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The Parking Problem for Finite-State Robots
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Abstract

This paper is a step toward understanding the algorithmic concomi-
tants of modeling robots as mobile finite-state machines (FSMs, for short)
that travel within square two-dimensional meshes (which abstract the
floors of laboratories or factories or warehouses). We study the ability
of FSMs to scalably perform a simple path-planning task called parking,
within fixed square meshes of arbitrary sizes. This task: (1) has each FSM
head for its nearest corner of the mesh and (2) has all FSMs within a cor-
ner organize into a maximally compact formation (one that minimizes a
compactness-measuring potential function). The problem thus requires
FSMs to know “where they are” within a mesh, specifically which quad-
rant they reside in. Indeed, quadrant determination is the central technical
issue in enabling FSMs to park. Many initial configurations of FSMs can
park, including: (a) a single FSM situated initially along an edge of the
mesh; (b) any assemblage of FSMs that begins with two designated ad-
jacent FSMs. These configurations can park even without using (digital
analogues of) pheromones, an algorithmic aid advocated by some who use
FSMs to model ant-inspired robots. In contrast, a single FSM in the in-
terior of (even a one-dimensional) mesh cannot park, even with the help
of (volatile digital) pheromones.
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1 Introduction

This paper studies the power of mobile finite-state machines (FSMs, for short)
to scalably perform a simple path-planning task called parking, within square
two-dimensional meshes of arbitrary sizes. FSMs are viewed as abstractions of
simple mobile robots, and the meshes they navigate are viewed as abstractions
of bounded regions such as the floors of factories or warehouses or laborato-
ries. The task of parking: (1) has each FSM head for its nearest corner of the
mesh and (2) has all FSMs within a corner organize into a maximally compact
formation—one that minimizes the average distance of an FSM from its target
corner. The Parking Problem thus requires FSMs to discover “where they are”
within a mesh, specifically which quadrant they reside in. Indeed, quadrant de-
termination is the central technical issue in enabling FSMs to park. Our results
show that many—but not all—initial configurations of FSMs can park success-
fully within arbitrarily large meshes. Among the configurations that can park
are: (i) a single FSM that resides initially along an edge of the mesh; (ii) any
assemblage of FSMs that begins with two designated FSMs that are adjacent,
i.e., that occupy neighboring tiles of the mesh. The preceding configurations can
park even without using (digital analogues of) pheromones, an algorithmic aid
advocated by some who study ant-inspired robots; cf. [12, 18, 30]. In contrast,
a single FSM that resides initially in the interior of (even a one-dimensional)
mesh cannot park, even with the help of (volatile digital) pheromones. The
road to these results builds on the basic problem of how/whether an FSM can
determine which quadrant of the mesh it resides in. Other lessons from our
study indicate that: (a) The limited exploratory/path-planning ability of a sin-
gle FSM is sometimes much extended if the FSM can use the edges of a mesh
for orientation. Indeed, the edges sometimes enable an FSM to appear to count
(to n) without actually counting. (b) (Digital) pheromones cannot enhance the
power of a single FSM, although they can enable a small FSM (in number of
states) to perform a task that would otherwise require an exponentially larger
one. Pheromones can enhance the power of a team of FSMs, but we do not
need them to enable FSMs to park.

1.1 An Informal Summary of the Paper

FSMs on a mesh. We study mobile robotic computers, modeled as FSMs,
that function within fixed geographically constrained environments, modeled
as square meshes. To emphasize the robotic inspiration, we think of the mesh
as a floor that is tesselated with identical square tiles. We expect FSMs to: •
navigate the mesh, while avoiding collisions; • communicate with and sense one
another, by “direct contact” (as when real ants meet) and by “time-stamped
message passing” (as when real ants deposit pheromones); • assemble in desired
locations, in desired configurations.

Our study does not require FSMs to avoid obstacles, discover “food” objects,
or convey “food” from one location to another (as in, e.g., [12, 16, 25, 26]).
Planned sequels to this study will make such demands of FSMs.
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The Parking Problem. We study a simple, yet algorithmically nontrivial, path-
planning task, parking, that: (1) has each FSM head to the nearest corner of the
mesh and (2) has all FSMs within a corner organize into a maximally compact
formation that minimizes the average distance of an FSM from its target corner;
cf. the compactness-measuring potential function in Section 2.4. While we have
not yet characterized which configurations of FSMs can park successfully, we
report on progress toward this goal:

• Even without using (digital analogues of) pheromones, many initial config-
urations of FSMs can park. Examples: (1) a single FSM that starts along
an edge of the mesh (Theorem 1); (2) any collection of FSMs containing
two distinguished ones that reside initially on adjacent tiles (Theorem 4).

• In contrast: A single FSM can generally not park, even on a 1-dimensional
mesh and even with the help of (volatile digital) pheromones (Theorem 1).

Whence the Parking Problem? Our interest in the Parking Problem has two
motivations, one automata theoretic and one robotic (cf. Section 2.3). From
the automata-theoretic perspective, the Parking Problem is an instance of the
question “What can FSMs discover about where they reside within a mesh?”
Specifically, the Problem requires FSMs to discover which quadrant they reside
in. Along complementary lines, we are currently preparing a companion paper
[29] that studies an instance of the question “How well can FSMs discover
designated target tiles within meshes?” From the robotic perspective, one finds
commercial systems that employ mobile robots within warehouses [16]: the
robots collect desired items and convey them to human dispatchers. A video
describing this system left me wondering: where do they “store” idle robots?
Having robots assemble in mesh corners came to mind as a viable way to keep
idle robots “out of the way” until they are needed next. The Parking Problem
combines the essence of these two motivations.

2 Technical Background and Related Work

2.1 Technical Background

Our formal model of FSM-robots (FSMs, for short) is obtained by augment-
ing the capabilities of standard finite-state machines (see, e.g., [27] for formal
details) with the ability to travel around square meshes of tiles

Meshes and their tiles. We index the n2 tiles of the n× n mesh Mn by the
set1 [0, n− 1]× [0, n− 1]; see Fig. 1(left). Tile 〈i, j〉 of Mn is: • a corner tile if
i, j ∈ {0, n − 1}; each corner tile has 3 neighbors; • a bottom (resp., top) tile if
i = 0 (resp., i = n− 1) and j ∈ [1, n− 2]; a left (resp., right) tile if j = 0 (resp.,
j = n − 1) and i ∈ [1, n − 2]; these four are collectively (internal) edge tiles;
each has 5 neighbors; • an internal tile if i, j ∈ [1, n− 2]; each internal tile has 8

1For positive integers i and j ≥ i, [i, j] def
= {i, i+ 1, . . . , j}.
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Figure 1: (left) The n × n mesh Mn; (right) Mn partitioned into the four
quadrants determined by anchor tile v.

neighbors. Every edge of every tile v is labeled to indicate which of v’s potential
neighbors actually exists. (This enables FSMs to avoid “falling off” Mn).
Mn’s four quadrants are determined by lines that cross at an anchor tile

〈i, j〉 and are perpendicular to Mn’s edges; see Fig. 1(right). Mn’s “standard”
quadrants—which are anchored at Mn’s “center” tile 〈b 12 (n− 1)c, b 12 (n− 1)c〉,
hence are as close to equal in size (i.e., numbers of tiles) as the parity of n
allows—comprise the following sets of tiles.

