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How to Visualize the K-root Name Server
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Abstract

We present a novel paradigm to visualize the evolution of the service
provided by one of the most popular root name servers, called K-root,
operated by the RIPE Network Coordination Centre (RIPE NCC) and
distributed in several locations (instances) worldwide. Our approach can
be used to either monitor what happened during a prescribed time interval
or observe the status of the service in near real-time. We visualize how
and when the clients of K-root migrate from one instance to another, how
the workload associated with each instance changes over time, and what
are the instances that contribute to offer the service to a selected Internet
Service Provider. In addition, the visualization aims at distinguishing
usual from unusual operational patterns. This helps not only to improve
the quality of the service but also to spot security-related issues and to
investigate unexpected routing changes.
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1 Introduction

A computer sends a query to a name server every time it needs to know the IP
address corresponding to a domain name. Hence, all Internet Server Providers
(ISPs) provide their customers with one or more name servers in order to answer
their requests.

Upon receiving a query, each name server executes a process called resolu-

tion. Such process computes an answer for the query by iteratively querying
other name servers. This often implies sending a query to special name servers
called root name servers, or simply root servers. For this reason root servers are
a critical part of the Internet. They receive hundreds of thousands of queries
per second and must answer immediately. Currently there are 13 root servers,
each identified by a letter from A to M and operated by different organizations:
e.g. A by VeriSign, B by USC, and C by Cogent. Name servers select their
favorite root servers according to various query optimization policies.

Each root server is implemented with a number of computers spread across
several locations worldwide, in order to improve resiliency and efficiency. Each
of such locations is called instance. Currently each root server comprises at most
70 instances: e.g. A, F and K respectively have 6, 49 and 18 instances. While
a name server can freely select a root server for each of its queries, it cannot
select the specific instance that will answer it. A widely adopted mechanism
called anycast is instead responsible for the decision. It relies in turn on the
current status of the Internet routing to determine the instance which is most
appropriate, i.e. topologically nearest. Hence it is possible that consecutive
queries issued by a name server to the same root server, say K-root, are received
by different instances, depending on the current status of the routing. This has
consequences both from the point of view of the name server (i.e. the client of
the root server) and the root server itself: the first can experience fluctuations
in the elapsed service time, while the latter can suffer from changes in the
distribution of workload among its instances.

The purpose of this work is to visualize the evolution of the service provided
by one of the most popular root servers, called K-root. It is operated by the
RIPE Network Coordination Centre (RIPE NCC), one of five Regional Inter-
net Registries in the world providing Internet resource allocations, registration
services and coordination activities that support the operation of the Internet
globally. Our approach can be used to either monitor what happened during a
prescribed time interval or to observe the status of the service in near real-time.
We visualize:

1. How and when client name servers migrate from one instance to another;

2. How usual migrations patterns differ from unusual migration patterns;

3. How the workload associated with each instance changes over time; and

4. What is the status of the service offered to a certain ISP.



JGAA, 16(3) 675–699 (2012) 677

This helps not only to improve the quality of the service but also to spot security-
related issues and to investigate unexpected routing changes.

The paper is organized as follows. In Section 2 we explain the requirements
and discuss the adopted visualization metaphor. In Section 3 we present the
layout algorithm used in our approach. In Section 4 we describe the design of a
prototype tool based on our framework and the technical challenges faced during
implementation. Section 5 presents the feedback collected from the users. In
Section 6 we compare our approach with the existing literature. Concluding
remarks and future work are in Section 7.

2 Selecting a Metaphor for User Requirements

Like many distributed information services, K-root challenges its operators with
many important questions. Performance: how to optimize load balancing be-
tween instances? Reliability: what happens if some of the instances are faulty?
Design: what is the best topology for existing instances, and where should new
instances be deployed? Routing: how does the system react to changes and fluc-
tuations in the (inter-domain) routing? Security: how does the system react to
external attacks?

A crucial requirement, that is related to all the above questions, consists in
understanding how and when clients migrate from one instance to another. The
concept of migration can be defined as follows. Let u, v be a pair of instances.
We say that a clientmigrates from u to v during an interval of time t′, t′′ (t′ < t′′)
if its last request of service before time t′ is asked to u and its last request of
service before time t′′ is asked to v.

