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Abstract

A graph G = (V,E) is called a pairwise compatibility graph (PCG) if
there exists an edge-weighted tree T and two non-negative real numbers
dmin and dmax such that each vertex u′ ∈ V corresponds to a leaf u of T
and there is an edge (u′, v′) ∈ E if and only if dmin ≤ dT (u, v) ≤ dmax in
T . Here, dT (u, v) denotes the distance between u and v in T , which is the
sum of the weights of the edges on the path from u to v. It is known that
not all graphs are PCGs. Thus it is interesting to know which classes of
graphs are PCGs. In this paper we show that triangle-free outerplanar
graphs with the maximum degree 3 are PCGs.
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1 Introduction

Let T be an edge-weighted tree and let dmin and dmax be two non-negative real
numbers such that dmin ≤ dmax. A pairwise compatibility graph(PCG) of T for
dmin and dmax is a graph G = (V,E), where each vertex u′ ∈ V represents a
leaf u of T and there is an edge (u′, v′) ∈ E if and only if the distance between
u and v in T lies within the range from dmin to dmax. T is called the pairwise
compatibility tree of G. We denote a pairwise compatibility graph of T for dmin

and dmax by PCG(T, dmin, dmax). Figure 1(b) depicts an edge-weighted tree
T and Fig. 1(a) depicts a pairwise compatibility graph G of T for dmin = 4
and dmax = 7; there is an edge between a′ and b′ in G since in T the distance
between a and b is six, which is within the range; but G does not contain the
edge (a′, c′) since in T the distance between a and c is eight, which is larger
than seven; also there is an edge between b′ and c′ in G since in T the distance
between b and c is four, but G does not contain the edge (b′, d′) since in T the
distance between b and d is three, which is smaller than four. It is quite apparent
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Figure 1: (a) A pairwise compatibility graph G, (b) an edge-weighted tree T
and (c) an edge-weighted tree T2.

that a single edge-weighted tree may have many pairwise compatibility graphs
for different values of dmin and dmax. Likewise, a single pairwise compatibility
graph may have many trees of different topologies as its pairwise compatibility
trees. For example, the graph in Fig. 1(a) is a PCG of the tree in Fig. 1(b)
for dmin = 4 and dmax = 7, and it is also a PCG of the tree in Fig. 1(c) for
dmin = 5 and dmax = 8. Thus, the pairwise compatibility concept concerns
two bounds dmin and dmax. The special case where dmin = 0 reduces PCGs
to graph classes, namely “leaf power graphs”, investigated by Kolen [15] and
later by Brandstadt et al. [2, 3]. This interesting case where dmin = 0 leads
to graphs that are a subclass of strongly chordal graphs [8] which have many
practical applications. A graph G(V,E) is a leaf power graph (LPG) iff there
exists a tree T and a nonnegetive number dmax such that for an edge (u′, v′)
in E and their corresponding leaves u, v in T we have dT (u, v) ≤ dmax [17].
A lot of works has been done on this class (LPG) of graphs by Kennedy et al.
at [14], again by Brandstadt et al. at [5, 4, 1], also by Fellows et al. at [9].
However the complete description of leaf power graphs is still unknown. This
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class LPG is a subclass of PCG. In [7] the authors have introduced another
subclass of PCG, namely “mLPG”, by concerning only the minimum distance
constraint and showed the relations between PCG, LPG and mLPG. In mLPG
(we set dmax = +∞), there is an edge in E if and only if the corresponding
leaves are at a distance greater than dmin in the tree.

There are two fundamental problems in the realm of pairwise compatibility
graphs. One is the tree construction problem and the other is the pairwise
compatibility graph recognition problem. Given a PCG G, the tree construction
problem asks to construct an edge-weighted tree T , such that G is a pairwise
compatibility graph of T for suitable dmin and dmax. The second problem,
pairwise compatibility graph recognition problem, seeks the answer whether or
not a given graph is a PCG.

Pairwise compatibility graphs have their applications in reconstructing evo-
lutionary relationships among organisms from biological data (also called phy-
logeny) [12, p.196-200] [16, p.189-199]. The phylogeny reconstruction problem
is known to be NP-hard [10, 11]. Phylogenetic relationships are usually rep-
resented as trees known as the phylogenetic trees. Dealing with the problem
of collecting leaf samples from large phylogenetic trees, Kearney et al. intro-
duced the concept of pairwise compatibility graphs [13]. Furthermore, in that
paper, the proponents of PCGs have shown that “the clique problem”, a well
known NP-complete problem, is polynomially solvable for pairwise compatibil-
ity graphs if the pairwise compatibility tree construction problem can be solved
in polynomial time.

Since their inception, several interesting problems have been raised in pair-
wise compatibility graphs concept , and hitherto most of these problems have
remained unsolved. Among the others, identifying different graph classes as
pairwise compatibility graphs is an important concern. Seeing the exponentially
increasing number of possible tree topologies for large graphs, the proponents
of PCGs conjectured that all undirected graphs are PCGs [13]. Yanhaona et
al. refute the conjecture by showing that not all graphs are PCGs [22]. Phillips
has shown that every graph of five vertices or less is a PCG [18] and also very
recently it is proved that every graph of seven vertices or less is a PCG [6].
It has also been shown that all cycles, single chord cycles, cactus graph, tree
power graphs, Steiner k-power and phylogenetic k-power graphs, some particular
subclasses of bipartite graphs, some particular subclasses of split matrogenetic
graphs are PCGs [22, 23, 7]. In this paper we show that trees, ladder graphs,
outer subdivision of ladder graphs and triangle-free outerplanar 3-graphs are
PCGs. We also provide algorithms for constructing pairwise compatibility trees
for graphs of these classes.