Quadrant Name Tile-set

southwest QSW {〈x, y〉 | x ≥ b 1
2
(n− 1)c; y ≤ b 1

2
(n− 1)c}

northwest QNW {〈x, y〉 | x < b 1
2
(n− 1)c; y ≤ b 1

2
(n− 1)c}

southeast QSE {〈x, y〉 | x ≥ b 1
2
(n− 1)c; y < b 1

2
(n− 1)c}

northeast QNE {〈x, y〉 | x < b 1
2
(n− 1)c; y ≤ b 1

2
(n− 1)c}

Rounding ensures that each tile of Mn resides in a unique quadrant.
A single FSM on Mn. At any moment, an FSM F occupies a single tile of

Mn, sharing that tile with no other FSM. At each step, F can move to any of
the (up-to) eight King’s-move2 neighbors of its current tile, in any of the eight
compass directions: N , NE, E, SE, S, SW , W , NW . (Clerical extensions
extend F ’s move repertoire to include any fixed finite set of atomic moves, each
taking F from a tile 〈i, j〉 to a tile of the form 〈i ± a, j ± b〉. Note that, as F
plans its next move, it must consider the label of its current tile—hence must
be aware of residing on an edge tile or corner tile (to avoid “falling off”). But,
being an FSM, F cannot exploit any knowledge of the size-parameter n of the
mesh it resides in—except for “finite-state” knowledge such as the parity of n.

Multiple FSMs on Mn. A team of FSMs onMn can be activated (from the
outside world) simultaneously. Distinct FSMs on Mn operate synchronously,
i.e., can follow trajectories in lockstep. FSMs that reside on neighboring tiles
are aware of each other and can pass messages—such as “i am here.” Such
simple messages often enable one FSM to act as an “usher” or a “shepherd” for

2We employ King’s-moves for convenience. We could easily make do with the more spartan
NEWS-moves, N,E,W, S, or we could add more atomic moves, such as the 16 knight’s moves
(〈N,NW 〉 and 〈E,SE〉 and their kin). FSM programs clearly grow with the number of
neighbors tiles have.
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other FSMs. Each FSM’s moves on Mn are tightly orchestrated. Specifically,
an FSM attempts to move in direction:

N only at steps t ≡ 0 mod 8; NE only at steps t ≡ 1 mod 8;
E only at steps t ≡ 2 mod 8; SE only at steps t ≡ 3 mod 8;
S only at steps t ≡ 4 mod 8; SW only at steps t ≡ 5 mod 8;
W only at steps t ≡ 6 mod 8 NW only at steps t ≡ 7 mod 8

(A repertoire of k atomic moves would require a modulus of k.) This orches-
tration means that FSMs need never collide! If several FSMs want to enter
a tile v from (perforce distinct) neighboring tiles, then one of the FSMs will
have permission to enter v before the others—so all FSMs will learn about the
conflict before a collision occurs.

2.2 Algorithmic Standards and Simplifications

Algorithms are finite-state. Each is specified by a single finite-state program

which all robots execute in SPMD3 mode. Such programs, as described in [27]
and employed in “finite-state” programming systems such as CARPET [32],
have the form

label1: if input1 then output1,1 and goto label1,1
...
if inputm then output1,m and goto label1,m

...
...

labels: if input1 then outputs,1 and goto labels,1
..
.
if inputm then outputs,m and goto labels,m

with statement labels playing the role of states. Note in particular that all
FSMs are identical; none has a “name” that renders it unique.
Algorithms are scalable: They work on meshes of arbitrary sizes. In particular,
an FSM F cannot exploit information about the size of a mesh Mn, treating
its side-length n as an unknown. F can, however, learn “finite-state” properties
of n, such as its parity.

Algorithms are decentralized but synchronous. Once started, FSMs oper-
ate autonomously, but their independent clocks tick at the same rate—so that
distinct FSMs can follow trajectories in lockstep. This assumption is no less re-
alistic than the analogous assumption with synchronous-start human endeavors
such as military maneuvers.

These guidelines are often violated in implementations, as in [9, 12, 16, 18,
30], where practical simplicity overshadows algorithmic simplicity.

We specify algorithms in English, trying to tailor the amount of detail to
the complexity of the specification. Our goal is to make it clear how to craft a
realizing finite-state program. Perhaps the feature of finite-state programs that
we exploit the most is their sequential composability.

3“SPMD” stands for “Single-Program-Multiple-Data,” a “relaxed” analogue of SIMD.
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2.3 Related Work

Our study combines concepts and tools from a number of complementary bodies
of literature that span several decades. The literature on automata theory and
its applications contains studies exemplified by [3, 5, 7, 10, 23] that focus on
the (in)ability of FSMs to explore graphs with goals such as finding “entrance”-
to-“exit” paths or exhaustively visiting all nodes or all edges. Other studies,
exemplified by [14, 17, 20, 22, 31], focus on algorithms that enable FSMs that
populate the cells of (possibly multidimensional) meshes to tightly synchronize;
such arrays of FSMs are, of course, cellular automata, a model dating back a half
century [33], yet still of interest today [13, 32, 34, 35]. The robotics literature
contains numerous studies—see, e.g., [1, 2, 12, 18, 30]—that explore the use of
ants as a metaphor for simple robots that collaborate to accomplish complex
tasks; the use of “virtual pheromones” within this metaphor is particularly
interesting; we briefly studied this topic in [28]. (The ant metaphor is discussed
in an entertaining way in [15].) Cellular automata appear also within robotic
applications of automata-theoretic concepts [19, 25, 26]. Notably, the robotic
branch of this literature does not consist just of theoretical studies of the model,
containing also application- and implementation-oriented studies [6, 12, 16, 30,
32]. The current study melds the goals of the automata-theoretic and robotic
studies by studying FSMs that traverse two-dimensional meshes, with goals
more closely motivated by robotics than automata theory. The closest relative
to our study is [29], which studies the (in)ability of FSMs to find, for arbitrary
fixed rationals 0 < ϕ,ψ < 1, the tile 〈bϕ(n−1)c, bψ(n−1)c〉 in arbitrary meshes
Mn. This simple, yet significant, problem for mobile robots complements the
question underlying the Parking Problem– “What can FSMs discover about
where they reside within a mesh?”—with the question “Can FSMs discover
designated target tiles within meshes?” The results in [29] parallel those here:
a single FSM has quite limited path-planning/exploration ability, while teams
of two or more FSMs have such ability to a significantly greater extent.