If many clients migrate from an instance to another one, the system could
suffer from unbalancing, stressing over its capacity the instance that accepts the
migrating clients. Also, in case of a routing change, a massive migration can
happen reflecting the evolution of the topology. Further, some of the attacks
that can be performed against root servers (like distributed DoS) can be miti-
gated by suitably forcing the migration of part of the clients to specific servers.
To give an idea of the migration phenomenon, in 24 hours of normal operation
about 50 thousand clients issue a service request to more than one instance.

In this context the length of the time interval t′, t′′ plays an important role
in observing migrations: short intervals lead to a granularity which is too small,
while longer intervals can leave behind short migrations happening between t′

and t′′. We discussed the issue with the RIPE NCC and agreed upon the fact
that a range of few minutes, with an upper bound of 10 or 15 minutes, is a good
empirical choice. That is true because:

1. Routing events and dynamics have compatible times and

2. Migrations lasting only a handful of minutes are generally uninteresting
for operators.

Furthermore, since migrations are not all the same, a second requirement
consists in clearly separating them into classes. There are pairs u, v of instances
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such that migrating from u to v or vice versa is considered usual by the oper-
ators. This is true for example when u and v are placed in network locations
that have high connectivity between them, or if it is known that the Internet
routing frequently oscillates moving clients form u to v or vice versa. There are
other migrations that are instead considered unusual, for example those involv-
ing pairs of instances deployed in places with very poor connectivity between
them. Given a pair of instances u, v, deciding if u, v is subject to usual or un-
usual migration is an evaluation made by K-root operators, based on extensive
knowledge of the underlying network. Such information is of course dynamic
and subject to change over time; however the evolution rate is much lower than
the frequency of observed migrations and traffic patterns. From the point of
view of operators, both kinds of migrations are important. Unusual migrations
can put in evidence suspicious activities, misconfigurations, or large-scale faults:
detecting them on time is crucial in order to take appropriate actions and coun-
termeasures, e.g. repairing wrong configurations or limiting the damage. On
the other hand, showing usual migration patterns on a regular basis can help
for long-term decisions: Where is the routing more unstable? What instances
exchange clients more frequently between each other? Where should the next
instance of K-root be deployed?

A third important requirement is to understand the workload of each in-
stance. This can be expressed in many different ways: we identified two main
measures, i.e. the number of clients served by each instance and the total num-
ber of queries received by each instance. Both measures are clearly related to
migration patterns and are subject to change over time. Operators need to
get an immediate perception of the workload of each instance and the effect of
migrations on it, i.e. how clients and queries redistribute on different instances
and what patterns arise. For simplicity, throughout the paper we will assume
that the indicator for the workload of instances is represented with the number
of clients, although other measures can be easily adopted.

Finally, as a last requirement it is sometimes important to focus on the
dynamics of a specific subset of clients of K-root. In particular, monitoring
the evolution of all the queries issued by a specific Internet Service Provider
(ISP) becomes interesting for a larger group of stakeholders: not only K-root
operators, but also people directly working for the ISP in question. This is
mainly motivated by concerns on security and performance.

All the above requirements are strongly influenced by events happening over
time, implying the design of a dynamic monitoring tool. More specifically,
such a tool should allow for both offline analysis, i.e. within a prescribed time
interval in the past, and near real-time monitoring. We can consider this as a
last, implicit requirement influencing the design and architecture of the system
as a whole.

Fig. 1 contains an example chart traditionally used at the RIPE NCC to
visualize the distribution of queries received by the instances of K-root. The
chart simply shows the cumulative number of queries per second received by
each instance, stacking all the values on top of each other to give an idea of the
total workload of the system. Note that it does not give any indication about
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Figure 1: Chart showing the query distribution among all the instances of K-
root.

usual or unusual migrations, nor it allows to visualize the relationship between
different instances. As an example, consider the sudden small peak which is
visible towards the end of the chart. It is not possible to understand whether
it simply implies an increase in the amount of queries on one or more instance,
or rather a migration of clients between different instances. Our study started
with a formalization step, where we aimed at finding a clear structure for the
information collected during our interactions with the RIPE NCC. In particular
we tackled the distinction between usual and unusual migrations, agreeing upon
a graph structure to represent the domain which we call migration graph. Its
vertices are the instances, while there is an edge (u, v) if migrating from u to v
or vice versa is considered usual. Hence, given a pair u, v of instances subject
to a migration, if (u, v) is an edge the migration is considered usual, otherwise
it is considered unusual.