The rest of the paper is organized as follows. Section 2 gives some of the
definitions along with some trivial results on trees and ladder graphs. Section 3
deals with outer subdivisions of ladder graphs which is a subclass of triangle
free outerplanar 3-graphs. In Section 4 we show that triangle free outerplanar
3-graphs are pairwise compatibility graphs. Finally, Section 5 concludes our
paper with discussions. A preliminary version of this paper has been presented
at [20].
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2 Preliminaries

In this section we define some terms that we have used in this paper.
Let G = (V,E) be a simple connected graph with vertex set V and edge set E.
The sets of vertices and edges of G are denoted by V (G) and E(G), respectively.
An edge between two vertices u and v of G is denoted by (u, v). Two vertices u
and v are adjacent and called neighbors if (u, v) ∈ E; the edge (u, v) is then said
to be incident to vertices u and v. The degree of a vertex v in G is the number
of edges incident to it. The maximum degree of a graph G is the maximum
degree of its vertices. We call a graph k-graph if the maximum degree of that
graph is k. A path Puv = w0, w1, · · · , wn is a sequence of distinct vertices in V
such that u = w0, v = wn and (wi−1, wi) ∈ E for every 1 ≤ i ≤ n. A subgraph
of a graph G = (V,E) is a graph G′ = (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E;
we then write G′ ⊆ G. The connectivity κ(G) of a graph G is the minimum
number of vertices whose removal results in a disconnected graph or a single
vertex graph. G is called a k-connected graph if κ(G) ≥ k. We call a vertex of
G a cut vertex if its removal results in a disconnected or single-vertex graph.
A biconnected graph of n vertices is a ladder if it consists of two distinct paths
of the same length (u1, u2, · · · , un

2
) and (v1, v2, · · · , vn

2
) plus the edges (ui, vi)

(i = 1, 2, · · · , n2 ).
A cycle of G is a sequence of distinct vertices starting and ending at the same
vertex such that two vertices are adjacent if they appear consecutively in the
sequence. A tree T is a connected graph with no cycle. Vertices of degree one
in T are called leaves and the others are internal nodes. A tree T is weighted if
each edge is assigned a number as the weight of the edge. The weight of an edge
(u, v) is denoted by W (u, v). The distance between two vertices u and v in T ,
denoted by dT (u, v), is the sum of the weights of the edges on Puv. A caterpillar
graph is a tree such that if all leaves and their incident edges are removed, the
remainder of the graph forms a single path. The path is called the spine of the
caterpillar.

A graph is planar if it can be embedded in the plane so that no two edges
intersect geometrically except at a vertex to which both of them are incident.
A plane graph is a planar graph with a fixed embedding. A plane graph di-
vides the plane into connected regions called faces. The unbounded region is
called the unbounded or outer face of G. The other faces are called bounded
or internal faces. Any face with exactly 3 edges is called a triangulated face.
A dual graph of a plane graph G is a graph which has a vertex for each face
of G, and an edge for each edge in G joining two neighboring faces. A weak
dual of a plane graph G is the subgraph of the dual graph of G whose vertices
correspond to the bounded faces of G. A graph is outerplanar if it has a planar
embedding where all vertices are on the outer face. Throughout the paper by an
outerplanar graph we mean an outerplanar embedding of an outerplanar graph,
that is, an outerplane graph. A weak dual of a biconnected outerplanar graph
is a tree. A triangle-free outerplanar graph is an outerplanar graph containing
no triangulated faces. Subdividing an edge (u,v) of a graph G is the operation
of deleting the edge (u, v) and adding a path u(= w0), w1, w2, · · · , wk, v(wk+1)
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through new vertices w1, w2, · · · , wk, k ≥ 1, of degree two. A graph G′ is said to
be a subdivision of a graph G if G′ is obtained from G by subdividing some of
the edges of G. An outer subdivision of a graph G is a subdivision of G obtained
by subdividing some edges on the outer face of G.

We are now going to present some elementary results on pairwise compati-
bility graphs. The following theorem gives a trivial result on trees.

Theorem 1 Every tree is a pairwise compatibility graph.
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Figure 2: (a) A tree T and (b) a pairwise compatibility tree T ′′ of T .

Proof: We give a constructive proof. Let T be a tree as illustrated in Fig. 2(a).
We take a replica T ′ of T . We construct a tree T ′′ from T ′ by introducing a
new (pendant) vertex v′′ for each v′ ∈ T ′ such that (v′, v′′) ∈ E(T ′′). Then we
assign weight r to all the edges of T ′′ as illustrated in Fig. 2(b). The leaves of
T ′′ represent the vertices of T . Clearly, T ′′ is a pairwise compatibility tree of T
with dmin = dmax = 3r. �

The construction in the proof of Theorem 1 can be done in linear time.
We now present our result on ladder graphs as in the following theorem.

