum outer-connected dominating
set of G. Thus we have the following theorem.

Theorem 7 A minimum outer-connected dominating set of a chain graph can
be computed in O(n +m) time.

6 Outer-connected domination in bounded tree-

width graphs

It is well known that every graph problem that can be described by counting
monadic second-order logic (CMSOL) can be solved in linear-time in graphs of
bounded tree-width, given a tree decomposition as input [5]. Graphs of tree-
width at most k are exactly the partial k-trees [15].

In this section we show that the OCDD problem can be described by counting
monadic second-order logic. Hence the OCDD problem can be solved in linear-
time in graphs of bounded tree-width given a tree decomposition as input.

Definition 6.1 (Counting Monadic second-order logic) A graph property
P is expressible in counting monadic second-order logic, CMSOL for short, if P
can be defined using:

• vertices, edges, sets of vertices and sets of edges of a graph G,

• the binary adjacency relation adj where adj(u, v) holds if and only if, u, v
are two adjacent vertices of G,

• binary incidence relation inc, where inc(v, e) hold if and only if edge e is
incident to vertex v in G,

• the unary cardinality operator card for sets of vertices of G,

• the logical operator OR (∨), AND (∧), NOT (¬),

• the membership relation ∈, the equality operator = for vertices and edges,

• the logical quantifiers ∃ and ∀ over vertices, edges, sets of vertices or sets
of edges of G.

The following result shows that many graph properties can be checked in linear-
time for graphs of bounded tree-width.

Theorem 8 [5] Let P be a graph property expressible in CMSOL and let c be
a constant. Then, for any graph G of tree-width at most c, it can be checked in
linear-time whether G has property P.

Let OCD(G, k) denote the property that γ̃c(G) ≤ k, given a graph G and a
positive integer k.

Theorem 9 Given a graph G and a positive integer k, OCD(G, k) can be ex-
pressed in CMSOL.
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Proof: Given a graph G = (V,E) and an integer k, the following CMSOL
formula expresses the property that the graph G has a dominating set of size
at most k.

∃D,D ⊆ V, |D| ≤ k, ∀x(x ∈ V → (∃y(y ∈ V ∧ y ∈ D ∧ adj(x, y)) ∨ x ∈ D))

For a set S ⊆ V , the property that G[S] is connected, can also be expressed
in CMSOL. The graph G[S] is disconnected if and only if the set S can be
partitioned into two sets S1 and S2 such that there is no edge between a vertex
in S1 and a vertex in S2. The following CMSOL logic formula expresses the
property that G[S] is connected.

¬(∃C,C ⊆ S,¬(∃e ∈ E, ∃u ∈ C, ∃v ∈ S \ C, (inc(u, e) ∧ inc(v, e))))

Now we can write the CMSOL logic formula which expresses the property
OCD(G, k) in the following way:
∃D,D ⊆ E, |D| ≤ k, ((∀x(x ∈ V → (∃y(y ∈ V ∧ y ∈ D ∧ adj(x, y)) ∨ x ∈ D))) ∧
(¬(∃C,C ⊆ V \D,¬(∃e ∈ E, ∃u ∈ C, ∃v(v ∈ V ∧ v /∈ D ∧ v /∈ C), (inc(u, e) ∧
inc(v, e)))))).

Hence the theorem is proved. ✷

By Theorem 8 and Theorem 9, we have the following corollary.

Corollary 6.1 The OCDD problem can be solved in linear-time for bounded
tree-width graphs.

Note that solving the OCDD problem is answering the question whether
G has an outer-connected dominating set of cardinality at most k, for a given
positive integer k. By asking this question at most n times, first for k = 1, then
for k = 2 and so on, we can find the outer-connected domination number of a
bounded tree-width graph G in at most O(n2) time.

As the tree-width of a tree is 1, the CMSOL approach gives an O(n2) algo-
rithm for finding the outer-connected domination number of trees.

7 Approximation Algorithm and Hardness of Ap-

proximation

Let G = (V,E) be any graph. Let D∗
o be any minimum outer-connected

dominating set of G. Now V = ∪v∈D∗

o

NG[v]. So,

n = |V | = | ∪v∈D∗

o

NG[v]| ≤
∑

v∈D∗

o

|NG[v]|

≤
∑

v∈D∗

o

dG(v) + 1 ≤
∑

v∈D∗

o

(∆(G) + 1)

≤ (∆(G) + 1) · |D∗
o |

Hence, |D∗
o | ≥ ⌊ n

∆(G)+1⌋. Thus, we have the following result.
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Lemma 3 For any graph G of order n with maximum degree ∆(G),

γ̃c(G) ≥ ⌊(
n

∆(G) + 1
)⌋.