In order to help answering all these questions, we designed an interface
that supports the work of the employees of the RIPE NCC. The choice of the
visualization metaphor and the interaction features is the result of an inten-
sive discussion with such employees. We decided to adopt a geographic map

metaphor. The service offered by K-root is represented as a map. Each instance
is a bounded region and its size is proportional to the number of clients that
it currently serves. Two regions are adjacent if the corresponding instances are
usually exchanging clients, i.e. are adjacent in the migration graph. The map
changes over time as follows: 1. regions change their size according to the fluc-
tuations in the number of served clients, 2. usual migration flows are pictured as
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bubbles traversing the boundaries of adjacent regions, and 3. unusual migration
flows are highlighted with impact graphics as bridges across the regions.

We opted for the above metaphor for a number of reasons, which we summa-
rize as follows. 1. The multiplicity of potential stakeholders must be addressed
with a simple and unified model, where all the relevant information is ideally
visible at a glance without the need for an extensive technical background. 2. As
the cognitive study presented in Section 6 points out, geography can be regarded
as a good way to describe abstract entities, quantitative informations and rela-
tionships between elements. 3. Given the traditional meaning of the concept of
migration, we found the map metaphor to be quite natural and well suited.

The geographic map metaphor described above can of course be implemented
in many different ways. In this paper we propose two approaches: the country

map and the octopus map.
A country map is a contact representation of a migration graph, where each

instance has an identifying color and a shape resembling a country on a real
world map. The adjacency between two instances is implicitly represented with
the shared boundary between the two corresponding countries. Non adjacent
instances are instead represented as countries separated by “oceans”, “lakes”, or
other countries. Usual migration flows between two instances can traverse any
shared segment of the boundary between the corresponding countries. They are
realized with bubbles that grow on the boundary with the color of the instance
losing clients, and then move into the receiving instance assuming its color.
Unusual migrations are simply represented with overlaid bridges temporarily
connecting non adjacent countries. They are visually implemented as arrows
pointing to the instance that receives the flow, traversed by bubbles with size
proportional to the amount of flow.

One might object that only a few migration graphs can be represented as
country maps. In fact, if: 1. vertices are represented as planar regions with
disjoint interiors, 2. vertices are adjacent in the graph iff they share a point in
the map, and 3. no four regions meet at a point, then only planar graphs can be
represented. However, following [8], we remove the emphasized condition from
our implementation. Hence, we can represent a much wider class of graphs as
migration graphs. Such graphs are called planar map graphs in [8], and they
can contain up to 27n maximal cliques in a graph with n vertices.

Fig. 2 shows two snapshots from a prototype implementation of a country

map. Fig. 2.a shows the map at a certain instant. The instances are colored
based on the chart in Fig. 1. The green, light blue, orange, red, and yellow
countries (corresponding to the main instances) share a point, and hence they
are a clique. The name servers of a well known ISP are also shown as circles of
appropriate size, distributed among different instances. Fig. 2.b shows a step
of the animation. Usual flow can be recognized as a set of bubbles traversing
the borders of adjacent countries. Unusual flow is instead represented with an
arrow connecting non-adjacent countries.

An octopus map is an abstract visualization where each instance is repre-
sented as a circle with an identifying color, while each adjacency between two
instances is represented as a “tentacle” of neutral color connecting the corre-
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(a)

(b)

Figure 2: Country map implementation. Each instance is represented as a
country, with an area proportional to its relative weight. The adjacency between
two instances in the migration graph is implicitly represented with the shared
boundary between the two corresponding countries. The “ocean” separates the
instance at the top right corner from all the others. (a) The map at a certain
instant. Note how for each country the portion of clients belonging to a specific
ISP (if any) is represented with gray circles. (b) A snapshot of an animation of
the same map, where usual and unusual client migrations are visible.
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(a)

(b)