Theorem 2 Every ladder graph is a pairwise compatibility graph. 1

Proof: LetG = (V,E) be a ladder graph with 2n vertices where V = {v′1, v′2, v′3, · · ·
, v′n, u

′
1, u
′
2, u
′
3, · · · , u′n} such that {v′1, v′2, v′3, · · · , v′n} and {u′1, u′2, u′3, · · · , u′n}

are two distinct paths and for 1 ≤ i ≤ n, (u′i, v
′
i) ∈ E, as illustrated in

Fig. 3(a). We construct a caterpillar T where the leaves v1, v2, v3, · · · , vn,
u1, u2, u3, · · · , un represent the vertices v′1, v

′
2, v
′
3, · · · , v′n, u′1, u′2, u′3, · · · , u′n of

G, respectively, as illustrated in Fig. 3(b). Let pi be the vertex adjacent to
vi and qi be the vertex adjacent to ui in the caterpillar for 1 ≤ i ≤ n. We
now assign weights for the edges of T as follows. For 1 ≤ i ≤ n, we assign
W (vi, pi) = r + 1,W (pi, qi) = r − 1,W (qi, ui) = r and for 1 ≤ i < n, we assign
W (qi, pi+1) = r − 2. We next show G = PCG(T, dmin, dmax) with dmin = 3r,
dmax = 4r − 1 and r ≥ 3.

1This result was presented at [19].
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Figure 3: (a) A ladder graph G and (b) a pairwise compatibility tree T of G.

We first consider the case where 2 ≤ i < n. Here dT (vi, ui) = 3r = dmin.
Since this distance is within the range, v′i and u′i are adjacent in G. Similarly,
since dT (vi−1, vi) = dT (vi, vi+1) = (r + 1) + (r − 2) + (r − 1) + (r + 1) =
4r− 1 = dmax, the vertices v′i−1 and v′i are adjacent in G. Since dT (ui−1, ui) =
dT (ui, ui+1) = r+(r−2)+(r−1)+r = 4r−3 = (4r−1)−2 = dmax−2 = 3r+
(r−3) = dmin +(r−3), for r ≥ 3, dmin ≤ dT (ui−1, ui), dT (ui, ui+1) < dmax and
hence u′i−1 and u′i are adjacent in G. Since dT (vi, ui−1) = (r+1)+(r−2)+r =
3r − 1 < dmin, v′i and u′i−1 are not adjacent in G. The vertices v′i and u′i+1 are
not adjacent because dT (vi, ui+1) = (r+1)+(r−1)+(r−2)+(r−1)+r = 5r−3 =
(4r − 1) + (r − 2) = dmax + (r − 2) > dmax. Similarly, the vertices v′i−1 and u′i
are not adjacent because dT (vi−1, ui) = (r+ 1) + (r−1) + (r−2) + (r−1) + r =
5r− 3 = (4r− 1) + (r− 2) = dmax + (r− 2) > dmax. Again v′i+1 and u′i are not
adjacent, since dT (vi+1, ui) = (r + 1) + (r − 2) + r = 3r − 1 < dmin.

One can easily verify the other two cases, where i = 1 and i = n.
Hence, by definition, G = PCG(T, dmin, dmax). �

Based on the proof of Theorem 2, one can obtain an O(n) time algorithm
for constructing a pairwise compatibility tree of a ladder graph of n vertices.

3 Outer subdivisions of ladder graphs and PCGs

In an outer subdivision of a ladder graph every vertex lies on the boundary of
the outer face of the graph. In this section, graphs of this class will be shown
to be a PCG by constructing the pairwise compatibility trees for these graphs.
The main idea is to decompose a graph of this class into cycles, then construct
pairwise compatibility trees for these cycles as caterpillars and finally merge the
caterpillars to get the desired pairwise compatibility tree. Theorem 3 states the
main result of this section.
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Theorem 3 Outer subdivisions of ladder graphs are pairwise compatibility graphs.

To prove the claim of Theorem 3 we need the following lemmas. Our first
lemma finds a pairwise compatibility tree of a cycle. Although the authors
of [23] gave two algorithms for finding pairwise compatibility trees of given
cycle by considering odd cycle and even cycle separately, we give a generalized
construction in the proof of Lemma 1 for all cycles.

Lemma 1 Every cycle is a PCG which has a pairwise compatibility tree as a
caterpillar.

Proof: Let C be a cycle with n vertices v′1, v
′
2, v
′
3, · · · , v′n where (v′i, v

′
j) are

adjacent for i < n, j ≤ n, j = i+ 1 and (v′1 , v′n) are also adjacent. We make a
caterpillar T for this cycle C such that the leaves v1, v2, v3, · · · , vn−1 represents
the vertices v′1, v

′
2, v
′
3, · · · , v′n−1 of C where path Pvivj in T for j = i+1 contains

three edges including an edge on the spine as illustrated in Fig. 4. We assign
weight d to each edge on the spine and weight w to each of the other edges.
Then the distance between any two leaves in the caterpillar is dT (vi, vj) =
w + (j − i)d + w = 2w + (j − i)d. Let u1, u2, u3, · · · , un−1 be the vertices on
the spine of the caterpillar that are adjacent to the leaves v1, v2, v3, · · · , vn−1,
respectively. If n is odd, we put a vertex un in the middle of the path Pu1un−1

on the spine and place the last vertex vn as a leaf which is adjacent to the vertex
un with an edge of weight wn, as illustrated in Fig. 4. If n is even, we use the
vertex un