Hence for a graph G = (V,E), Do = V (G) is an outer-connected dominating
set such that |Do| ≤ (∆(G) + 1)γ̃c(G). Thus we have the following theorem.

Theorem 10 The MOCD problem in any graph G = (V,E) with maximum
degree ∆(G) can be approximated with an approximation ratio of ∆(G) + 1.

The following approximation hardness result of the Minimum Domination

problem will be used to establish an approximation hardness result of the MOCD
problem.

Theorem 11 [4] The Minimum Domination problem can not be approxi-
mated within a factor of (1− ε) ln |V | in polynomial time for any constant ε > 0
unless NP ⊆ DTIME( |V |O(log log |V |)).

Now we are ready to prove an approximation hardness result for the MOCD
problem.

Theorem 12 The MOCD problem for a graph G = (V,E) can not be approxi-
mated within a factor of (1− ε) ln |V | in polynomial time for any constant ε > 0
unless NP ⊆ DTIME(|V |O(log log |V |)).

Proof: We propose an approximation preserving reduction from the Mini-

mum Domination problem to the MOCD problem. This together with the
non-approximability bound of the Minimum Domination problem stated in
Theorem 11 will provide the desired result.

Let us first describe the reduction from the Minimum Domination problem
to the MOCD problem. Given a graph G = (V,E), where V = {v1, v2, . . . , vn}
construct a graph G′ = (V ′, E′) as follows:

V (G′) = V (G) ∪ {w1, w2, . . . , wn} ∪ {z}, and E(G′) = E(G) ∪ {viwi|1 ≤ i ≤
n} ∪ {wiwj |1 ≤ i < j ≤ n} ∪ {zwi|1 ≤ i ≤ n}.

The graph G = (V,E), where V = {v1, v2, v3} and E = {v1v2, v2v3} and the
associated graph G′ are shown in Fig. 4 to illustrate the above construction.

It is easy to see that if D∗ is a minimum dominating set of G, then D∗∪{z}
is a an outer-connected dominating set of G′.

Now assume that the minimum outer-connected dominating set can be ap-
proximated within a ratio of α, where α = (1− ε) ln |V | for some (fixed) ε > 0,
by using some algorithm, say algorithm A, that runs in polynomial time. Let l
be a fixed positive integer. Consider the following algorithm:

Algorithm B
Input: A graph G = (V,E)
1. If a minimum dominating set D of cardinality < l exists, construct it Else:
2. Construct G′ as above.
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Figure 4: An illustration to the construction of G′ from G

3. Compute outer-connected dominating set Do in G′ using algorithm A.
4. Compute D by following procedure
5. Define D = Do

⋂
V

6. For each wi, if wi ∈ Do then D = D ∪ vi
6. Output D

This algorithm runs in polynomial time since algorithm A is a polynomial
time algorithm and step 1 runs in polynomial time as l is a constant. Note that
if D is a minimum dominating set of cardinality at most l, then it is optimal.
In the following we will analyze the case where D is not a minimum dominating
set of cardinality at most l.

Let D∗
o be a minimum outer-connected dominating set, then |D∗

o | ≥ l. Given
the graph G = (V,E) algorithm B computes a dominating set D of cardinality
|D| ≤ |Do| ≤ α|D∗

o | ≤ α(1 + |D∗|) = α(1 + 1/|D∗|)|D∗| ≤ α(1 + 1/l)|D∗|
Hence Algorithm B approximates minimum dominating set within ratio

α(1 + 1/l). Since α = (1 − ε) ln |V | for some (fixed) ε > 0, for some positive
integer l such that 1/l < ε/2, algorithm B approximates minimum dominating
set within ratio
α(1 + 1/l) < (1− ε)(1 + ε/2) ln(|V |) = (1− ε′) ln(|V |) for ε′ = ε/2 + ε2/2.

By Theorem 11, if theMinimum Domination problem can be approximated
within a ratio of (1− ε′) ln(|V |), then NP ⊆ DTIME(|V |O(log log |V |)). It follows
that if the Minimum Outer-connected Domination problem can be ap-
proximated within a ratio of (1− ε) ln(|V |) then NP ⊆ DTIME(|V |O(log log |V |)).

Since ln |V | ≈ ln(2|V |+1) for sufficiently large values of |V |, for a graph G′ =
(V ′, E′), where |V ′| = 2|V | + 1, Minimum Outer-connected Domination

problem cannot be approximated within a ratio of (1 − ε) ln |V ′| unless NP ⊆
DTIME(|V ′|O(log log |V ′|)). ✷

8 APX-completeness

In this section, we show that the MOCD problem is APX-complete for graphs
with maximum degree 4. We also show that the MOCD problem is APX-
complete for bipartite graphs with maximum degree 7.

