
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 17, no. 4, pp. 541–565 (2013)
DOI: 10.7155/jgaa.00303

Optical Graph Recognition

Christopher Auer 1 Christian Bachmaier 1 Franz J. Brandenburg 1

Andreas Gleißner 1 Josef Reislhuber 1

1University of Passau, 94030 Passau, Germany

Abstract

Optical graph recognition (OGR) reverses graph drawing. A drawing
transforms the topological structure of a graph into a graphical represen-
tation. Primarily, it maps vertices to points and displays them by icons,
and it maps edges to Jordan curves connecting the endpoints.
OGR transforms the digital image of a drawn graph into its topological
structure. It consists of four phases, preprocessing, segmentation, topol-
ogy recognition, and postprocessing. OGR is based on established digital
image processing techniques. Its novelty is the topology recognition where
the edges are recognized with emphasis on the attachment to their vertices
and on edge crossings.

Our prototypical implementation OGRup shows the effectiveness of
the approach and produces a GraphML file, which can be used for further
algorithmic studies and graph drawing tools. It has been tested both on
hand-made graph drawings and on drawings generated by graph drawing
algorithms.
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1 Introduction

Graph drawing addresses the problem of constructing visualizations of graphs,
networks and related structures. It adds geometric and graphic information,
assigning coordinates to the vertices and routing the edges, and attaches graphic
features such as icons, line styles and colors. The goal is a “nice” drawing,
which shall convey the underlying structural relations and make them easily
understandable to a human user. “Nice” can be evaluated empirically and
approximated by formal terms, such as bends, crossings, angular resolution,
and uniform distribution [14]. This is what the field of graph drawing is all
about.

The reverse process has been neglected so far. There is a need for it. We
often make drafts of a diagram using pencil and paper and then would like to use
a graph drawing tool for improvements of the drawing or a graph algorithm for
an analysis. For instance, Fig. 11 shows a hand-made drawing of a graph that
contains three multi-edges. Without the multi-edges, the graph is isomorphic
to the Harries-Wong (3,10)-cage. However, for a human this is hard to verify.
Here optical graph recognition comes into play. One needs a tool to convert the
image of a drawn graph into the topological structure. At the 20th Symposium
on Graph Drawing (GD 2012) in Redmond, WA we have asked ten participants
to draw a graph by hand. On the spot, our prototype for graph recognition
OGRup correctly recognized five graphs. Two correctly recognized examples
are shown in Figs. 9 and 10. Both graphs support our motivation for optical
graph recognition as they have graph theoretic properties which are difficult to
check for a human, but can be easily validated by an analysis tool. Figure 9 (by
David Eppstein) shows a 5-dimensional hypercube which is missing four edges
in the upper-leftmost part of the drawing and Fig. 10 (by Till Bruckdorfer) has
multi-edges. One of the five drawings that were not correctly recognized, is the
“Double Circulant” graph (by Steven Chaplick) in Fig. 12. OGRup recognized
some edges as incident to a vertex, although they pass the vertex. A human will
correctly recognize the graph using the context information “Double Circulant”
and will infer that two neighboring vertices on the circle are not adjacent.

In this paper, we propose optical graph recognition (OGR) as a method to
automatically extract the topological structure of a graph from its drawing.
OGR is an adaption of optical character recognition (OCR) [7], which extracts
plain text from images for automatic processing. Since there is a large variety,
we restrict ourselves to the most common drawing types. The vertices are rep-
resented by geometric objects such as circles or rectangles, which are connected
by (images of) Jordan curves representing the edges. The drawing is given as
a (digital) image, see Fig. 2. OGR proceeds in four phases: preprocessing, seg-
mentation, topology recognition, and postprocessing. The topology recognition
is the core of OGR. This phase takes a digital image as input, where all pixels
are classified as either background, vertex, or edge pixels. In the image, the
regions of vertex pixels of two vertices are connected by a contiguous region of
edge pixels if the two vertices are connected by an edge. However, the converse
is not true. A contiguous region of edge pixels corresponds to several edges if
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the edges cross, see Fig. 2 and the left part of Fig. 6. The problem of crossing
edges does not occur if the drawing is plane. In this case there are approaches
to recognize a planar graph [5] and to extract the circuit from its plane draw-
ing [8, p. 476]. However, crossings are unavoidable. Our topology recognition
resolves crossings similarly to the human eye. The eye follows the edge curve
to the crossing and then proceeds in the “most likely” direction, which is the
direction in which the edge curve enters the crossing.