Figure 3: Octopus map implementation. Each instance is represented as a circle.
The adjacency between two instances in the migration graph is represented as
a “tentacle” connecting the corresponding circles. (a) The map at a certain
instant. For each circle, the portion of clients belonging to a certain ISP (if
any) is represented as a concentric gray circle. (b) A snapshot of an animation
of the same octopus, where usual and unusual client migrations are visible.
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sponding circles. Usual migration flows between adjacent countries are repre-
sented with two visual effects: 1. the tentacle traversed by the flow changes color
and size, reflecting respectively the instance that releases clients and the amount
of clients flowing to the receiving instance; 2. the flow itself is represented with
bubbles pouring into the receiving instance from the tentacle, starting with the
color of the instance losing clients and progressively assuming the color of the
receiving instance. Unusual migrations are represented again with temporarily
overlaid bridges between non adjacent circles, realized as arrows of appropriate
size pointing to the receiving instance.

Fig. 3 shows two snapshots from a prototype implementation of an octopus

map. Fig. 3.a shows the map at a certain instant. The name servers of a
well known ISP are also shown as circles of appropriate size, distributed among
different instances. Note that we used the same colors in Fig. 2, while the
underlying migration graph is different and specifically not planar: an edge
crossing can be identified right under the topmost instance. Fig. 3.b shows a step
of the animation with usual and unusual client flows, respectively represented
with bubbles pouring into instance circles and arrows pointing to the receiving
instance.

Of course the selected metaphor is not the only possible choice. Alternatives
have been investigated and screened out for different reasons. As an example,
we could visualize the service on a real geographical map, since the actual coor-
dinates of each instance are known. We discard this choice for several reasons.
1. The dynamics by which a client chooses a specific instance depend on routing
policies defined by ISPs, that usually overlap geographically and span over more
than one country or continent. 2. The (usual and unusual) migration patterns
are also influenced by the status of the routing and largely independent on the
geography. 3. Combining the geographical data with the (usual and unusual)
migration patterns can easily lead to information cluttering. 4. Network opera-
tors are used to the concept of a logical view as opposed to a geographical view,
as long as they can rely on a new mental map that does not change significantly
over time. Section 6 documents a number of additional approaches that are
related to our choice, together with the reasons why we did not follow any of
them.

3 The Algorithms

The algorithms that support our two visualization approaches take as input a
migration graph G and a sequence of time instants t1, . . . , tk, where t1, tk is the
time interval of interest and t2, . . . , tk−1 depend on the adopted sampling unit.
We assume that G is connected. If not, the algorithm is repeated independently
on each connected component and the results are combined at the end. Both
algorithms construct an animation describing the behavior of the clients in the
sequence of time instants t1, . . . , tk. We denote by ct(v) the number of clients
whose last request of service before time t is received by the instance v. Given a
time interval t′, t′′, the number of migrants associated with u, v at t′, t′′, denoted
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mt′,t′′(u, v), is the number of distinct clients that migrate from u to v during
t′, t′′. We denote the flow between u and v as ft′,t′′(u, v) = max(0,mt′,t′′(u, v)−
mt′,t′′(v, u)).

Given the features of our two implementations, the respective algorithms
are quite different. However they share a subdivision in two main phases: the
preprocessing, which is computed when the system starts, and the animation,
that is repeated for each ti. In the following subsections we explain the two
algorithms in detail.

3.1 Country map

The preprocessing for country maps is composed of three steps:

1. Check if G is a map graph. If that is the case construct its backbone, i.e.
a planar graph obtained from G by substituting some of its cliques with
stars. Otherwise, remove edges until G is a map graph. Compute a planar
topology for the backbone.

2. Find a straight-line drawing of the backbone preserving its planar topol-
ogy, such that each vertex v has a surrounding “free area” that is roughly
proportional to the average of the clients that it serves in in t1, . . . , tk.

3. Construct the skeleton, i.e. a constrained Delaunay triangulation of the
drawing found in the previous step. The skeleton will be used as the
underlying graph during the entire animation.

The animation is performed for each interval ti, ti+1 and is composed of two
steps:

4. Draw the skeleton: construct a planar straight-line drawing of the skeleton
preserving its topology, such that for each vertex v its incident faces can be
split to determine an area surrounding v roughly proportional to cti+1

(v).