To this end, we need the concept of a very popular reduction, known as L-



JGAA, 18(4) 493–513 (2014) 507

reduction. Let IP denote the set of all instances of an optimization problem P
and let SOLP (x) denote the set of solutions of an instance x of P . Let mP (x, z)
denote the measure of the objective function value for x ∈ IP and z ∈ SOLP (x),
and optP (x) denotes the optimal value of the objective function for x ∈ IP .

Definition 8.1 Given two NP optimization problems F and G and a polyno-
mial time transformation f from instances of F to instances of G, we say that
f is an L-reduction if there are positive constants α and β such that for every
instance x of F

1. optG(f(x)) ≤ α · optF (x).

2. for every feasible solution y of f(x) with objective value mG(f(x), y) = c2
we can in polynomial time find a solution y′ of x with mF (x, y

′) = c1 such
that |optF (x) − c1| ≤ β|optG(f(x)) − c2|.

To show the APX-completeness of a problem Π ∈APX, it is enough to show
that there is an L-reduction from some APX-complete problem to Π.

Since ∆(G) ≤ k for some integer constant k, the following corollary follows
from Theorem 10.

Corollary 8.1 The MOCD problem for bounded degree graphs is in APX.

Next we prove that the MOCD problem for bounded degree graphs is APX-
hard.

8.1 APX-completeness for graphs with maximum degree

4

In this subsection we show that the MOCD problem is APX-complete for
graphs with maximum degree 4.

Theorem 13 The MOCD problem is APX-complete for graphs with maximum
degree 4.

Proof: By Corollary 8.1, the MOCD problem for bounded degree graphs is
in APX. The Minimum Domination problem is known to be APX-hard for
general graphs with maximum degree 3 [2]. We describe an L-reduction f from
instances of the Minimum Domination Problem for graphs with maximum
degree 3 to the instances of the MOCD problem. Given a graph G = (V,E)
of maximum degree 3, we construct a graph G′ = (V ′, E′) as follows. Let
V = {v1, v2, . . . , vn}. Let V ′ = V ∪ {z1, z2, . . . , zn} ∪ {y1, y2, . . . , yn} and E′ =
E ∪ {viyi, yizi|1 ≤ i ≤ n} ∪ {yiyi+1|1 ≤ i ≤ n − 1}. Note that the maximum
degree of G′ is 4. Now let us first prove the following claim:

Claim 8.1 If D∗ is a minimum cardinality dominating set of G, then the car-
dinality of minimum outer-connected dominating set, say D∗

o, in G′ is |D∗|+n,
where n = |V |.
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Proof: Suppose that D∗ is a minimum cardinality dominating set of G, then
D∗ ∪ {zi | 1 ≤ i ≤ n} is an outer-connected dominating set of cardinality
|D∗|+ n. Hence the cardinality of a minimum outer-connected dominating set,
say D∗

o is less than or equal to |D∗|+ n, that is, |D∗
o | ≤ |D∗|+ n.

Next suppose thatD∗
o is a minimum cardinality outer- connected dominating

set of G′. Define Do = V ∪ {zi | 1 ≤ i ≤ n}. Then Do is an outer-connected
dominating set of cardinality 2n. Hence |D∗

o | ≤ 2n. So by Observation 1(d), all
the pendant vertices of G′ must belong to D∗

o . Hence zi must belong to D∗
o for

all i, 1 ≤ i ≤ n. Let D′ = D∗
o \ {zi | 1 ≤ i ≤ n}. Let S = {y1, . . . , yn} ∩D′. Let

D′′ = (D′ \ S) ∪ {vi|yi ∈ S}. Then D′′ is a dominating set of G and cardinality
of D′′ is less than or equal to |D∗

o | −n. Hence if D∗ is minimum dominating set
then |D∗| ≤ |D∗

o | − n. Hence |D∗
o | ≥ |D∗|+ n.

This completes the proof of the claim. ✷

LetD∗ andD∗
o be a minimum dominating set and a minimum outer-connected

dominating set of G and G′, respectively. Since G is of bounded degree 3, for
any dominating set D of G, |D| ≥ n

4 . Thus |D
∗| ≥ n

4 . Hence |D∗
o | = |D∗|+ n ≤

|D∗| + 4|D∗| i.e. |D∗
o | ≤ 5|D∗|. Now consider any outer-connected dominating

set Do of G′, then we have the following two cases:

Case 1: zi belong to Do for all i, 1 ≤ i ≤ n.