Due to this similarity, OGR’s recognition rate can be used as a measure of
the legibility of a drawing. OGR is error-prone if many edges cross at the same
point or if edges cross in small angles. Such drawings are hardly legible for
humans as well [20,22]. Recently, Pach [24] defined unambiguous bold drawings,
which leave no room for different interpretations of the topology of the graph.
For example, in unambiguous drawings areas of overlapping edges do not hide
vertices. In fact, OGR presumes an unambiguous bold drawing as input.

The problem of automatically recognizing objects has been studied exten-
sively in the field of digital image processing. Most prominently, optical charac-
ter recognition has significantly advanced in the last decades [7]. However, the
emphasis behind OCR is to recognize the shape of a certain character rather
than its topological structure as in OGR. In [11,23], the authors have proposed
methods to trace blood vessels and measure their size in X-ray images. Again,
these approaches are designed to evaluate the shape of the blood vessels and
ignore their topological structure. During the past decade an increasing num-
ber of research emerged at the intersection of pattern recognition and image
analysis on one hand and graph theory on the other hand. In fact, the IAPR
Workshop on Graph-based Representations in Pattern Recognition is devoted
to this topic.

Our paper is organized as follows. In Sect. 2, we give some preliminaries.
The four-phases approach of OGR is presented in Sect. 3 with an emphasis on
the topology recognition phase in Sect. 3.3. An experimental evaluation is given
in Sect. 4 and we discuss “good” and “bad” features of a drawing for OGRup’s
recognition rate.

2 Preliminaries

In this paper, we deal with undirected graphs G = (V,E). Directions of edges
can be recognized in a postprocessing phase of OGR. In the following, a drawing
of G maps vertices to graphical objects like discs, rectangles, or other shapes
in the plane. The edges are mapped to Jordan curves connecting its endpoints.
For convenience, we speak of vertices and edges when they are elements of a
graph, of its drawing, and in a digital image of the drawing. A port is the point
of an edge which meets the vertex. Each edge has exactly two ports. Note that
this is only true if no edge crosses a vertex. In that case it is also hard for a
human to recognize the adjacency correctly. Hence, we assume no edge-vertex-
crossings in the following. An (edge-edge-)crossing is a point where two or more
edges cross.
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Figure 1: Erosion: The reference pixel (center) of the pattern (above the arrow)
is put on every pixel of the image and if the pattern and the pixels underneath
do not match, the pixel underneath the center is turned into a background pixel.

A digital image is a set of pixels. Each pixel p has coordinates (x, y) in a two-
dimensional grid of a certain width and height, and a color which is taken from
a finite set C. In a binary image only two colors are allowed, i. e., C = {0, 1},
where a pixel with color 0 is a background pixel (black) and a pixel with color
1 is an object pixel (white). When a (color) image is converted into a binary
image, the result is called binarized image.

The 4-neighborhood N4(x, y) of a pixel (x, y) consists of (x− 1, y), (x+ 1, y),
(x, y− 1), and (x, y+ 1). Two pixels p and q of the same color are 4-adjacent if
they are 4-neighbors. A 4-path from pixel (v, w) to pixel (x, y) is a sequence of
distinct pixels (x0, y0), (x1, y1), . . . , (xk, yk), where (x0, y0) = (v, w), (xk, yk) =
(x, y) and pixels (xi−1, yi−1) and (xi, yi) are 4-adjacent for 1 ≤ i ≤ k. A subset
of pixels R is called a 4-region if there is a 4-path between every pixel p ∈ R and
q ∈ R such that |R| is maximal. The 8-neighborhood N8(x, y) of (x, y) consists
of N4(x, y) and additionally the pixels (x ± 1, y ± 1). 8-adjacency, 8-path, and
8-region are defined analogously.

We use morphological image processing to alter or analyze binary images.
Its basis is set theory. Each morphological operation relies on the same basic
concept, which is to fit a predefined structuring element on every pixel of an
image and to compare the set of pixels from the structuring element with the set
of pixels that lies underneath the structuring element. A structuring element
is a pattern of object and background pixels and is most commonly a square
of size 3 × 3. For example, erosion converts each object pixel with at least
one background pixel in its 8-neighborhood into a background pixel, see Fig. 1.
Similarly, dilatation converts each background pixel with at least one object
pixel in its 8-neighborhood into an object pixel.