5. Draw the map: construct a drawing of the country map at time ti+1 and
compute the animation from ti to ti+1.

In Step 1 we check if G(V,E) is a map graph. If that is the case, we construct
a planar embedded backbone. The backbone is obtained fromG by removing the
edges of a suitable set of cliques and substituting the edges of each of such cliques
with a star connecting a new vertex to the vertices of the clique. More formally,
let v1, . . . , vk be the vertices of a clique whose edges are removed. Such edges
are replaced with a new vertex c and by edges (v1, c), . . . , (vk, c). An example
is presented in Fig. 4.a and Fig. 4.b, using the map graph of Fig. 2.b. In [31]
it is shown that testing if a graph is a map graph can be done in polynomial
time. However, in [9] it is argued that the exponent of the polynomial bounding
its running time from above is about 120. This makes it impractical to use
the algorithm in [31]. Hence, we use a simple heuristic that works as follows.
We first check if G is planar. If yes, we are done. Otherwise, we look for a
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Figure 4: (a) Migration graph for K-root. A clique of size 5 is highlighted with
thick edges. (b) Backbone used in Fig. 2.b, obtained replacing the clique with
a star centered at the grey vertex.

maximal clique in G with the algorithm in [7], that is known to be efficient
in practice. Then, we replace the clique with a star and perform again the
planarity testing. This is repeated until either the obtained graph is planar or
until no clique is found. If we are not able to find a backbone for G, then we
remove the edge (u, v) with the smallest number of migrations in the given time

interval, i.e. such that
∑k−1

i=1 fti,ti+1
(u, v)+fti,ti+1

(v, u) is minimized, and repeat
the process. The removed edges correspond to migration patterns that we can
consider less interesting. It is also possible to involve RIPE NCC experts in
this process, identifying and discarding less interesting migration patterns with
their help.

Step 2 is devoted to find a straight-line drawing of the backbone, such that
each vertex has a surrounding free area that is roughly proportional to the
average area it will have during the animation. To perform this step we use a
spring embedder [13] that preserves the given planar topology (see, e.g., [14]).
Charges and spring lengths are assigned such that at the end each vertex is
ideally surrounded by the desired free area. In particular, each vertex v has
a positive charge w(v) equal to the average number of clients in t1, . . . , tk and
each edge (u, v) is a spring with preferred length equal to the sum of the radii
of two circles whose areas are respectively equal to w(u) and w(v).

Step 3 adds an additional set of edges E′ to the drawing of the backbone,
transforming it into a maximally triangulated planar drawing. Such edges are
needed to easily morph the geographical map in Step 5. All edges in the subset
A = E′ \ E are marked as additional. For this purpose we use a constrained
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Figure 5: (a) Construction of the country border for a vertex that is not on the
convex hull. Each white circle represents a vertex of the skeleton. For each edge
(u, v), a small grey circle represents the point euv. For each triangle ∆(u, v, z),
a small black circle represents the point puvz . (b) Construction of the country
border for a vertex on the convex hull. (c) Three possible cases of construction
of the country border with additional edges. For each additional edge (u, v),
two small white circles represent the points du and dv.

Delaunay triangulation, in order to maximize the angles between adjacent edges
in the resulting graph. This is useful to give more degrees of freedom to the
spring embedder used in Step 4.

In Step 4 the layout of the skeleton is modified to make it suitable for
the construction of the map at any instant t of t1, . . . , tk. To achieve this,
a spring embedder is used where charges and preferred spring lengths change
over time (see, e.g., [15]). Its initial setting is similar to the one explained for
Step 2: each vertex v has a positive charge w(v) that is equal to ct(v), while

each edge (u, v) is a spring with preferred length equal to

√
w(u)+

√
w(v)