Here yi may or may not belong to Do. Let |Do ∩ {y1, y2, . . . , yn}| = r and
|Do ∩ V (G)| = k. Then |Do| = n+ r + k. Now we try to find a dominating set
D of G. First include those k vertices of V in D, which also belong to Do. If
yi ∈ Do but vi /∈ Do, then include vi in D. Suppose that this happens for k′

values of i, where k′ ≤ r. Then D is a dominating set of G and |D| = k′ + k.
Now |Do|− |D∗

o| = (n+ r+k)−|D∗
o| = r+k−|D∗| ≥ k′+k−|D∗| = |D|− |D∗|

(as |D∗
o | = |D∗|+ n). This implies |D| − |D∗| ≤ |Do| − |D∗

o | in this case.

Case 2: At least one of the zi does not belong toDo for some i, where 1 ≤ i ≤ n.
In this case all the vertices except this particular zi belong to Do. Hence |Do| =
3n−1. Now takeD = Do∩V = V . ThenD is a dominating set ofG and |D| = n.
Then |Do|−|D∗

o | = (3n−1)−(|D∗|+n) = (2n−1)−|D∗| ≥ n−|D∗| = |D|−|D∗|.
This implies |D| − |D∗| ≤ |Do| − |D∗

o | in this case.

Hence |D| − |D∗| ≤ |Do| − |D∗
o | in both the cases and we have shown that f

is an L-reduction with α = 5 and β = 1.

Thus, the MOCD problem in graphs of bounded degree 4 is APX-complete.
✷

8.2 APX-completeness for bipartite graphs with maximum

degree 7

In this subsection we prove the APX-completeness of the MOCD problem
for bipartite graphs of bounded degree.

A set S ⊆ V of a graph G = (V,E) is a total dominating set if NG(v)∩S 6= ∅
for all v ∈ V . The Minimum Total Domination problem is to find a total
dominating set of minimum cardinality of the input graph G. The Minimum
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Total Domination problem is known to be APX-complete for bipartite graphs
with maximum degree 3 [17].

Theorem 14 The MOCD problem is APX-complete for bipartite graphs with
maximum degree 7.

Proof: By Corollary 8.1, the MOCD problem for bounded degree bipartite
graphs is in APX. We describe an L-reduction f from instances of the Minimum

Total Domination problem for bipartite graphs with maximum degree 3 to
the instances of the MOCD problem for bipartite graphs of maximum degree 7.
Given a bipartite graphG = (V,E) of maximum degree 3 construct a graphG′ =
(V ′, E′) as follows. Let V (G) = {v1, v2, . . . , vn}. Let V ′ = V ∪{w1, w2, . . . , wn}∪
{z1, z2, . . . , zn} ∪ {y1, y2, . . . , yn}. Construct a spanning tree T = (V,E1) of G.
Let ER = {wiwj |vivj ∈ E1, 1 ≤ i < j ≤ n}. Let Ei = {wivj |vj ∈ NG(vi)}. Let
E′ = E ∪ ER ∪ {wizi, ziyi, 1 ≤ i ≤ n} ∪ (∪n

i=1E
i).

Clearly G′ is a bipartite graph of maximum degree 7. The graph G = (V,E),
where V = {v1, v2, v3, v4} and E = {v1v2, v2v3, v3v4, v4v1} and the associated
graph G′ are shown in Fig. 5 to illustrate the above construction.
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Figure 5: An illustration to the construction of G′ from G

Let us first prove the following claim:

Claim 8.2 If D∗
T is a minimum total dominating set of G and D∗

o is a minimum
outer-connected dominating set of G′, then |D∗

o | = |D∗
T |+ n.

Proof: Clearly D∗
T ∪ {y1, y2, . . . , yn} is an outer-connected dominating set.

Hence |D∗
o | ≤ |D∗

T |+ n.
Now we construct a total dominating set of G of cardinality at most |D∗

o |−n
from the minimum outer-connected dominating set D∗

o of G′ as follows.
The minimum outer-connected dominating set D∗

o of G′ will necessarily con-
tain all the yi, 1 ≤ i ≤ n. Given D∗

o , we construct an outer-connected dom-
inating set D∗∗

o such that |D∗
o | = |D∗∗

o | and D∗∗
o ∩ {w1, w2, . . . , wn} = ∅, as

follows:
For each i, 1 ≤ i ≤ n, if wi ∈ D∗

o , then replace wi with vi.