3 Optical Graph Recognition

OGR is divided into the four phases: preprocessing, segmentation, topology
recognition, and postprocessing. The input of the first phase is a drawing of
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a graph G as a digital image. From an information theoretic point of view,
the information contained in the digital image is reduced, until only the sets
of vertices and edges remain. Thereby a digital image with a size of several
MB is reduced to a GraphML file of only a few kB. Each of the following
sections is devoted to a phase, its purpose, suggestions for possible algorithms,
and a description of our prototypical implementation OGRup. All phases but
the topology recognition use standard image processing techniques for which
we only demonstrate their effects. The reader is referred to the literature on
image processing, e. g., [19]. The characteristic of our approach is the topology
recognition phase, which is therefore described in more detail as it involves
non-standard techniques developed for the purpose of OGR.

3.1 Preprocessing

The purpose of the preprocessing phase is to separate the pixels belonging to
the background from the pixels of the drawn graph. The image is binarized
such that every object pixel is part of the drawing and every background pixel
is not. Information is removed from the image if it is unimportant to OGR, such
as the color. This can be achieved with any binarization algorithm like global,
adaptive or hysteresis thresholding [10,11,13,17,19]. The extent of information
that is filtered depends both on the drawing of the graph and the tasks of the
subsequent phases of OGR.

In OGRup we use histogram based global thresholding for the binarization [19,
p. 599]. With this method, each pixel with a color (gray value) greater than a
predefined threshold is an object pixel and it is a background pixel, otherwise.
The threshold color t can either be set manually, or it is automatically estimated
by using the gray-level histogram. Fig. 2 shows the effect of binarization.

After binarization, we additionally apply the noise reduction method from
[19, p. 531] depending on the quality of the image. There are two types of
noise. Isolated object pixels (white) called salt and isolated background pixels
(black) called pepper. Both types of noise can be reduced by the opening and
closing operators. The opening operator first erodes i times and then dilatates
i times; closing does the same in inverse order. Opening generally smoothens
the border of a region of object pixels and eliminates thin protrusions and thus
salt [19, p. 528]. Closing also smoothens the border of object pixel regions
and removes pepper. Closing also fuses narrow breaks, eliminates small holes,
and fills gaps in the border of object pixel regions. This is important in the
context of OGR. For instance, if an edge curve is not contiguous or there is a
gap between the edge curve and its attached vertices due to bad image quality,
the edge cannot be recognized. Closing makes edges contiguous and fills small
gaps between edges and vertices. But the number of closings i must be chosen
with care since too many closing operations may attach a passing edge to a non-
incident vertex or may introduce touching edges, which are then classified as
crossing edges. Experiments with values of i > 1 often lead to these undesired
results, therefore we recommend using only a single closing operation. By a
similar reasoning more than one opening operation is not advisable.
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Figure 2: A drawing of a graph and the result of the preprocessing phase.

Figure 3: Vertex recognition in the segmentation phase: input, after erosion,
and after dilatation.

3.2 Segmentation

The input of the segmentation phase is a binarized image resulting from the
preprocessing. In a nutshell, segmentation identifies the vertices in the binary
image. More precisely, for each object pixel it determines whether it belongs
to a vertex or to an edge. The output is a ternary image with three colors for
background, vertex, and edge pixels. Note that, depending on the shape of the
vertices, different methods have to be applied.

In OGRup, we have implemented a generic approach inspired by [8, p. 476]
which assumes the following preconditions. The vertices are represented by
filled shapes, e. g., circles or rectangles, and the edges are represented by curves
of a width significantly smaller than the diameter of the vertices, see Fig. 3.
Using this assumption, we can use the opening operator, which first erodes k
times and then dilatates k times. Erosion shrinks regions of objects pixels by
turning pixels at the border to background pixels. We choose k large enough
such that all edge curves vanish, see Fig. 3. By assumption, the remaining object
pixel regions belong to vertices. Since the regions occupied by the vertices have
shrunk by the erosions, applying dilation k times inflates vertices to their prior
size. The desired ternary image is obtained by comparing the object pixels after
these operations with the binary image from the input of this phase.