2
as un which is in the middle of the path Pu1un−1

on the spine and
place the last vertex vn as a leaf which is adjacent to the vertex un

2
with an

edge of weight wn, as illustrated in Fig. 5.
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Figure 4: A caterpillar which is a pairwise compatibility tree of a cycle C of
odd number of vertices.
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Figure 5: A caterpillar which is a pairwise compatibility tree of a cycle C of
even number of vertices.
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Now let us keep the relations between the weights w and d such that w be
the distance between vertices un−1 and un, i.e. w = (n/2 − 1) ∗ d (see Figures
4 and 5). Let us assign wn = 2d − r where r � d, dmin = 2w + d and
dmax = 2w + 2d − r = dmin + d − r. One can easily verify that the distance
between the last vertex and any other vertex that is not adjacent to the last
vertex is less than dmin. On the other hand, the distance between any other pair
of non-adjacent vertices is greater than dmax and C = PCG(T, dmin, dmax). �

The outer subdivisions of the ladder graph G can be decomposed into several
cycles and we can merge corresponding compatibility tree to get PCG of G. We
cannot merge the caterpillars of different cycles unless they have the same dmin

and dmax. However, the following lemma focuses on constructing caterpillars of
different cycles with the same dmin and dmax.

Lemma 2 Let C be a cycle of n vertices. Assume that C has a pairwise com-
patibility tree T for some dmin and dmax. Let C ′ be a cycle of n′ ≤ n vertices.
Then C ′ has a pairwise compatibility tree T ′ for the same dmin and dmax.

Proof: According to Lemma 1, Cycle C has a pairwise compatibility tree as a
caterpillar T where every edge on the spine has weight d, the edge with the last
vertex has weight wn = 2d− r and each of the other edges has weight w where
w = d(n/2− 1), dmin = 2w + d and dmax = 2w + 2d− r.

Let T be the pairwise compatibility tree of cycle C of n vertices. Let d be
the assigned weight to the each edge of spine in T . So according to Lemma 1
w = d(n/2− 1) and the weight of the edge with the last vertex is wn = 2d− r
where dmin = 2w + d and dmax = 2w + 2d − r. The distance dT (vn, v1) =
dT (vn, vn−1) = dmax = 2w + 2d− r.

Let T ′ be the pairwise compatibility tree of C ′. We set weight d to each
edge of spine and w = d(n/2 − 1) to each of the other edges in T ′. One can
easily observe that, the distance between any two vertices of v1, v2, . . . , vn′−1 in
T ′ hold the relation for being C ′ = PCG(T ′, dmin, dmax). Since the distance
of dT ′(vn′ , v1) or dT ′(vn′ , vn′−1) must be equal to dmax, we set wn′ = dmax −
dT ′(v1, un′). Since dmax = 2w + 2d − r, dT ′(u1, un′) = d(n′/2 − 1) and w =
d(n/2− 1), wn′ = d(n− n′)/2 + 2d− r.

The weight chosen above satisfies the condition that dT ′(vn′ , v2) < dmin and
dT ′(vn′ , vn′−2) < dmin. This implies that the distance between vn′ and any
vertex which is not adjacent to vn′ is less than dmin.

�

Once we have the caterpillars of different cycles with the same dmin = 2w+d
and dmax = 2w + 2d − r, we have to proceed to merge the caterpillars. Before
merging we adjust some weights of all the caterpillars; we set w′n = wn−(d−r);
and for 1 ≤ i ≤ (n− 1), dT (ui, vi) = w+ b, where b� r � d and b� (d− r), as
illustrated in Fig. 6. Then dT (vn, v1) = dT (vn, vn−1) = 2w+d+b = (w+b)+d+w
and dT (vn, u2) = dT (vn, un−2) = w. One can easily observe that, the distance
between any two vertices of v1, v2, . . . , vn−1 in T hold the relation for being C =
PCG(T, dmin, dmax) when we set dT (ui, vi) = w+ b. The distance dT (vn, v1) =
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dT (vn, vn−1) = dmax−(d−r)+b = (2w+2d−r)−(d−r)+b = 2w+d+b which
is greater than dmin and less than dmax and again dT (vn, v2) = dT (vn, vn−2) =
dT (vn, v1)− (w + b)− d+ (w + b) = (2w + d+ b)− d = 2w + b < dmin. So the
relations between the leaves of the caterpillars remain unchanged after adjusting
the weights. Now we observe that dT (vn, u2) = dT (vn, un−2) = w.

The following lemma focuses on merging the caterpillars.

d d d d

w+b

  u          u          u                 u                u          u         u

w'n

1 2 3 n n-3 n-2 n-1

  v         v          v                  v                 v          v         v
1 2 3 n n-3 n-2 n-1

w+b w+b w+b w+bw+b

Figure 6: Caterpillar of a cycle after adjusting weights.