2.4 The Parking Problem for FSMs

To simplify exposition, we restrict attention to the Parking Problem for Mn’s
northwest quadrant QNW ; clerical changes accommodate the other quadrants.
To be formal, the kth diagonal of QNW is the following set of tiles of Mn:

∆k = {〈i, j〉 | i+ j = k + 1}. (1)

We then have: A configuration of FSMs solves the Parking Problem for QNW

if and only if it minimizes the parking potential function

Π(t)
def
=

2n−2∑
k=0

(k + 1) × (the number of FSMs residing on ∆k at step t). (2)

This simple, yet algorithmically nontrivial, path-planning problem lends signif-
icant insights into what FSMs can determine about meshes without counting.



JGAA, 16(2) 483–506 (2012) 489

3 Toward Understanding Single FSMs

We present three results that enhance our understanding of FSMs as models
for mobile robots. The first result exposes the fact that single FSMs cannot
park successfully within large meshes (Section 3.1). The second two results
shed light on the use of (digital) pheromones to the FSM model, as suggested
in, e.g., [12, 18, 30] (Sections 3.2 and 3.3).

3.1 A Single FSM Cannot Park

Theorem 1 No FSM can successfully park when started on an arbitrary tile of
(even the one-dimensional version of) arbitrarily large meshes.

The proof of the theorem formalizes the insight that a single FSM “gets lost”
in the interior of any sufficiently large meshMn, hence cannot determine which
quadrant of Mn it resides in. This insight adds to the list of the limitations
of FSMs as they strive to explore unbounded domains; cf. [23]. We define the
“interior” ofMn as follows. For any rational α in the range 1/n < α < 1/2, the
α-interior of Mn is the submesh with corners at tiles 〈bα(n− 1)c, bα(n− 1)c〉,
〈bα(n − 1)c, (n − 1) − bα(n − 1)c〉, 〈(n − 1) − bα(n − 1)c, bα(n − 1)c〉, 〈(n −
1) − bα(n − 1)c, (n − 1) − bα(n − 1)c〉. We say that an α-interior of Mn is
landlocked for a q-state FSM F if q < α(n − 1). We define the term “get lost”
implicitly, via the coming argument, because its exact definition depends on
the path-planning problem that the FSM is trying to solve. The reader should
understand the term from the argument.

Let F be a q-state FSM that is trying to navigate within Mn from a desig-
nated Start Tile to a designated Halt Tile, where at least one of these tiles is
landlocked for F . Say for definiteness that the Start Tile is landlocked, because
this is the problematic situation for the parking problem;4 a symmetric argu-
ment will handle the case of a landlocked Halt Tile. Let us examine the tiles
that F visits during the first q+1 steps of its journey from the Start Tile to the
Halt Tile, noting that it may visit some of these more than once. We label each
of these q + 1 steps with the name of the state that F was in at that step. We
thereby associate these steps with a sequence of q+1 state names: s0, s1, . . . , sq.
By the Pigeonhole Principle, at least two of the names, say sa and sb, must be
identical: say sa = sb = s, as in Fig. 2(middle). Because F is an FSM, being
in a particular state at a given step of its journey embodies F ’s only memory
of anything that happened before that step. Therefore, each time F arrives at
some tile in state s, it cannot determine if this is the first time that it entered
state s during the journey or the second time or . . . . In particular, if we move
F ’s Start Tile closer toMn’s boundary (as in Fig. 2(left)) or farther fromMn’s
boundary (as in Fig. 2(right)), F cannot distinguish among the three situations
in Fig. 2 as it embarks on the dashed portion of its journey. Note that we can
force the extended trajectory of Fig. 2(right) only if F ’s Start Tile is “sufficiently
far” intoMn’s interior, meaning at least distance 3q fromMn’s boundary. (The

4The Halt Tile in the Parking Problem is a corner tile, hence decidedly not landlocked.
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Figure 2: The “cut and splice” operation. The solid path-segments in the middle
subfigure represent the actual first q+1 steps as F leaves its Start Tile. The left
and right subfigures indicate alternative path-segments that F cannot distinguish
from the actual ones.

integer 3 here reflects the three occurrences of state s in Fig. 2(right); a subse-
quent extension would require that F ’s Start Tile be at least distance 4q from
Mn’s border; and so on.) The claimed repetition must occur because the inputs
to F ’s state-transitions are the same between successive encounters with state
s: F is the only FSM, it does not employ pheromones, and it never goes near
an edge of Mn, so it receives identical stimuli after each occurrence of state s.

Summing up informally, but in a way that is easily formalized, if we start F
sufficiently far from any edge of Mn, then it will not be able to determine its
relative distances from Mn’s edges or corners. This insight allows us finally to
prove Theorem 1.

Proof of Theorem 1 By the preceding argument: For any FSM F , for all
sufficiently large meshes Mn, repeated extensions of F ’s trajectory from its
Start Tile can change which corner of Mn is F ’s target parking corner, in a
way that F cannot recognize. The reader can easily adapt this argument to a
one-dimensional mesh Mn in which F must find the closer end. �

3.2 Augmenting the Model with Virtual Pheromones

Several sources in the robotics literature—see, e.g., [12, 18, 30]—advocate em-
dowing robots with virtual pheromones, a digital realization of real ants’ volatile
organic compounds. We can accomplish this by endowing each tile ofMn with
a fixed number c of counters, where each counter ` can hold an integer in the
range [0, I`]; each such integer is an intensity level of pheromone `. The number
c and the ranges [0, Ij ]

c
j=1 are characteristics of a specific instance of the model.

The volatility of real pheromones is modeled by a schedule of decrements of
every pheromone counter, say one unit per step; see Fig. 3. Every computation
begins with all tiles having level 0 of every pheromone.

None of our positive results (“Such and such a configurations of FSMs can
park.”) needs virtual pheromones, and none of our negative results (“Such and
such a configurations of FSMs cannot park.”) is helped by virtual pheromones.
That said, for completeness, we now hint at the impact of virtual pheromones
on our model. In short, pheromones—as modeled above—do not enhance the
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Figure 3: Snapshots of a pheromone of intensity I = 3 changing as FSM F
(the dot) moves. All snapshots have F on the center tile; unlabeled tiles have
level 0. (a) F has deposited a maximum dose of pheromone on each tile that
it has reached via a 2-step SE-SW path; note that the pheromone has begun
to “evaporate” on the tiles that F has left. (b) F stands still for one time-step
and deposits no pheromone. (c) F moves W and deposits a maximum dose of
pheromone. (d) F moves S and deposits a maximum dose of pheromone. (e) F
moves E and does not deposit any pheromone.

capabilities of single FSMs, but they sometimes enable small FSMs to function
as much (in fact exponentially) larger pheromone-less ones. We establish the
first claim here and the second in Section 3.3.