The number k of erosions and dilatations can either be chosen manually
or automatically with the help of the distance image obtained by the Chamfer
algorithm [6] as implemented in OGRup. For each object pixel the distance
image gives the minimum distance to the next background pixel. Large local
maxima in the distance image can be found in the vertices’ centers (cf. [8,
p. 477]); we denote by kmax the smallest such maximum. In contrast, the local
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Figure 4: A binary image after morphological thinning.

maxima belonging to edges are small in comparison to the maxima found in
vertices; we denote by kmin the largest such local maximum. By assumption
kmin � kmax, which makes it possible to accurately determine kmin and kmax

automatically. If k is chosen such that kmin < k < kmax, then k erosions remove
all edge curves but not the vertices.

3.3 Topology Recognition

The input for topology recognition is the binarized image and the results from
the segmentation phase. Our approach can be divided into three subphases:
skeletonization, edge classification and edge traversal.

The basic idea of skeletonization is to discard redundant information while
retaining only the topological information of the graph. To this effect the regions
of object pixels that represent the graph are reduced in size until a further
removal of a single object pixel would destroy the connectivity of the regions [13,
p. 151]. Skeletonization results in the skeleton of a binary image, as shown in
Fig. 4. The skeleton, also known as the medial axis, is the locus of the centers
of all circles that are tangent to the border of an object region at two or more
disjoint points [8, p. 474]. A useful interpretation is to imagine that the region
of object pixels of Fig. 5 consists of an inflammable material. This material is
set on fire simultaneously on all points of its border. From each side the fire
burns at the same speed and, eventually, the fires from opposing sides meet
and extinguish [8, p.474]. The points where two fires meet are the points of
the skeleton or to put it in another way, these points are the remains of the
inflammable material that has not burned down. An example for the skeleton
of a region of object pixels is shown in Fig. 5. The most important property of
a skeleton for OGR is that it preserves the connectivity of the original binary
image. For more information on skeletons consider [19, p. 543–545, 650–653]
or [13, p. 151–163]. There are several skeletonization algorithms from which we
use the morphological thinning operation [19, p. 541]. It basically turns object
pixels at the borders of object pixel regions into background pixels until a further
thinning would destroy the connectivity of the regions. We used skeletonization
by morphological thinning to obtain the result as shown in Fig. 4. Note that
the skeleton of each connected component of a graph must be a 4-region for our
approach.
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Figure 5: Skeleton of a rectangular vertex.

The edge classification subphase classifies the pixels of the skeleton of the
image based on the 4-neighborhood of every pixel and the pixels recognized as
vertex pixels in the segmentation phase. Let no(p) be the number of object pixels
in the 4-neighborhood of p. There are the following four classes of object pixels.
Miscellaneous pixels PM with no ≤ 1 generally result from lines in the skeleton
that do not end at a vertex, e. g., due to noise in the image. Miscellaneous pixels
are ignored, as they are not relevant for the approach. Edge pixels PE are pixels
with no = 2 that lie on the skeleton of an edge. During the skeletonization
phase each edge has been reduced to a line of single pixel thickness. Hence,
every (inner) pixel on the skeleton of an edge has exactly two object pixels in
its 4-neighborhood. Crossing pixels PC with no > 2 lie on the crossing of two
or more skeletons of edges. If two lines in the skeleton cross, then there is at
least one pixel in the intersection that has more than two object pixels in its
4-neighborhood. Vertex pixels PV are part of the skeleton of a vertex which
have already been recognized in the segmentation phase. Port pixels PP have a
vertex pixel and an edge pixel in their 4-neighborhood and thus are the points
where an edge meets a vertex.

The classification of pixels allows us to identify edge sections in the image.
An edge section entirely consists of edge pixels up to both endpoints, which are
in PC or in PP . Every edge section is a 4-region. Based on the two endpoints,
we classify the sections in three categories as follows. In trivial sections both
endpoints are port pixels in PP , e. g., edge section “1” in Fig. 6. In port sections
one endpoint is a port pixel in PP and the other is a crossing pixel in PC , e. g.,
edge sections “2”, “3”, “5”, and “6” in Fig. 6. Note that the simple strategy
of counting ports to determine the number of edges usually fails as more than
one edge may enter a vertex at the same port section (see Fig. 8). Finally, in
crossing sections both endpoints are crossing pixels in PC , e. g., “4” in Fig. 6.