Lemma 3 Let G be a graph such that G = C1 ∪ C2 where C1 and C2 are two
cycles having exactly one common edge. Let T1 and T2 be two caterpillars such
that T1 and T2 are pairwise compatibility trees of C1 and C2, respectively, with
the same dmin and dmax. Then, a pairwise compatibility tree T for G can be
obtained for the same dmin and dmax by merging T1 and T2.

Proof: Let G be a graph such that G = C1∪C2 where C1 and C2 are two cycles
having exactly one common edge. Hence C1 and C2 have exactly two common
vertices. Let cycles C1 and C2 contain s and t vertices respectively. Let T1 and
T2 be two caterpillars such that T1 and T2 are pairwise compatibility trees of
C1 and C2, respectively, with the same dmin and dmax, as illustrated in Fig. 7.
We have to create pairwise compatibility tree T of G by using T1 and T2 for the
same dmin and dmax.

(b) 

d d d

w+b wt

q1     q2    q3     q4      qt       qt      qs     qt-3 -2 -1 

d d

w+b w+b w+b w+b w+b w+b

(a) 

d d d

ws

p1     p2    p3     p4      ps       ps      ps    ps-3 -2 -1 

w+bw+bw+bw+bw+bw+bw+b

d d

Figure 7: (a) A pairwise compatibility tree T1 of cycle C1 and (b) a pairwise
compatibility tree T2 of cycle C2.
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Without loss of generality we can consider that (q′1, q
′
2) of C2 is the common

edge (p′x, p
′
y) of C1 where p′y = p′x+1. Since C1 is a cycle, there are two paths

between p′1 and p′y. We call the path from p′1 to p′y the reference path on which
neither p′2 nor p′x lies. The reference paths are shown by thick lines in Figs. 8(a),
9(a) and 10(a). Depending on the number of vertices on the reference path, we
have three cases to consider.

Case 1: The reference path contains exactly three vertices. (See Fig. 8(a).)
In this case, in C1, p′x is p′s−2 and p′y is p′s−1. We label the vertices of C2 as
counter clock wise as shown in the Fig. 8(a).

Let T1 be the pairwise compatibility tree of C1. We set dT1
(ps−1, us−1) = w+

2b and dT1(us−1, us−2) = d− b. Hence the resultant dT1(ps−1, us−2) = w+ b+d
(see the Fig. 8(b)). Since, the vertex us−1 is a vertex of degree 2, this weight
adjustment does not affect to other relation.

Let T2 be the pairwise compatibility tree of C2. In T2 we set dT2
(v1, v2)) =

d − b and dT2
(v2, q2)) = w + 2b. We are changing the weight at most b and

b � r � d, so the relations of the distances (distance > dmax, distance <
dmin, dmin ≤ distance ≤ dmax) between the leaves of the caterpillars remain
unchanged after adjusting the weights as shown in the Fig. 8(c).
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Figure 8: Pairwise compatibility tree construction for Case 1; (a) a graph G
with cycles C1 and C2, (b) the pairwise compatibility tree T1 of C1, (c) the
pairwise compatibility tree T2 of C2, and (d) the pairwise compatibility tree T
of G.

Pairwise compatibility tree T for G can be obtained by merging T1 and T2
such that the vertices q1,v1, v2, and q2 of T2 lie on the vertices ps−2, us−2, us−1
and ps−1 of T1, receptively as illustrated in Fig. 8(d).

Now we show that T is a pairwise compatibility tree of G. The distance
from ps to q1 is w + (w + b) which is smaller than dmin, the distance from ps
to q2 is equal to 2w + d+ b which is greater than dmin and less than dmax and
the distances from ps to each of the leaves q3, q4, ..., qt−1 are greater than dmax.
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Again, the distance from qt to py is smaller than dmin, the distance from qt to
px is equal to 2w+d which is equal to dmin and the distances from qt to each of
the leaves p1, p2, p3, ..., ps−3 are greater than dmax. Hence all the leaves except
ps and qt hold the relations for being G = PCG(T, dmin, dmax).
Here p′s and q′t are not adjacent in G and
dT (ps, qt) = dT (ps, us−1) + dT (us−1, qt)
= dT (ps, py)− (w + 2b) + w
= (2w + d+ b)− (w + 2b) + w
= 2w + d− b < dmin. i.e. dT (ps, qt) < dmin. Thus G = PCG(T, dmin, dmax).

Case 2: The reference path contains more than three vertices. (See Fig. 9(a).)
In this case, in C1, neither p′x nor p′y is p′s or p′s−1. Let us assume px, among

the consecutive leaves px and py, is nearer to ps in T1. Let the leaf pz be at an
equal distance from px as py from px.

We insert a vertex ul between uz and ux in T1 such that dT1
(uz, ul) = d− l

and dT1
(ul, ux) = l as shown in the Fig. 9(b). One can easily observe that

adding such a vertex preserves C1 = PCG(T1, dmin, dmax).
We insert a vertex vl between v2 and v3 in T2 such that dT2(v3, vl) = d and

dT2(vl, v2) = l where (r � l � b) as shown in the Fig. 9(c). Now dT2(v2, v3) =
d + l. We can easily verify that adding such a small weight on the spine does
not break the relation for being C2 = PCG(T2, dmin, dmax).