Theorem 2 Given any FSM F that employs (virtual) pheromones while navi-
gating Mn, there exists an FSM F ′ that follows the same trajectory as F while
not using pheromones.

Proof: We can focus on an FSM F that uses just one type of pheromone because
we eliminate a single type at a time. Say that F ’s single pheromone has intensity
levels in the set [0, I]. We design a pheromone-less FSM F ′ with exponentially
(in I) more states than F that emulates F step by step. F ′ “carries around”
(in finite-state memory) a map that specifies all relevant information about the
tiles ofMn that contain nonzero intensities of F ’s pheromone—the tiles’ relative
locations and the intensities of the pheromone. For F ′ to exist, the pheromone
map must be: (a) “small”—with size independent of n—and (b) easily updated
as F ′ emulates successive steps by F .
Map size. The portion ofMn that could contain nonzero levels of the pheromone
is no larger than the “radius”-I submesh of Mn that F has visited during the
most recent I steps. No trace of pheromone can persist outside this region
because of volatility. Thus, the map needs only be a (2I − 1) × (2I − 1) mesh
centered at F ’s current tile. Because F is the only FSM onMn, at most one tile
of the map contains the integer I (a current maximum level of the pheromone),
at most one contains the integer I − 1 (a maximum level one step ago), . . . ,
at most one contains the integer 1 (a maximum level I − 1 steps ago). Fig. 3
displays a sample map, with four sample one-step updates.
Updating the map. Because of a map’s restricted size and contents, there are
fewer than 1 +

∏I−1
j=0((2I − 1)2 − j) distinct maps (even ignoring the necessary

adjacency of tiles that contain the integers k and k − 1). F ′ can, therefore,
carry the set of all possible maps in its finite-state memory, with the then-
current map clearly “tagged.” Thus, F ′ has finitely many states as long as
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F does. F ′’s state-transition function augments F ’s by updating each state’s
map-component while emulating F ’s state change. �

Theorem 2 strengthens Theorem 1 to include FSMs that employ pheromones.

3.3 Pheromones Can Enable Exponentially Smaller FSMs

The pheromone-less FSM F ′ in our proof of Theorem 2 has a number of states
q′ that is exponentially larger (in the number of intensity levels I) than the
number of states q of the pheromone-using FSM F that F ′ replaces; specifically,
q′ is roughly IO(I)q. It is natural to wonder if this exponential blowup in
FSM-size is necessary. We use the Not-So-Close Neighbor Problem to show that
the exponential blowup is close to necessary in the worst case. This problem,
specialized to the mesh Mn and the integer k with 0 < k < log2 n, is denoted
NSCNn,k and is specified as follows (using “south” for definiteness only).

The NSCNn,k Problem: Have FSM F move 2k tiles south of its starting tile
〈i, j〉, to tile 〈i+ 2k, j〉.

Theorem 3 Focus on a mesh Mn and an integer k with 0 < k < log2 n.

1. No pheromone-less FSM with fewer than 2k states can solve the NSCNn,k

Problem within arbitrary meshes Mn.

2. The NSCNn,k problem is always solvable in 2k steps by a pheromone-less
single FSM that has 2k + 1 states.

3. The NSCNn,k Problem is always solvable in O(k2k) steps by a single FSM
that has O(k) states and that employs a single type of pheromone with
6k + 1 intensity levels.

Proof: 1. This follows directly from the argument in Section 3.1. If an FSM F
having q < 2k + 1 states is started at a tile 〈i, j〉 that is landlocked for F , then
F will enter the same state (at least) twice during the first q + 1 steps of its
journey from 〈i, j〉 to 〈i+ 2k, j〉. Moving F ’s start tile via either a compression
or extension (cf. Fig. 2) will cause F to end up at a tile other than 〈i+ 2k, j〉.
2. The following (2k + 1)-state FSM F (k) solves the NSCNn,k Problem without

using pheromones. F (k) has states s0, . . . , s2k . Starting in state s0, F (k) marches
southward through successive states, s1, s2, . . ., halting when it enters state s2k .
3. We design an O(k)-state FSM Fk that solves the NSCNn,k Problem. In broad
outline, Fk uses its phermomone to simulate a k-bit counter that it “carries
along” as it makes its way from the interior tile 〈i, j〉 to 〈i+ 2k, j〉. We assume
for definiteness that n− i ≥ k (which creates “westward” room for the counter);
clerical changes accommodate the case n− i < k by using “eastward” room.

Designing the counter. Fk employs a pheromone with 6k + 1 levels of in-
tensity. It uses levels 1, . . . , 3k to represent bit 0 and levels 3k + 1, . . . , 6k to
represent bit 1; as usual, level 0 indicates the absence of the pheromone. (The
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redundant representation compensates for pheromones’ volatility.) For each in-
teger h ∈ [0, 2k − 1] and each tile 〈i+ h, j〉 along the southward path

〈i, j〉 → 〈i+ 1, j〉 → · · · → 〈i+ 2k, j〉, (3)

in turn, Fk forms an encoding (using pheromone intensity levels) of the length-k
binary numeral for integer h, using the tiles 〈i + h, j − (k − 1)〉 . . . , 〈i + h, j〉
to store (encodings of) the numeral’s successive bits: 〈i+ h, j〉 will contain the
hth counter’s low-order bit and 〈i + h, j − k + 1〉 of that counter’s high-order
bit. Fk uses enough levels of pheromone intensity for encoding so that each
bit of each counter will survive long enough for Fk to progress to the next tile
to the south and propagate and increment the hth counter to the (h + 1)th.
When Fk eventually generates the numeral 11 · · · 1 for the integer 2k − 1 on
its moving counter, it knows that the next tile to the south is the target tile
〈i + 2k, j〉. Because Fk uses pheromone levels to represent bits and because it
must explicitly traverse the k tiles that encode each numeral and because the
pheromone is volatile, Fk employs multiple levels of the pheromone to encode
the bits 0 and 1, as mentioned earlier.

We now derive a viable encoding—and, thereby, a viable upper bound on
the number of levels of intensity for the pheromone—by presenting an explicit
algorithm for Fk and analyzing how long the representation of a bit must persist
in order for Fk to count from 0 to 2k − 1 using length-k numerals. We use the
following notation. For β ∈ {0, 1}:

• “(β)” ambiguously denotes any encoding of bit β using pheromone levels;
under our scheme, (0) ∈ {1, . . . , 3k}, and (1) ∈ {3k + 1, . . . , 6k};

• “[β]” denotes the encoding of bit β via a maximum level of pheromone;
thus, [0] represents level 3k of the pheromone, and [1] represents level 6k.