While experimenting with our edge classification approach we observed that
the result was often a short intermediate crossing section if two edges cross, like
“4” in Fig. 6. As we will see later, this is problematic for the subsequent edge
traversal subphase. Our solution is to first detect crossing sections like “4” in
Fig. 6 and then to interpret them as part of a crossing. However, the recognition
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Figure 6: A binary image of a graph and the result of edge classification. An
edge pixel is marked with “A”, a vertex pixel with “B”, a port pixel with “C”,
and a crossing pixel with “D”. Edge sections are marked with numbers, v and
the small arrows are direction vectors.

of such small crossing sections proved to be difficult. A crossing section may
either result from a single crossing as “4” in Fig. 6 or may be caused by two
entirely independent crossings as in Fig. 7. In this figure the crossing sections
“a”, “b”, “c”, and “d” are interpreted as four adjacent crossing sections and,
hence, as a single crossing which is obviously not the case, as seen on the left side
of the figure. The subsequent edge traversal subphase may recognize the edge
consisting of sections “1” and “2”, which is not existent in the original drawing.
To avoid this problem, our approach is to interpret each crossing section of a
size smaller than a predefined parameter as part of a single crossing. Depending
on how thick the edges of a graph are drawn, values for the parameter between
5 and 15 pixels lead to suitable results in OGRup [1].

Trivial sections directly connect two vertices without interfering with any
other edges. For every trivial section we directly obtain an edge, e. g., section
“1” in Fig. 6. In contrast, port and crossing sections need a more elaborate
treatment as these sections are caused by crossings. In the edge traversal phase,
we merge port and crossing sections “adequately” to edges. For example in
Fig. 6, sections “2”, “4”, and “6” are merged to one edge as well as “3”, “4”,
and “5”. We start the traversal always at a port section and traverse it until
we find a pixel that is common to two or more edge sections. At this point
we determine the adjacent edge section which most probably belongs to the
current section using direction vectors. The direction vector of an edge section
e = (p1, p2, . . . , pl) is a two dimensional vector −−→pipj with i 6= j, 1 ≤ i, j ≤ l,
which defines the direction of e. pi is the tail and pj the head of the vector.
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Figure 7: A binary image of a graph and the result of the edge classification
subphase where every crossing section is interpreted as part of a crossing.

Let (xi, yi) be the coordinates of pi and (xj , yj) the coordinates of pj . Then,
−−→pipj = (xj − xi, yj − yi). |i− j| + 1 is the magnitude of −−→pipj . An example
is illustrated in Fig. 6, where we start at port section “2”, reach crossing “D”
and then compare the directions of port section “3” and crossing section “4”
with the direction of “2”. In this case “4” is chosen, since its direction is most
similar to the direction of “2”. It is important that the direction vector of an
edge section does not take the whole section into account. That is, the direction

vector of “2” is not
−−→
CD but computed only from the immediate area around

the crossing. This is primarily necessary for graphs with non-straight edges,
where the edges are arbitrary Jordan curves. Hence, when approaching an edge
crossing, only the local direction must be used to determine the most likely
subsequent edge section. In our implementation we use direction vectors with
the same magnitude for all edge sections.

During skeletonization it may happen that the directions of edge sections in
the vicinity of a crossing are distorted, which can lead to false results. To avoid
this problem, we do not choose the head of the direction vector directly at the
crossing, but a few pixels away from the crossing when determining direction
vectors. For example in Fig. 6, the head of the direction vector of “2” is not
pixel “D”.

Continuing with the example from Fig. 6, we may determine an edge con-
sisting of “2” followed by “4”. Then both sections “5” and “6” are suitable
follow-up sections when only considering the direction vector of “4”. To resolve
this, we additionally take the direction vector of the preceding edge section
(if existent) into account as indicated by direction vector “v” in Fig. 6, i. e.,

v =
−→
4 + α · −→2 . Let ei be the edge section for which the subsequent section

must be determined, −→pq the direction vector of ei, and e the current edge of
which ei is part of. If e consists of more than one edge section, we take the
predecessor ei−1 of ei in e, determine the direction vector of ei−1 denoted by −→op,
and compute the direction vector of ei as −→pq′ = −→pq + α· −→op with 0 ≤ α ≤ 1. The
reason for the α weighting is to reduce the influence of −→op on the final direction
vector −→pq′. The relaxation is to reduce the influence of prior edge sections to
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Figure 8: Binary image of a graph and the result of the edge classification
subphase. In the lower image (zoomed to the left part of the skeleton) two
recognized crossings “A” and “B” have an odd number of adjacent edge sections.