Note that dT2
(vl, v2) = dT1

(ul, ux) = l, dT2
(v2, q2) = dT1

(ux, px) = w + b,
dT2(v1, v2) = dT1(ux, uy) = d, and dT2(v1, q1) = dT1(uy, py) = w + b.

So we can easily merge T1 and T2 such that the vertices vl, v2, q2, v1 and q1
of T2 lie on the vertices on ul, ux, px, uy and py of T1, respectively, as illustrated
in Fig. 9(d).

Now the distances from ps to q1 and from ps to q2 are smaller than dmin

and the distances from ps to each of the leaves q3, q4, ..., qt−1 are either less
or equal to w − l + d + w + b which is less than dmin or greater or equal to
w − l + 2d + w + b which is greater than dmax. Again, the distance from qt to
px = q2 is dT (qt, ul)+ l+w+b = (w)+ l+w+b = 2w+ l+b < dmin, the distance
from qt to py = q1 is dT (qt, ul)+ l+d+w+b = (w)+ l+d+w+b = 2w+d+ l+b
which is within the range from dmin to dmax, the distance from qt to pz is
dT (qt, ul) + d − l + w + b = 2w + d − (l − b) < dmin and the distances from qt
to each of the leaves p1, p2, p3, ..., pz−1 and py+1, ..., ps−1 are greater than dmax.
Hence all the leaves except ps and qt hold the relations for being
G = PCG(T, dmin, dmax). Again p′s and q′t are not adjacent inG, and dT (ps, qt) =
dT (ps, ul) + dT (ul, qt) < (w − d − l) + (w) = 2w − (d + l) < dmin. Thus
G = PCG(T, dmin, dmax).

Case 3: The reference path contains only two vertices. (See Fig. 10(a).)
In this case, p′y is p′s and p′x is p′s−1 in C1.

We set dT1
(us−2, us−1) = d+b and dT1

(us−1, ps−1) = w in T1 so the resultant
distance is dT1

(us−2, ps−1) = w + d+ b. Since us−1 is a vertex of degree 2 this
weight adjustment preserves C1 = PCG(T1, dmin, dmax) (see in Fig. 10(b)).

In T2 we set dT2(q1, v1) = w, dT2(v1, v2) = d+ b, dT2(v2, q2) = w. We insert
a new vertex vl on the spine between v2 and v3 and set dT2(v2, vl) = d − r − b
and dT2

(vl, v3) = d, as illustrated in the Fig. 10(c). Now we prove that such
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Figure 9: Pairwise compatibility tree construction for Case 2; (a) a graph G
with cycles C1 and C2, (b) the pairwise compatibility tree T1 of C1, (c) the
pairwise compatibility tree T2 of C2, and (d) the pairwise compatibility tree T
of G.
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Figure 10: Pairwise compatibility tree construction for Case 3; (a) a graph G
with cycles C1 and C2, (b) the pairwise compatibility tree T1 of C1, (c) the
pairwise compatibility tree T2 of C2, and (d) the pairwise compatibility tree T
of G.

changes preserve the relation for being C2 = PCG(T2, dmin, dmax).
dT2

(q1, q2) = w + d+ b+ w = 2w + b+ d, so dmin < dT2
(q1, q2) < dmax.

dT2
(qt, v2) = w + (d− r − b).
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dT2(qt, q1) = w + (d− r − b) + d+ b+ w = 2w + 2d− r, so dT2(qt, q1) = dmax.
dT2(q1, q3) = w + d + b + d − r − b + d + w + b = 2w + 3d + b − r > dmax so
dT2

(q1, qk) > dmax, 3 ≤ k ≤ t− 1.
dT2

(q2, q3) = w + d− r − b+ d+ w + b = 2w + 2d− r, so dT2
(q2, q3) = dmax.

dT2
(q2, q4) = w + d − r − b + d + d + w + b = 2w + 3d − r > dmax, so

dT2(q2, qk) > dmax, 4 ≤ k ≤ t− 1.
dT2(qt, q2) = dT2(qt, v2) + w = w + (d− r − b) + w = 2w + d− r − b < dmin.

Note that dT1
(ps, us−2) = w.

We merge T1 and T2 such that the vertices q1, v1, v2 and q2 of T2 lie on
the vertices ps, us−2, us−1 and ps−1 of T1, respectively, as illustrated in the
Fig. 10(d).

Now ps is q1, the distance from ps to q2 is equal to w+d+b+w which is within
the range from dmin to dmax and the distances from ps to each of the leaves
q3, q4, ..., qt−1 are greater than dmax. Again, the distance from qt to ps−1 = q2
is less than dmin, dT (qt, ps−2) = dT (qt, vl) + (d − r − b) + (d + b) + (w + b) =
w+(d−r−b)+(d+b)+(w+b) = 2w+2d−r+b > dmax and the distances from
qt to each of the leaves p1, p2, p3, ..., ps−3 are greater than dmax. Hence all the
leaves except ps and qt hold the relations for being G = PCG(T, dmin, dmax).
Here p′s and q′t are adjacent in G and dT (ps, qt) = dT2

(q1, qt) = dmax.Thus
G = PCG(T, dmin, dmax). �

Note that when we merge two trees the weights of the edges changed locally,
as indicated by the shaded areas in Figs. 8, 9 and 10. The weights of the edges
outside shaded areas remain unchanged. Based on this observation we obtain a
generalization of Lemma 3 as in the following lemma.