Fk initializes the counter. Fk begins its counter-constructing journey along
the southward path (3) by initializing the counter to the numeral 00 · · · 0. This
consists of traversing the following length-k westward path from 〈i, j〉

Initialize counter 0 to 00 · · · 0
〈i, j − k + 1〉 ← 〈i, j − k + 2〉 ← · · · ← 〈i, j〉
deposit [0] deposit [0] deposit [0]

depositing dose [0] of the pheromone at each tile. A potential finite-state sub-
program for Fk appears in Fig. 4; the right arrow identifies the initial states of
each of the sub-FSMs that jointly comprise Fk. Having initialized the counter,
Fk returns to tile 〈i, j〉 via the eastward path

Return and check counter h for 11 · · · 1
〈i + h, j − k + 1〉 → 〈i + h, j − k + 2〉 → · · · → 〈i + h, j〉. (4)

The initial instantiation of this check-and-return path has h = 0; subsequent
instantiations will have, in turn, h = 1, 2, . . . , k − 1. During these eastward
paths, Fk tests whether the current value of the counter encodes the integer
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Current Tile Move
State Contents Action Direction New State

→ initialize 0 ALL Deposit [0] west initialize 1

initialize 1 ALL Deposit [0] west initialize 2

...

initialize k−1 ALL Deposit [0] west go-back 0

Figure 4: A counter-initializing sub-FSM of Fk

2k − 1 (via the binary numeral 11 · · · 1). If it does, then Fk knows that the
next tile to the south of 〈i + h, j〉 is the target tile 〈i + 2k, j〉; in this case, Fk

just moves to this tile and halts. If the counter does not encode 2k − 1, then
Fk proceeds to propagate and increment the counter southward. A potential
check-and-return finite-state subprogram for Fk appears in Fig. 5. Because Fk

Current Tile Move
State Contents Action Direction New State

→ go-back 0 ALL no action east if all (1)s thus far

then go-back 1,y

else go-back 1,n

go-back 1,n ALL no action east go-back 2,n

go-back 1,y ALL no action east if all (1)s thus far

then go-back 2,y

else go-back 2,n

go-back 2,n ALL no action east go-back 3,n

go-back 2,y ALL no action east if all (1)s thus far

then go-back 3,y

else go-back 3,n

...

go-back k−1,n ALL no action east counter

go-back k−1,y ALL no action south halt

Figure 5: A check-and-return sub-FSM for Fk

returns to each tile 〈i+h, j〉 2k−1 steps after initially leaving it, we can ensure
the persistence of a nonzero dose of pheromone on 〈i+ h, j〉 upon Fk’s return,
if we have [0] ≥ 2k and 2k < [1] ≤ 4k.

Fk propagates and increments the counter. Assume inductively that Fk is
on tile 〈i + h, j〉, where h ∈ [0, 2k − 1], and that tiles 〈i + h, j〉, . . . , 〈i + h, j −
k+ 1〉 contain pheromone levels that encode integer h. Fk initiates a sawtooth
traversal of the following form, during which it deposits at row h+1 pheromone
levels that encode integer h+ 1.
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Propagate incremented counter from row h to row h + 1:

Pick up bit Pick up bit Pick up bit

〈i + h, j〉 〈i + h, j − 1〉 〈i + h, j − k + 1〉
↓ ↗ ↓ ↗ · · · ↗ ↓

〈i + h + 1, j〉 〈i + h + 1, j − 1〉 〈i + h + 1, j − k + 1〉
Bit + Carry Bit + Carry Bit + Carry

A potential finite-state propagate-and-increment subprogram for Fk appears
in Fig. 6. The reader will recognize the add sub-FSM as a length-k carry-
propagate incrementer. In state add -(β, α), this FSM generates the sum and
carry out-bits in response to the input bit α and carry-in bit β. In the check-
and-return sub-FSM, Fk ensures that the counter contents never exceed 2k−1,
which is why state add -(1, 1) cannot occur. Having completed an update of

Current Tile Move
State Contents Action Direction New State

→ counter (β) no action south add -(β, 1)0

add -(0, 0)0 ALL deposit [0] northeast get-bit -(0)1

add -(0, 1)0 ALL deposit [1] northeast get-bit -(0)1

add -(1, 0)0 ALL deposit [1] northeast get-bit -(0)1

add -(1, 1)0 ALL deposit [1] northeast get-bit -(1)1

get-bit -(0)1 (β) no action south add -(β, 0)1

get-bit -(1)1 (β) no action south add -(β, 1)1

add -(0, 0)1 ALL deposit [0] northeast get-bit -(0)2

add -(0, 1)1 ALL deposit [1] northeast get-bit -(0)2

add -(1, 0)1 ALL deposit [1] northeast get-bit -(0)2

add -(1, 1)1 ALL deposit [1] northeast get-bit -(1)2
...

get-bit -(0)k−1 (β) no action south add -(β, 0)k−1

get-bit -(1)k−1 (β) no action south add -(β, 1)k−1

add -(0, 0)k−1 ALL deposit [0] northeast go-back

add -(0, 1)k−1 ALL deposit [1] northeast go-back

add -(1, 0)k−1 ALL deposit [1] northeast go-back

Figure 6: Propagating and incrementing the counter for Fk

the counter, Fk returns to tile 〈i+ h+ 1, j〉 via the path (4).

Because the propagate-plus-increment process—Fk’s sawtooth path from
tile 〈i+h, j〉 to tile 〈i+h+1, j+k−1〉, followed by its return to tile 〈i+h+1, j〉—
takes 3k steps, insisting that ` ≥ 3k ensures the persistence of a nonzero dose
of pheromone on tile 〈i + h + 1, j〉 upon Fk’s return. In fact, because of the
“semantics” of Fk’s total journey, we double the indicated number of levels
of the pheromone—because Fk must, in fact, distinguish between levels of the
pheromone that encode bit 0 and levels that encode bit 1.

Validation. The only “danger” while implementing the described strategy
is that the pheromone will evaporate somewhere while Fk still needs access to
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it—so that it can distinguish 1 from 0. Focusing on a specific but arbitrary tile
〈r, s〉, in the worst case, Fk:

1. first deposits the pheromone on tile 〈r, s〉 while copying the numeral from
the preceding row, row r − 1;

2. takes 3 steps per bit to copy the k bits in tiles to the right of 〈r, s〉 into
the current row, row r;

3. returns to row r in preparation for copying this row upward to row r+ 1;

4. takes 3 steps per bit to copy the < k bits in tiles to the right of 〈r, s〉 to
the next row, row r + 1.

This process thus takes 3k steps, after which we no longer care if the pheromone
is still detectable on tile 〈r, s〉. Thus, using a pheromone that has 6k nonzero
intensity levels—3k to represent 0 and 3k to represent 1—ensures that Fk can
always solve the NSCNn,k Problem. �

4 Home-Quadrant Determination

The Parking Problem can fruitfully be partitioned into two subproblems:
Home-Quadrant determination. Each FSM determines its home quadrant (i.e.,
the one it starts in) and, thereby, its parking corner in Mn.
Parking within the home quadrant. FSMs that share a home quadrant—hence,
a parking corner—assemble in a configuration that minimizes the parking po-
tential function (2).