avoid unsolicited results. Due to this modification, section “6” is chosen as the
succeeding section of “4” and as “6” is a port section, we have recognized an
edge of the graph consisting of “2”, “4”, and “6”. In the same way, the edge
consisting of “3”, “4”, and “5” is recognized. With the edge consisting of “1”
we now have recognized the topology of the input with four vertices and three
edges.

Note that the idea to use matching in a straight-forward manner to resolve
crossings yields inferior results to the approach shown in this section. For ex-
ample, in Fig. 8 there are crossings with an odd number of adjacent sections.

3.4 Postprocessing

The postprocessing phase concludes OGR and includes procedures that use the
topological structure as input. In OGRup, the postprocessing phase assigns
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coordinates to the vertices obtained in the segmentation phase. Further, it
assigns bends to every edge such that they resemble their counterparts from the
original image. To obtain the coordinates of the bends, each edge is sampled
every i pixels, where i is a user parameter, e. g., i = 10 leads to sufficiently
smooth curves.

4 Experimental Results

Our prototype OGRup assumes the following preconditions. The vertices are
drawn as filled shapes, e. g., circles or rectangles and all vertices have approx-
imately the same size. The edges are represented by curves of a width signifi-
cantly smaller than the diameter of the vertices, and they should be contiguous
and should exactly end at the vertices.

As a rule of thumb, the easier a graph is be recognized by a human, the better
the graph is be recognized by OGRup. Our first experiments with OGRup show
that graph recognition is error-prone if many edges cross in a local area and if
edges cross in a small angle. This parallels recent empirical evaluations [20,22],
which report that right angle crossings are as legible as no crossings and have
led to the introduction of RAC drawings [15].

Plane drawings of graphs have no crossings and are recognized very well by
OGRup. Graphs with few edge crossings, preferably in a large angle, are also
recognized well and the same holds for RAC drawings. As already stated in
Sect. 1, the correct topology can only be recognized if the input is unambiguous
[24]. Otherwise, even a human must guess the intention of the graph drawer,
e. g., Fig. 17. As for most digital image processing approaches, the results of
OGRup heavily depend on the careful adjustment of the necessary parameters.

Experiments with OGRup so far include graphs drawn with pencil and paper
as in Figs. 9–12, graphs drawn with an image editing tool as in Figs. 13–15, and
graphs drawn with a graph drawing algorithm, for example with Gravisto [3],
as in Fig. 16. The hand-made drawings in Figs. 9 and 10 show that OGRup

can recognize freehand curves and achieves good results if our preconditions are
met. For the drawing in Fig. 9 a proper adjustment of the parameters in the
preprocessing phase was necessary to ensure that all edges are contiguous and
end directly at the vertices. The graphs in Fig. 14 illustrate features of drawings
that lead to a false recognition by OGRup. In Fig. 14(a) the crossing region has
approximately the size of a vertex. Hence, OGRup misinterprets the crossing as
a vertex. In Figs 14(b-c) the small crossing angles lead to a false recognition.
However, all three drawings are also hard to grasp for a human.

As a first benchmark for OGRup, we used the Rome graphs1 (undirected
graphs with 10 to 100 nodes). Each of the 11534 Rome graphs was drawn 10
times in Gravisto [3], with a spring embedder applying the force model from
Fruchterman and Reingold [18]. We used a slightly modified Fruchterman and
Reingold force model, which also models repulsive forces between vertices and
their non-incident edges to avoid crossings between them. 107543 drawings

1http://www.graphdrawing.org/data.html

http://www.graphdrawing.org/data.html
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Figure 9: A drawing of a 5-dimensional hypercube “Q5” by David Eppstein is
correctly recognized by OGRup. In the drawing the topmost edge is not con-
tiguous and the bottommost edge does not end at a vertex (shown magnified).
This problem was resolved by applying opening and closing in the preprocessing
phase.