Lemma 4 Let G be a triangle-free biconnected outerplanar 3-graph such that
G = C1 ∪ C2 ∪ C3 · · · ∪ Cl where C1, C2, C3, · · ·Cl are cycles of the graph. In
G a pair of adjacent cycles have exactly one common edge. Let G′ = C1 ∪
C2 ∪ C3 · · · ∪ Cl−1. Let cycle Cl has a common edge on the outer face of G′

and the common edge is a part of cycle Cj of G′. Let T ′ and Tl are pairwise
compatibility trees of G′ and Cl, respectively, with the same dmin and dmax.
Then, a pairwise compatibility tree T for G can be obtained for the same dmin

and dmax by merging T ′ and Tl.

Proof: Let G be a triangle-free biconnected outerplanar 3-graph such that
G = C1 ∪ C2 ∪ C3 · · · ∪ Cl where C1, C2, C3, · · · , Cl are cycles of the graph.
In G a pair of adjacent cycles have exactly one common edge, i.e., exactly two
common vertices. Let G′ = C1∪C2∪C3∪· · ·∪Cl−1. Let cycle Cl has a common
edge on the outer face of G′ and the common edge is a part of cycle Cj of G′.
Let T ′ and Tl be pairwise compatibility trees of G′ and Cl respectively. Since
G is a graph with the maximum degree 3, no 3 cycles of G have a common
vertex. Let Vj be the corresponding vertices of the cycle Cj in T ′. Let Tj be
the minimal subtree of T ′ containing the vertices in Vj . The first two vertices
of Tl are the common leaves with T ′.
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Let Cx be a cycle of G′ such that the common vertices of Cx and Cj are not
first and second vertices of Cj (see Fig. 11.) Let Tx be the minimal subtree of
T ′ containing the corresponding vertices of Cx. Let Cy be a cycle of G′ such
that the common vertices of Cy and Cj are first and second vertices of Cj(see
Fig. 11.) Let Ty be the minimal subtree of T ′ containing the corresponding
vertices of Cy.

We merge T ′ and Tl and get T using the technique similar to that in the
proof of Lemma 3. Every pair of leaves in T corresponding to non-adjacent
vertices except the last vertex of the cycles are at a distance more than dmax.
Since no three cycles have common vertices, the last vertices of Tx and Tl are
at a distance greater than dmax. Now we have to observe the distances of the
last vertices of Ty and Tl. We have to consider nine cases, since Ty and Tj have
been merged according to any one case of the three cases and also Tj and Tl
have been merged according to any one case of the three cases of the proof of
Lemma 3. For the cases where Ty and Tj have been merged according to either
Case 1 or Case 3 and Tj and Tl have been merged according to any one case
of the three cases, the last vertices of Ty and Tl are at a distance greater than
dmax. Now let Ty and Tj have been merged according to Case 2. If Tj and Tl
have been merged according to Case 1, the distance between the last vertices
of Ty and Tl is either less or equal to w − l + d + w which is less than dmin or
greater or equal to w− l+ 2d+w which is greater than dmax. If Tj and Tl have
been merged according to Case 2, the distance between the last vertices of Ty
and Tl is either less or equal to w−2l+d+w which is less than dmin or greater
or equal to w− 2l+ 2d+w which is greater than dmax. If Tj and Tl have been
merged according to Case 3, the distance between the last vertices of Ty and
Tl is greater than w − l + 3d − r + w which is greater than dmax. Thus T is a
pairwise compatibility tree of G.

�

We are now ready to prove Theorem 3.

Proof of Theorem 3: Let G be an outer subdivision of a ladder graph. We
first decompose G into cycles C1, C2, · · · , Cl where Ci and Ci+1, for 1 ≤ i < l,
have exactly one common edge and Ci and Ci+2, for 1 ≤ i < l − 1, has no
common vertices. We then create individual caterpillars Ti as pairwise com-
patibility trees for the cycles Ci, for 1 ≤ i ≤ l, for the same dmin and dmax

according to Lemma 2. We have to merge the caterpillars T1, T2, · · · , Tl of cy-
cles C1, C2, · · · , Cl.
Let Gi = C1 ∪ C2 ∪ · · · ∪ Ci. We merge the caterpillars T1 and T2 and get the
resulting tree T ′2 as a pairwise compatibility tree of G2 according to Lemma 3.
Assume that we have merged T1, T2, · · · , Tj and obtained a pairwise compati-
bility tree T ′j for the graph Gj = C1 ∪ C2 ∪ · · · ∪ Cj , for 2 ≤ j < l. We merge
T ′j and Tj+1 and get a resulting tree T ′j+1 as pairwise compatibility tree of the
graph Gj+1 according to Lemma 4. �

Based on the proof of Theorem 3, one can obtain a linear-time algorithm to
construct a pairwise compatibility tree of an outer subdivision of a ladder graph.
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Figure 11: Illustration for Cy, Cj , Cx and Cl.

4 Triangle-free outerplanar 3-graphs are PCGs

In this section we present our main result that triangle-free outerplanar 3-graphs
are pairwise compatibility graphs. In Section 4.1 we deal with biconnected
triangle-free outerplanar 3-graphs and in Section 4.2 we deal with the general
case.