√
π

. The

layout evolves with an additional constraint: consider the angle ûvz that is
spanned in the external face by each triplet of vertices u, v, z that are consecu-
tive on the convex hull. The condition ûvz > π is ensured. Moreover, positive
charges (vertices) and springs lengths (edges) are constantly updated to in-
crease the precision of the map. Each triangle ∆(v1, v2, v3) with area denoted
by A(∆(v1, v2, v3)) is split such that each of its vertices vi is assigned an area de-

noted by A(∆(v1, v2, v3), vi) = A(∆(v1, v2, v3))
ct(vi)

ct(v1)+ct(v2)+ct(v3)
. Hence, given

the set of triangles Fv with a common vertex v, the positive charge of v is reg-

ularly updated with w(v)′ = α
2π

ct(v)
2

∑
i∈Fv

A(i,v) , where α is the angle spanned by

Fv (which is smaller than 2π only for the vertices of the external face). Spring

lengths are updated accordingly with

√
w(u)′+

√
w(v)′

√
π

. This can be seen as a sim-

ple implementation of a control system that is periodically updated based on
feedback in order to minimize the error on the output, i.e. the area surrounding
each vertex.
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In Step 5 the map is computed, based on the skeleton. Each edge (u, v) is
split at a point euv such that ueuv/ct(u) = euvv/ct(v). Then, for each triangle
∆(u, v, z) a point puvz is found such that the polygons (u, euv, puvz, ezu), (v, evz ,
puvz, euv) and (z, ezu, puvz, evz) have areas respectively proportional to ct(u),
ct(v) and ct(z). It is easy to prove that puvz always lies inside the triangle
∆(euv, evz, ezu).

For each vertex v that is not on the convex hull, consider the related set
of triangles Fv = ∆(u1, v, u2),∆(u2, v, u3), . . . ,∆(ulast, v, u1) surrounding v in
clockwise order. The country border for v is the closed polygon (eu1v, pu1vu2

,
eu2v, pu2vu3

, . . . , eulastv, pulastvu1
). See Fig. 5.a for details.

Vertices on the convex hull are handled in a different way. Note that for
graphs with at least three vertices, each of such vertices v has two neighbors u
and z on the convex hull. We denote the set of triangles surrounding v as Fv =
∆(z, v, u1),∆(u1, v, u2), . . . ,∆(ulast, v, u). The angle ûvz that is spanned in the
external face is always greater than π, as explained in Step 4. As a consequence,
v can get an arbitrary area on the external face that is only bounded by the line
s orthogonal to (u, v) passing through euv and the line r orthogonal to (v, z)
passing through evz. Given the area value R = ct(v) −

∑
i∈Fv

A(i, v), we build
the polygon (v, euv, e

′
uv, o, e

′
vz, evz) whose area is R, where e′uv lies on line s,

e′vz lies on line r and o lies on the external face. Hence, the country border
for v is the closed polygon (evz, pzvu1

, eu1v, pu1vu2
, . . . , eulastv, pulastvu, euv, e

′
uv,

o, e′vz). See Fig. 5.b for an illustration. Finally, connected graphs with less than
3 vertices are easily converted into maps assigning circle-like country borders to
each vertex.

Once all the country borders have been computed, the animation is per-
formed. The country map evolves from its previous state with a linear morphing
preserving adjacencies at any time. Usual migrations between countries are rep-
resented as bubbles traversing the border at randomly chosen points. Unusual
migrations are represented as bridges connecting two countries, with bubbles
traversing them. The size of bubbles and bridges reflects the amount of clients
flowing from one country to another.

Apart from the main algorithm described above, a number of expedients
are implemented to obtain a map that looks better and fully represents the
underlying data. First, country borders are represented with Bézier curves
where possible. This helps to give a natural look to the map. Note that borders
could be smoothed in a more radical way, even leaving some empty area between
countries. That could lead to more readable country borders without twists and
turns, although adjacencies would become less obvious and area values would
suffer from a possibly greater imprecision. We opted for simple adjacencies
following the latter motivation. Furthermore, at the end of Step 3, each vertex
v in the skeleton that represents an instance and has degree δ(v) greater than a

threshold Tδ is replaced with a path of m = ⌈ δ(v)
Tδ

⌉ consecutive vertices. Each of

them is assigned ct(v)
m

clients and retains a fraction of the original adjacencies,
with degree lower than Tδ. This helps finding better layouts for the skeleton
graph in Step 4. The country border for such a path of vertices is computed as
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the symmetric difference between their borders. Finally, edges added in Step 3
and marked as additional are later handled in a different way. In particular, the
spring embedder used in Step 4 assigns a fixed additional length D to springs
representing additional edges. During the construction of the map (Step 5), two
points du and dv are found on each additional edge (u, v) together with euv, such
that udu/ct(u) = dvv/ct(v) and udu + dvv + D = uv. Then the construction
of the border is slightly different with respect to the one explained in Step 5.
For each edge (u, v) marked as additional, the two vertices u and v respectively
choose du and dv as boundary points, instead of euv. In this way countries that
are not adjacent in the graph do not share boundary points in the map. Note
that for each triangle ∆(u, v, z) the point puvz is still shared by country borders
for vertices u, v and z. This inconsistency is removed in practice using Bézier
curves. See Fig. 5.c for an illustration.