Figure 10: The “T ∗11” graph by Till Bruckdorfer is correctly recognized by
OGRup. Multi-edges are shown bold and red.
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Figure 11: On the right side a drawing of the Harries-Wong (3,10)-cage from [25,
p.272]. The hand drawn graph on the left side has three multi-edges. Without
the multi-edges, the two graphs are isomorphic.

Figure 12: The “Double Circulant” graph by Steven Chaplick and the graph
recognized by OGRup. Some falsely recognized edges are shown bold and red.
The parts of the drawing that led to the falsely recognized edges are shown
magnified.



JGAA, 17(4) 541–565 (2013) 555

(a) Arbitrary Jordan curves as edges

(b) More engulfed Jordan curves as edges

(c) The Dyck graph. Layout from [26]

(d) The Gray Graph. Layout from [27]

Figure 13: Different drawings of graphs and the graph recognized by OGRup.
Each graph was correctly recognized.
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(a) Large area of crossing edges falsely recog-
nized as a vertex

(b) Small crossing angles at a single point

(c) Small crossing angles

(d) Many crossings at the same point

Figure 14: Different drawings of graphs and the graph recognized by OGRup.
Falsely recognized edges and vertices are shown bold and red.
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Figure 15: A drawing of the Balaban 11-cage with the layout from [4] which
was correctly recognized by OGRup.
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(93.24%) were correctly recognized. In 50 drawings, large regions of many cross-
ing edges were erroneously recognized as vertices.

In the remaining 7747 drawings, the average number of false positives was
1.24 (variance 0.51), i. e., non-existent edges of the original graphs were erro-
neously recognized by OGRup (cf. Fig. 14(d)). The average number of false
negatives was 0.14 (variance 0.97), i. e., edges not recognized by OGRup. The
maximum number of false positives and false negatives in a graph was 10 and
5, respectively. 77.25% (75.96%) of all false positives (negatives) occurred in
drawings with more than 75 vertices. This is caused by many edge crossings in
small areas and small crossing angles, which frequently occur for larger graphs.
Altogether, OGRup resulted in 1069 false negatives, i. e., 99.99% of all 7965120
edges were recognized and the number of false positives was 9681.

In order to test a different graph drawing algorithm as a benchmark, the
Rome graphs were drawn with the Lombardi spring embedder from [9]. In a
Lombardi drawing [16] edges are drawn as circular arcs. It achieves the maxi-
mum angular resolution possible at each vertex. We ran separate benchmarks
with the Tangent-Based and the Dummy-Vertex Lombardi spring embedders.
The Tangent-Based approach is able to achieve near-perfect angular resolution
at all nodes. However, a problem for OGR is that the algorithm often draws
vertices on top of non-incident edges [9], which are then recognized as being
incident, see Fig. 17. With the additional context information that the graph
is a Lombardi-drawing, these falsely recognized edges can possibly be detected
and corrected in the postprocessing phase. For instance, in this case the angular
resolution is not (close to) maximal at the vertex. While the Dummy-Vertex ap-
proach is less successful in producing near-perfect angular resolution, it increases
the distances between vertices and non-incident edges [9] and thus reduces the
probability of a vertex being drawn on a non-incident edge.

Every Rome graph was drawn three times with both Lombardi spring em-
bedders. With the Tangent-Based approach, OGRup recognized 9502 drawings
(37.79%) correctly. In three drawings OGRup failed to recognize the correct
number of vertices. In the remaining 25097 drawings, the average number of
false positives was 8.60 (variance 47.97) and the average number of false neg-
atives was 3.27 (variance 6.62). The maximum number of false positives and
false negatives in a graph was 58 and 22, respectively. The high number of false
positives (negatives) results from drawings where vertices are drawn on edges.
Here, OGRup resulted in 82066 false negatives, i. e., 96.57% of all 2389536 edges
were recognized and the number of false positives was 215840.

With the Dummy-Vertex approach, OGRup correctly recognized 13884 draw-
ings (40.12%). In 42 drawings OGRup failed to recognize the correct number of
vertices. In the remaining 20676 drawings, the average number of false positives
was 6.16 (variance 27.50) and the average number of false negatives was 2.18
(variance 3.68). The maximum number of false positives and false negatives in
a graph was 46 and 18, respectively. In total, OGRup resulted in 45206 false
negatives, i. e., 98.11% of all 2389536 edges were recognized and the number of
false positives was 127810.