The Home-Quadrant Determination Problem is significant independent of its
use in solving the Parking Problem, as an instance of the fundamental question
“What can FSMs discover about where they reside within a mesh?” Therefore,
we devote this section to studying initial configurations of FSMs that allow each
FSM to determine its home quadrant. We show in Section 5 how such config-
urations of FSMs can always park in every mesh. We cannot yet characterize
the configurations that allow home-quadrant determination, but we can identify
two simply described ones.

1. The initial assemblage of FSMs includes one designated FSM that resides
on an edge or at a corner of Mn.

2. The initial assemblage of FSMs includes two designated FSMs that are
adjacent, i.e., reside on tiles that share an edge or a corner.

Theorem 4 (a) Any collection of FSMs that (initially) contains a designated
FSM on an edge of Mn can determine their home quadrants in Mn within
O(n3) synchronous steps. (b) Any collection of FSMs that (initially) con-
tains two designated adjacent FSMs can determine their home quadrants in
Mn within O(n2) synchronous steps.
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The proof of Theorem 4 occupies the following subsections. We focus first
on how a single FSM on a mesh-edge can determine its home quadrant (Sec-
tion 4.1), then on how two initially adjacent FSMs can determine their home
quadrants (Section 4.2). We show finally how these knowledgeable FSMs can
act as “shepherds” to help an arbitrary collection of FSMs determine their home
quadrants (Section 4.3).

4.1 A Single FSM on a Mesh-Edge

Lemma 1 One can design an FSM that can determine its home quadrant from
any edge-tile of any mesh Mn within O(n) steps.

Proof: We design an FSM F that can determine its home quadrant when
started on Mn’s top edge. An easy modification of F , call it F̂ , will be able to
start on any edge of Mn. Specifically, F̂ begins by scanning the edge-labels on
its start tile (cf. Section 2.1) to determine which edge ofMn it is starting on. F̂
uses that information to determine which “rotation” of the following algorithm
to use in order to determine its home quadrant.

Say that FSM F starts on Mn’s top edge, at an arbitrary tile 〈0, k〉, so
that F ’s target parking tile is either 〈0, 0〉 or 〈0, n − 1〉. To decide between
these alternatives, F begins a 60◦ southeasterly walk from 〈0, k〉, i.e., a walk
consisting of the following “Knight’s-move supersteps”: two-step moves of the
form SE-then-S. (It simplifies our analysis to consider the numerical form of
these moves, (+1,+1)-then-(+1, 0). Consider a superstep that starts with F on
tile 〈i, j〉 ofMn. (Recall that we know the coordinates of the tile; F does not.)

if 〈i, j〉 is an edge tile or a corner tile of the mesh
then F ’s walk terminates
else F moves SE to tile 〈i+ 1, j + 1〉

if 〈i+ 1, j + 1〉 is a bottom tile
then F ’s walk terminates
else F moves S to tile 〈i+ 2, j + 1〉

F ’s walk, which is depicted schematically in Fig. 7, terminates when F encoun-
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Figure 7: The two possible forms of F ’s 60◦ southeasterly walk.

tersMn’s bottom edge or right edge or SE corner. We claim that the endpoint
of the walk identifies F ’s target parking tile. To see this, note that F ’s walk
terminates in a tile v = 〈a, b〉. There are two possibilities: F is prevented (by
an edge or corner of Mn) from:
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1. taking the second (southward) step of its sth superstep. This means that
F has completed one more SE move than S move, so we have

[
[a =

2s − 1] and [b = k + s]
]
, and we must also have

[
[a = n − 1] and [b ≤

n− 1]
]

(whence the interruption). Combining these inequalities, we have
k < 1

2 (n− 1), which means that F ’s target parking tile is 〈0, 0〉;

2. taking the first (southeasterly) step of its (s+ 1)th superstep. This means
that F has completed the same number of SE and S moves, so we have[
[a = 2s] and [b = k + s]

]
, and we must also have

[
[a = n − 1] or [b =

n− 1]
]

(whence the interruption). Combining these inequalities, we have
k ≥ 1

2 (n− 1), which means that F ’s target parking tile is 〈0, n− 1〉.

This analysis verifies that the program in Fig. 8 enables F to park from tile
〈1, k〉. �

Current Current Move
State Tile Direction New State

→ move-SE not bottom or right edge move southeast move-S

move-S not bottom or right edge move south move-SE

move-SE bottom edge OR SE corner move northwest move-NW

move-S bottom edge OR SE corner move northwest move-NW

move-SE right edge move north move-N

move-S right edge move north move-N

move-NW not NW corner move northwest move-NW

move-NW NW corner no action halt

move-N not NE corner move north move-N

move-N NE corner no action halt

Figure 8: A single FSM parks from the top edge of Mn

4.2 Two Initially Adjacent FSMs

Lemma 2 Any collection of FSMs that (initially) contains two designated ad-
jacent FSMs can determine their home quadrants in O(n2) synchronous steps.

The algorithm of Section 4.1 can be adapted to allow two initially adjacent
FSMs to determine their home quadrants. The adaptation leads to the following
four-phase algorithm, which is illustrated in Fig. 9.

Phase 1. FSM #1 distinguishes east from west. Say, for definiteness, that the
two FSMs are horizontally adjacent, with F1 to the right of F2. This assump-
tion loses no generality, because the FSMs can remember their actual initial
configuration (in finite-state memory), then move into the left-right configu-
ration, and finally compute the adjustments necessary to accommodate their
actual configurations.
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Figure 9: Illustrating home-quadrant determination for two adjacent FSMs:
(1,2) FSM #1 discovers that it is a “westerner”; (3,4) FSM #1 discovers that
it is a “northerner.”

F2 stays immobile while F1 proceeds to the top edge ofMn. F1 thence executes
the top-edge algorithm of Section 4.1 to determine whether it is an “easterner”
or a “westerner” (Fig. 9.1). F1 then returns to its home tile by reversing its
walk (Fig. 9.2). This reversal is possible because: (a) the first leg of the return
walk just reverses the sequence of supersteps that accomplished the outward
walk; (b) once F1 regains the top edge of Mn, it travels southward until it
encounters F2. F2 thus acts as a “sentry” or “place-holder” for F1.
Phase 2. FSM #1 distinguishes north from south. F2 stays immobile while
F1 proceeds to the right edge of Mn, F1 thence executes the right-edge algo-
rithm of Section 4.1 to determine whether it is a “northerner” or a “southerner”
(Fig. 9.3). F1 then returns to its home tile by reversing its walk (Fig. 9.4). Here
too, the return is possible by: (a) reversing the sequence of supersteps that ac-
complished the outward walk; (b) traveling westward from the right edge ofMn

until it encounters F2.
Phase 3 (FSM #2 distinguishes east from west) and Phase 4 (FSM #2 distin-
guishes north from south) have F1 act as a “sentry” for F2 while the latter
executes analogues of Phases 1 and 2.
Note. Two FSMs that have a pheromone with I ≥ 2k levels of intensity can
determine their home quadrants when started within k tiles of one another.