4.1 Triangle-free biconnected outerplanar 3-graphs

In this section we show that every triangle-free biconnected outerplanar 3-graph
is a PCG by giving a linear-time construction. We have the following lemma.

Lemma 5 Every triangle-free biconnected outerplanar 3-graph is a pairwise
compatibility graph.

Proof: Let G be a biconnected outerplanar 3-graph. Let G′ be the weak dual
graph of G. Then G′ is a tree. Every node of G′ corresponds to a face, which
is a cycle, of G. We create pairwise compatibility trees for these cycles for
the same dmin and dmax according to Lemma 2. We incrementally construct a
pairwise compatibility tree T of G as follows. Initially we have an empty tree
and begin a depth first search (DFS) on G′. The first time we encounter a vertex
in our depth first search, we add the pairwise compatibility tree of the cycle in
G corresponding to this node as a branch of T . For the next vertex in the DFS
of G′, we merge the pairwise compatibility tree of the cycle in G corresponding
to this node with already constructed part of T by Lemma 4. The construction
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of T is completed with the completion of DFS on G′. The process is illustrated
in Fig. 12. �

The algorithm described in the proof of Lemma 5 is called Biconnected-
Construction. Algorithm Biconnected-Construction runs in linear time.

4.2 Triangle-free outerplanar 3-graphs

We call a subgraph B of a connected graph G, a biconnected component of G
if B is a maximal biconnected subgraph of G. We call an edge (u, v) a bridge
of G if the deletion of (u, v) results in a disconnected graph. Any connected
graph can be decomposed to biconnected components and bridges. A block
of a connected graph G is either a biconnected component or a bridge of G.
The graph in Fig. 13(a) has the blocks B1, B2, B3 depicted in Fig. 13(b). The
blocks and cut vertices in G can be represented by a tree T , called the BC-
tree of G. In T each block is represented by a B-node and each cut vertex of
G is represented by a C-node. We can have a pairwise compatibility tree of
a biconnected component by Algorithm Biconnected-Construction. For a
bridge (u′, v′), we can construct pairwise compatibility tree as a caterpillar T
where u and v are at a distance equal to dmin in T . We now have the following
theorem.

Theorem 4 Every triangle-free outerplanar 3-graph is a pairwise compatibility
graph.

Proof: Let G be a connected triangle-free outerplanar 3-graph. Let G′ be
the block-cutpoint graph of G. Since G is connected, G′ is a tree [21]. We
consider G′ as a rooted tree with root B1. Let B1, B2, · · · , Bb be the order-
ing of the blocks following a depth-first search order starting from B1. We
assume that we have obtained a pairwise compatibility tree Ti by merging the
pairwise compatibility trees of the blocks B1, B2, · · · , Bi and that we are now
going to obtain a pairwise compatibility tree Ti+1 by merging Ti with pairwise
compatibility tree of the block Bi+1. Let vt be the cut vertex corresponding
to the C-node which is the parent of Bi+1 in T . Let Bx be the parent of vt
in T . Then both Bx and Bi+1 contain vt, and Ti contains the drawing of
Bx. Since G is a 3-graph, both Bx and Bi+1 cannot be biconnected compo-
nents. Then either both Bx and Bi+1 are bridges or one of Bx and Bi+1 is a
biconnected component and the other is a bridge. If Bi+1 is a bridge (x′, y′), we
construct a pairwise compatibility tree of (x′, y′) as a caterpillar T as illustrated
in Fig. 13(c), where x and y are at a distant equal to dmin in T . However, if
Bi+1 is a biconnected component, we have pairwise compatibility tree Ti+1 by
Algorithm Biconnected-Construction. For both the cases, we can merge Ti
and Ti+1 by overlapping the edges containing the vertex vt. The construction
is illustrated in Fig. 13. �

Clearly, the algorithm described in the proof of Theorem 4 runs in linear
time.
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Figure 12: (a) A triangle-free biconnected outerplanar graph G, (b) weak dual
graph G′ of G, (c) pairwise compatibility trees for the internal faces of G and
(d) incremental construction of a tree T .
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Figure 13: (a) An outerplanar graph G, (b) block-cutpoint graph G′ of G,
(c) pairwise compatibility trees for the biconnected blocks and (d) incremental
construction of a tree T .

5 Conclusion

In this paper we have proved that trees and ladder graphs are PCGs by giving
linear-time algorithms for constructing pairwise compatibility trees for graphs
of these classes. Additionally, we have proved that outer subdivisions of ladder
graphs are also PCGs. Finally we have proved that triangle free outerplanar 3-
graphs are PCGs. However, a complete characterization of PCGs is not known.
The characterization of PCGs would be helpful to characterize leaf power graphs
and chordal graphs. All graphs of at least seven vertices are PCGs [6] and
the only graph of 15 vertices is proved not to be PCG [22]. Thus interested
researcher can work on finding the smallest graph that is not a PCG. The clique
problem can be solved in polynomial time for the class of compatibility graphs
if we are able to construct a weighted tree in polynomial time for those graphs.
Hence it is very interesting to identify the pairwise compatibility graph classes.
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