For the Lombardi spring embedders the recognition rate of OGRup is inferior
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(a) A sample Rome graph, which was not correctly recog-
nized by OGRup. The part of the drawing that led to a
false recognition is shown magnified.

(b) This Rome graph was correctly recognized by
OGRup.

Figure 16: Two drawings of Rome graphs.
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Figure 17: A Rome graph drawn with the Tangent-Based Lombardi spring
embedder and the graph recognized by OGRup. The magnified parts show
where a vertex was drawn on a non-incident edge. The falsely recognized edges
are shown bold and red.

as for the Fruchterman and Reingold spring embedder. However, one might use
the context information that a drawing is in Lombardi-style. For instance,
the information that the edges are drawn as circle segments, and the maximal
angular resolution can be utilized to implement a different approach in the
topology recognition phase of OGR. This likely increases the recognition rate
for Lombardi-style drawings. Figure 18 gives an overview of the results of our
benchmarks.

In all examples, the running time of OGRup was less than 10 seconds, how-
ever, there is room for improvements. The maximum resolution of the drawings
was approximately 2600× 2600 pixels (or 360kB png images).

5 Summary and Perspectives

OGR is a framework to reverse the process of graph drawing, i. e., to extract
the topological structure of a graph from its drawing. To our best knowledge
the approach is the first which permits edge crossings. Our prototype OGRup

shows the usefulness of the approach and addresses problematic and error-prone
tasks. Its modular architecture allows extensions and exchanges of specific im-
plementations of all phases.

Currently, OGRup can recognize undirected graphs and presumes that the
vertices are drawn as filled shapes. A necessary extension is the recognition of
directed edges in the topology recognition phase. Therefore, we make use of
miscellaneous pixels detected during edge classification to identify arrow heads
and their directions. Further, we will tackle unfilled vertex shapes, e. g., unfilled
circles or squares which is of particular interest for hand-drawn graphs as it is
tedious to fill vertices. This can directly be achieved in the segmentation phase
by using the Hough Transformation [12] or any of the rich set of algorithms for
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Figure 18: Graphical visualization of OGRup’s recognition rate during our
benchmarks with the Rome graphs. The y−axis is the sum of false positives
and false negatives averaged over all graphs with the same number of vertices.

object detection [8, 13,19].

An ongoing challenge is to improve the recognition rate of edges in the
topology recognition phase. Particularly, we want to reduce the undesired re-
sults originating from many edge crossings within a small local area and from
small crossing angles. For instance, we will test alternative skeletonization al-
gorithms, since the current method often led to unwanted side effects. An even
more promising idea is to use the gray-value image instead of the binary skele-
ton in the edge traversal subphase. Edge sections can then be merged based on
the gradient [19]. Another common problem in hand-made drawings are gaps
between edges and their end vertices.

In order to recognize vertex and edge labels we will use optical character
recognition [7] in the preprocessing phase. Then, we remove the labels from the
drawing such that they are not confused with parts of the graph. Finally, the
labels are assigned to the vertices and edges in the postprocessing phase.

A promising future research direction is to incorporate context information
into the recognition algorithm. For instance the knowledge about the used
drawing algorithm or style, or type and properties of the graph may improve
the recognition. OGR should also enrich the output by its confidence of the cor-
rectness of the result. For example, the variance of the vertex sizes and the sizes
of the angle deviations while merging edge sections are useful indicators of the
error-proneness of the algorithm. This information can be used to incorporate
graphical user interaction into the algorithm.

The readability of graph visualizations is often evaluated by subjective weight-
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ings of some aesthetic criteria. Hence, researchers had to resort to empirical
studies measuring how fast and accurate a human subject group can recognize
graphs. However, the approach is biased due to individual performance and
preferences [21]. Here, OGR may serve as an objective evaluator. The recogni-
tion rate of OGRup can be interpreted as a quality indicator. However, there
are some features of drawings which pose no difficulties for OGR but do not
meet common aesthetic criteria. Examples are hard to follow long edges like
intertwined spirals or numerous crossings despite of large crossing angles, e. g.,
see Fig. 15.

Last but not least, we are working on a version of OGRup that is compatible
with smart phones and tablet computers. Then, the user can directly take a
picture of a graph with the built-in camera and use OGRup to recognize the
graph for further processing and interaction.
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