4.3 Knowledgeable FSMs Act as Shepherds

We have m ≥ 2 FSMs, F1, . . . ,Fm. As the FSMs execute the algorithms of
this section, some may block the intended paths of others. We resolve such
conflicts by having the involved FSMs switch roles—which is possible because all
FSMs are identical. If FSM F is blocking FSM F ′, then F “becomes” F ′ and
continues the latter’s blocked trajectory; simultaneously, F ′ “becomes” F and
continues its trajectory.

4.3.1 One knowledgeable shepherd

Say that FSM F1 knows its home quadrant (possibly, but not necessarily from
executing the algorithm of Section 4.1). F1 helps other FSMs determine their
home quadrants by performing a snaked row-by-row sweep of Mn—say for
definiteness from tile 〈0, 0〉.
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As F1 encounters each F i where i ∈ [2,m], it acts as a sentry, in the spirit of
the 2-FSM algorithm of Section 4.2, thereby allowing F i to determine its home
quadrant. Once F i returns to its original tile, it starts toward its target parking
corner—by joining the final parking process of Section 5—and F1 resumes its
shepherding sweep of Mn.

The described process takes O(n3) steps. F1’s sweep of Mn takes O(n2)
moves. Whenever F1 encounters another F i, the two FSMs collaborate in an
O(n)-step algorithm that enables F i to determine its home quadrant. �

4.3.2 Two knowledgeable shepherds

Say that FSMs F1 and F2 know their home quadrants (possibly, but not neces-
sarily from executing the algorithm of Section 4.2). The following multi-phase
O(n2)-step algorithm has F1 and F2 help all other FSMs determine their home
quadrants.

Note. The following algorithm is designed for a single pair of shepherds. It
is not clear if enlisting a larger team of shepherds or enlisting multiple teams
would lead to a faster algorithm.

Phase 1. F1 and F2 distinguish east from west. F1 and F2 head to Mn’s NW
corner (tile 〈0, 0〉). Then:

1. F2 moves one tile eastward per time-step until it reaches Mn’s right edge.
It then reverses direction and begins to move one tile westward per time-step.

2. F1 starts one step later than F2 and moves one tile eastward at every third
time-step.

3. F1 and F2 terminate their walks when they are in adjacent tiles.

If n−1 is even, then when the FSMs meet, F1 will be on tile 〈0, 12 (n−1)−1〉,
and F2 will be on tile 〈0, 12 (n− 1)〉. To wit:

• F2’s trajectory, 〈0, 0〉 〈0, n−1〉 〈0, 12 (n−1)〉 takes 3
2 (n−1) time-steps.

• F1’s trajectory 〈0, 0〉 〈0, 12 (n−1)−1〉 takes 1
2 (n−1)−1 moves. Because

F1 starts one time-step later than F2 and proceeds at 1
3 rate, F1 arrives

at 〈0, 12 (n− 1)〉 after 3
2 (n− 1) time-steps.

If n− 1 is odd, then when the FSMs meet, F1 will be on tile 〈0, b 12 (n− 1)c〉,
and F2 will be on tile 〈0, d 12 (n− 1)e〉. To wit:

• F2’s trajectory, 〈0, 0〉 〈0, n−1〉 〈0, d 12 (n−1)e〉 takes (n−1)+b 12 (n−
1)c = 3b 12 (n− 1)c+ 1 time-steps.
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• F1’s trajectory 〈0, 0〉 〈0, b 12 (n−1)−1c〉 takes b 12 (n−1)cmoves. Because
F1 starts one time-step later than F2 and proceeds at 1

3 rate, F1 arrives
at 〈0, b 12 (n− 1)c〉 after 3b 12 (n− 1)c+ 1 time-steps.

After these walks, F1 and F2 know the midpoint of Mn’s top row.

Phase 2. F1 and F2 identify easterners and westerners. F1 sweeps column-wise
through the western half of Mn, from column d 12 (n − 1)e − 1 through column
0, informing each encountered FSM that it is a westerner, i.e., resides in either
QNW or QSW . Simultaneously, F2 does the symmetric task in the eastern
half of Mn, from column d 12 (n − 1)e through column n − 1, informing each
encountered FSM that it is an easterner, i.e., resides in either QNE or QSE .
After completing their sweeps, F1 and F2 rendezvous at tile 〈0, 0〉.
Phase 3. F1 and F2 distinguish north from south, via a process analogous to
that of Phase 1.

Phase 4. F1 and F2 identify northerners and southerners, via a process analo-
gous to that of Phase 2.

By the end of Phase 4, every FSM knows its home quadrant.

Phase 5. FSMs park. Every FSM except for F1 and F2 begins to park as soon
as it determines its home quadrant. F1 and F2 wait to park until the end of
Phase 4, when their shepherding duties are done. All FSMs join the algorithm
of Section 5 as they park.

5 Completing the Parking Process

We describe finally how FSMs that know their home quadrants travel to their
parking corner and arrange themselves within that corner into a configuration
that minimizes the parking potential function (2). We focus just on corner SW
of Mn, hence on FSMs that resided initially in QSW ; clerical changes adapt
this procedure to the other corners.

Phase 1. FSMs travel to parking corners. Each FSM F follows a two-stage
trajectory to its parking corner. For QSW , the trajectory proceeds westward to
the left edge of Mn. Having achieved that edge, F proceeds southward toward
its parking corner. An FSM that is proceeding horizontally: (a) moves only to
an empty tile; if none exists, then it waits; (b) yields to an FSM that is already
proceeding vertically.

Phase 2. FSMs organize within their corner. We depict this process schemat-
ically in Fig. 10. The first FSM that reaches its parking corner (it may have
started there) becomes an usher. It directs vertically-arriving FSMs into the
next adjacent diagonal (say that this is diagonal5 ∆k). Thus-directed FSMs
proceed “down” this diagonal—i.e., in the northwest-to-southeast sense; if they
encounter the bottom edge of Mn, then they continue “up” the next higher-
index diagonal (∆k+1 in our example)—i.e., in the southeast-to-northwest sense.

5See (1) for notation.
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Figure 10: Three stages in the snaked parking trajectory within QSW ; X-ed
cells contain “ushers.”

An FSM in a diagonal moves only when some other FSM “behind” it wants them
to move. When an FSM that is moving “up” a diagonal regains the left edge of
Mn, it “defrocks” the current usher and becomes an usher itself (via a message
relayed by its lower neighbor). Corner SW ofMn thus gets filled in compactly,
two diagonals at a time, i.e., into a configuration that minimizes the parking
potential function (2).