3.2 Octopus map

The algorithm that generates octopus maps is significantly simpler than the one
for country maps. The preprocessing only requires one step:

1. Compute a topology for G such that the number of crossings between
its edges is minimized. Find a straight-line drawing for G respecting the
computed topology.

The animation is performed for each interval ti, ti+1 and is composed of three
steps:

2. Compute the minimum scaling factor for the drawing of G that allows for
an initial drawing of the octopus map, composed of two kinds of shapes:
circles and tentacles. Avoid unnecessary intersections between shapes.
Draw the octopus.

3. Find a new drawing for the octopus that minimizes the total amount of
needed area without introducing additional intersections between shapes.

4. Draw the map: construct a drawing of the octopus map at time ti+1 and
compute the animation from ti to ti+1.

In Step 1 a straight-line drawing is computed for the migration graphG, such
that the number of crossings between its edges is minimized. The reason behind
such a condition lies in a better readability of the octopus maps derived from the
drawing. The crossing minimization problem is known to be NP-hard [18, 25].
However, heuristics exist to compute an approximate result in polynomial time
(see [20] for reference). Moreover, given that Step 1 is only computed once for
every migration graph, we can even assume to use an exact algorithm if the size
of the graph is limited.

Step 2 is devoted to compute the minimum scaling factor for the drawing of
G, such that all the graphical elements of the corresponding octopus map can be
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drawn without unnecessary overlap. After this step the initial drawing for the
octopus map can be computed: 1. each vertex is replaced by a circle with area
equal to the number of clients that it serves, 2. each edge is replaced by a link
whose width is proportional to the amount of flow between the two connected
vertices. More formally, the operation is performed such that 1. for each vertex
v it is possible to draw a circle Cv centered in v with area equal to cti+1

(v) that
does not intersect any other circle, 2. for each edge (u, v) it is possible to draw a

rectangle surrounding (u, v) with width equal to 2∗
√

max(fti,ti+1
(u,v),fti,ti+1

(v,u))

π

that only intersects Cu, Cv and all the rectangles surrounding edges that cross
(u, v) in the topology, if any.

The algorithm to calculate the scaling factor is fairly easy and consists in
computing an intersection test on each pair of shapes not supposed to intersect
each other, increasing the scaling factor of the migration graph until there is no
overlap. In its simplest form, Step 2 has a quadratical complexity with respect
to the number of shapes. However, optimization is possible to some extent: e.g.
only checking each shape against its neighboring shapes.

In Step 3 the layout of the octopus is modified in order to reduce the total
area needed to draw it. The goal is the ability to draw the final version of
the octopus inside a predefined rectangle of fixed size, which represents the
screen where the animation is projected. This is achieved with a constrained
spring embedder that not only preserves the given planar topology (see, e.g., the
already cited [14]), but also does not introduce additional intersections between
shapes of the octopus. In order to shrink the input octopus as desired, each edge
is considered as a spring with preferred length equal to the sum of the radii of Cu

and Cv, while there is no positive charge assigned to any vertex. Instead, during
each iteration of the spring embedder all the coordinates in the current drawing
are subject to a scaling aimed at fitting the whole drawing into a rectangle of
fixed aspect ratio. The additional constraint for the spring embedder regarding
intersection avoidance between shapes is ensured at the end of each iteration.
Its implementation follows an approach similar to the one explained in Step 2,
where the coordinate transformation of each shape is limited until it does not
introduce any new intersection with other shapes.