510 B.S. Panda, Arti Pandey Outer-connected Dominating Set in Graphs

Let us call the resultant set D∗∗
o . Define D′ = D∗∗

o \ {y1, y2, . . . , yn}. Now
to dominate wi, either zi belongs to D′ or some neighbor vj of wi belongs to
D′. If zi belongs to D′, then remove it from D′ and add some neighbor vj of wi

in D′. Then D′ is a total dominating set of G and |D′| ≤ |D∗∗
o | − n = |D∗

o | − n.
Hence |D∗

T | ≤ |D∗
o | − n. This proves our claim. ✷

Since the maximum degree of G is 3, for any total dominating set DT of G,
|DT | ≥ n/3. So |D∗

T | ≥ n/3. Hence |D∗
o | = |D∗

T | + n ≤ |D∗
T | + 3|D∗

T |. Thus
|D∗

o | ≤ 4|D∗
T |.

Now consider any outer-connected dominating setDo, then we have following
two cases:
Case 1: yi belong to Do for all i, 1 ≤ i ≤ n.

Define the sets W = {w1, w2, . . . , wn} and Z = {z1, z2, . . . , zn}. Now we
construct an outer-connected dominating set D′

o from Do, by replacing wi with
vi, whenever wi ∈ Do, 1 ≤ i ≤ n. Note that {y1, y2, . . . , yn} ⊆ D′

o and D′
o∩W =

∅.
Hence D′

o is an outer-connected dominating set of same or lesser cardinality
than that of Do. Now suppose that |D′

o ∩ Z| = r and |D′
o ∩ V | = k, then

|D′
o| = n+ r + k.

Since for each i, 1 ≤ i ≤ n, NG′(wi) ∩ V = NG(vi), D′
o ∩ V is a total

dominating set of G whenever (NG′(wi) ∩ V ) ∩D′
o = NG(vi) ∩D′

o 6= ∅ for all i,
1 ≤ i ≤ n. If not so, then suppose that there exist a set of vertices S ⊆ V such
that for every vertex vj ∈ S, NG(vj)∩D′

o = ∅, that is, (NG′(wj)∩V )∩D′
o = ∅.

Now since NG′(wj) ⊆ V ∪W ∪{zj}, zj must belong to D′
o, as NG(vj)∩D′

o = ∅.
Now update D′

o as D′
o = (D′

o \ {zj})∪ {vk}, where vk ∈ NG(vj). Do this for all
the vertices in S. Now define DT = D′

o ∩V . Then DT is a total dominating set
of G and |DT | = k + k1, where k1 ≤ r.

Now, |DT | − |D∗
T | = k+ k1 − |D∗

T | ≤ n+ r+ k− (|D∗
T |+ n) = |D′

o| − |D∗
o | ≤

|Do| − |D∗
o |. This implies |DT | − |D∗

T | ≤ |Do| − |D∗
o | in this case.

Case 2: At least one yi does not belong to Do for some i, 1 ≤ i ≤ n.

In this case all the vertices except this particular yi belong to Do. Hence |Do| =
4n− 1. Now take DT = Do ∩ V = V . Then DT is a total dominating set of G
and |DT | = n. Then |Do| − |D∗

o | = (4n− 1)− (|D∗
T |+ n) = (3n− 1)− |D∗

T | ≥
n− |D∗

T | = |DT | − |D∗
T |. This implies |DT | − |D∗

T | ≤ |Do| − |D∗
o | in this case.

Hence |DT | − |D∗
T | ≤ |Do| − |D∗

o | in both the cases and we have shown that
f is an L-reduction with α = 4 and β = 1. ✷

9 Conclusion

In this paper, we studied the algorithmic and complexity aspects of the
MOCD problem. The OCDD problem is known to be NP-complete for bipartite
graphs. In this paper, we proved that the OCDD problem remains NP-complete
for perfect elimination bipartite graphs. On the positive side, we proposed a
linear-time algorithm for computing a minimum outer-connected dominating set
of a chain graph, a subclass of bipartite graphs. It remains interesting to study
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the problem for further subclasses of bipartite graphs. We also derived a ∆(G)-
approximation algorithm for the MOCD problem, where ∆(G) is the maximum
degree of G. On the negative side, we proved that the MOCD problem can
not be approximated within a factor of (1 − ε) ln |V | for any ε > 0, unless NP
⊆ DTIME(|V |O(log log |V |)). It would also be interesting to try to close the gap
between positive and negative approximability results. One may also observe
that the MOCD problem is trivially solvable for graphs with bounded degree 2.
However, the MOCD problem becomes APX-complete for graphs with bounded
degree 4 as we have proved in this paper. The complexity status of the problem
is still open for graphs with bounded degree 3.
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