This completes the parking algorithm and the proof of Theorem 4. �

6 Conclusions

We have reported progress in understanding the algorithmic strengths and weak-
nesses of finite-state robots (FSMs) within square meshes of arbitrary sizes. Our
vehicle has been the simple path-planning problem we call parking, that has
FSMs configure themselves into maximally compact configurations within their
nearest corners of the mesh. The Parking Problem is a reasonable subject of
study in terms of both the algorithmic and robotic inspirations for our work.
From the former perspective, Parking is a tractable instance of the question
“What can FSMs discover about where they reside within a mesh?” From the
latter perspective, Parking might be a useful capability to achieve efficiently in
some of the application domains for mobile robots, e.g., warehouses and facto-
ries; cf. [16]. Our main results: (a) illustrate how to formalize the intuition that
FSMs “get lost” in the interiors of large meshes (Section 3.1); (b) demonstrate
that FSMs can sometimes exploit mesh edges to accomplish tasks that seem to
require unbounded counting—which FSMs of course cannot do (Section 4.1);
(c) demonstrate that teams of FSMs can sometimes collaborate to accomplish
rather sophisticated path planning (Section 4.2); (d) provide perspective on the
benefits of digital analogues of pheromones for FSMs, an algorithmic tool ad-
vocated in [12, 18, 30] (Sections 3.2, 3.3). The algorithms that establish our
positive results adapt with only clerical changes to rectangular meshes with
fixed non-unit aspect ratios.

We mention “for the record” that if algorithmic efficiency is not a concern,
then any collection of FSMs that contains at least four initially adjacent ones
can perform a vast array of path-planning computations (and others as well) by
simulating an autonomous (i.e., input-less) 2-counter Register Machine whose



JGAA, 16(2) 483–506 (2012) 503

registers have capacity O(n2); cf. [27].
Where do we go from here? Most obviously, we want to solve the Parking

Problem definitively, by characterizing which initial configurations enable park-
ing and which do not. Another major direction for future work is to build on the
initial results of [29] to better understand FSMs within the context of the ques-
tion “How well can FSMs discover designated target tiles within meshes?”—a
question that complements the focus of the current study—“What can FSMs
discover about where they reside within a mesh?” Within the context of both
motivating questions, it would be valuable to understand how FSMs can cope
with obstacles that impede their progress and to understand the possible bene-
fits of randomizing the behavior of the FSMs. A valuable source of inspiration
for understanding these questions are the robotic studies in sources such as
[1, 8, 16, 18]. Perhaps the most important follow-ons to the current work would
go beyond pure path planning and exploration by designing FSMs that can scal-
ably (i.e, in arbitrarily large meshes) find and transport goal objects and avoid
obstacles. Sources such as [2, 12, 16, 25, 26] consider such issues for related but
distinct models. Questions concerning the robustness of collections of FSMs in
the face of various kinds of failures and faults can lend further texture to all of
the preceding algorithmic questions.
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[15] D.R. Hofstadter (1979): Gödel, Escher, Bach. Basic Books.

[16] http://www.kivasystems.com/

[17] Kobayashi, K.: The firing squad synchronization problem for two-
dimensional arrays. Information and Control 34 (1977) 177–197.

[18] Koenig, S., Szymanski, B., Liu, Y.: Efficient and inefficient ant coverage
methods. Annals of Mathematics and Artificial Intelligence 31 (2001) 41–
76.

[19] Marchese, F.: Cellular automata in robot path planning. EUROBOT’96
(1996) 116–125.

[20] Mazoyer, J.: On optimal solutions to the firing squad synchronization prob-
lem. Theoretical Computer Science 168(2) (1996) 367–404.

[21] Moore, E.F.: Gendanken experiments on sequential machines. In Automata
Studies (C.E. Shannon, J. McCarthy, eds.) [Ann. Math. Studies 34], Prince-
ton Univ. Press, Princeton, NJ (1956) 129–153.

[22] Moore, E.F. Moore: The firing squad synchronization problem. In Sequen-
tial Machines, Selected Papers (E.F. Moore, Ed.), Addison-Wesley, Read-
ing, MA (1962) 213–214.

[23] Müller, H.: Endliche Automaten und Labyrinthe. Elektronische Informa-
tionsverarbeitung und Kybernetik (EIK) 11(10-12) (1975) 661–672.

[24] Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM
J. Res. Develop. 3 (1959) 114–125.

[25] Rosenberg, A.L.: Cellular ANTomata. 5th Int’l Symp. on Parallel and Dis-
tributed Processing and Applications. In Lecture Notes in Computer Science
4742, Springer, Heidelberg (2007) 78–90.

[26] Rosenberg, A.L.: Cellular ANTomata: food-finding and maze-threading.
37th Int’l Conf. on Parallel Processing (2008).

[27] Rosenberg, A.L.: The Pillars of Computation Theory: State, Encoding,
Nondeterminism. Universitext Series, Springer, Heidelberg (2009).

[28] Rosenberg, A.L.: Ants in parking lots. 16th Int’l Conf. on Parallel Com-
puting (EURO-PAR’10), Part II. In Lecture Notes in Computer Science
6272, Springer, Heidelberg (2010) 400–411.



506 A. L. Rosenberg The Parking Problem for Finite-State Robots

[29] Rosenberg, A.L.: Finite-state robots in the land of Rationalia. In prepara-
tion (2012).

[30] Russell, R.: Heat trails as short-lived navigational markers for mobile
robots. Int’l Conf. on Robotics and Automation (1997) 3534–3539.

[31] Shinahr, I.: Two- and three-dimensional firing-squad synchronization prob-
lems. Information and Control 24 (1974) 163–180.

[32] Spezzano, G., Talia, D.: The CARPET programming environment for solv-
ing scientific problems on parallel computers. Parallel and Distributed Com-
puting Practices 1 (1998) 49–61.

[33] von Neumann, J.: The Theory of Self-reproducing Automata. (Edited and
completed by A.W. Burks) Univ. of Illinois Press, Urbana-Champaign, IL
(1966).

[34] Wolfram, S. (Ed.): Theory and Application of Cellular Automata. Addison-
Wesley, Reading, MA (1986).

[35] Wolfram, S.: Cellular Automata and Complexity: Collected Papers.
Addison-Wesley, Reading, MA (1994).


	Introduction
	An Informal Summary of the Paper

	Technical Background and Related Work
	Technical Background
	Algorithmic Standards and Simplifications
	Related Work
	The Parking Problem for FSMs

	Toward Understanding Single FSMs
	A Single FSM Cannot Park
	Augmenting the Model with Virtual Pheromones
	Pheromones Can Enable Exponentially Smaller FSMs

	Home-Quadrant Determination
	A Single FSM on a Mesh-Edge
	Two Initially Adjacent FSMs
	Knowledgeable FSMs Act as Shepherds
	One knowledgeable shepherd
	Two knowledgeable shepherds


	Completing the Parking Process
	Conclusions