In Step 4 the new octopus map is finally drawn and the animation is per-
formed. The octopus map evolves from its previous state with a linear morphing
preserving adjacencies at any time. Instance circles change radius and position
based on computed coordinates. Tentacles between circles vary in position,
width and color based on the new coordinates and on the actual flow traversing
them. Usual migrations between instances are represented as bubbles pouring
from the tentacles into the circles. Unusual migrations are represented with
arrows connecting pairs of circles. The size of bubbles and arrows reflects the
amount of clients flowing from one circle to another.

A number of additional details are implemented also for octopus maps, to
ensure their clarity and simplicity. First of all, Step 3 does not guarantee that
the final drawing will fit the predefined screen size. Therefore, when this is not
the case, the whole drawing is scaled down to fit the screen. The new scaling
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factor is sent along with the new octopus map, so that the user can be informed
of the necessary change: e.g. visualizing a legend in the bottom right corner
with a circle whose size changes accordingly as a reference. On a related note
some of the tentacles in the octopus map are not straight, but rather present
bend points realized as Bézier curve. This is aimed at allowing more compact
and flexible drawings of the map. The refinement is easily implemented adding
dummy vertices to the drawing, represented as circles whose diameter fits the
width of the corresponding tentacle.

4 Implementation and Technical Challenges

The implementation of the visualization framework described in the previous
sections predictably leads to a number of questions and challenges, given the
technical features of the system under analysis. First of all, K-root is reached
by high volumes of queries, in the range between ten and twenty thousands
per second. Furthermore, integral query logs are recorded at each location and
regularly sent to a central repository at the RIPE NCC, where they are per-
manently stored. This process was recently improved to make use of a Hadoop
[1] cluster deployed at the RIPE NCC for distributed storage and analysis of
scientific data and network measurements. To give an idea on the volume of
data, 5 minutes of query logs correspond to approximately 300 megabytes of
PCAP [2] files, with a compression factor oscillating between two and three.
The remainder of this section presents our implementation, together with the
solutions we devised to approach a complex system like K-root.

Our visualization framework has been implemented as a Web application.
It is now available at the address http://k.root-servers.org/visualk/ as a
beta prototype, featuring most of the requirements described in Section 2. More
specifically, users can monitor the status and evolution of K-root in near real-
time, while the possibility to perform offline analysis or to focus on a subset
of clients of K-root (e.g. those of a specific ISP) is not yet available. The
workload of each instance is measured in terms of queries per second: refer to
Section 2 for a brief explanation. The only metaphor implemented so far is the
octopus map, since it is slightly preferred by K-root operators (see Section 5
for details) and therefore the most advanced in terms of implementation. The
remaining requirements and the second visualization metaphor are currently
under development. Earlier stages of the prototype are documented online [3].

The front-end is written in HTML and JavaScript. Its main responsibility
is to visualize the map of K-root and animate it from time to time with the
new data sent by the server. The actual visualization has been realized with
a cross-browser JavaScript library for vector graphics called Raphaël, based on
the Scalable Vector Graphics format. This implies that images and snapshots
can be zoomed and exported without loss of quality (see Fig. 2 and 3 for an
example).

The Java server contains the core of the application logic. An associative
map is kept in memory to store the current state of each client, including the

http://k.root-servers.org/visualk/
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instance that answered its last query. The real-time implementation is divided
into four main steps. 1. At regular time intervals MapReduce jobs are sent to the
Hadoop cluster. For each client of K-root we retrieve the total number of queries
and the instance that received its last query. 2. Before updating the associative
map with the retrieved data, we perform a comparison to detect usual and
unusual migrations. 3. For each instance the total number of queries received
since the last MapReduce job is computed, along with migrations. 4. The layout
algorithm produces a new map with the computed data and sends it via a
messaging service, allowing Web clients to receive it asynchronously. Note that
only one layout is computed for each step of the animation, independently on
the size and aspect ratio of the screen of any connected client. This avoids the
need for expensive computation on every client. The layout itself is sent as a
high-level, vectorial description of the drawing. Web clients can independently
adapt it to the screen and, most importantly, render it with any library or
graphical tool.

The communication between server and client has been realized with asyn-
chronous messages, in order to keep a low coupling between the two. We used
Apache ActiveMQ as a message broker, which also easily allows the client to
register as a listener and asynchronously receive updates as soon as they are
published by the server.

The performance of the system has been constantly tested and improved
during the implementation. The computation of the geographic map of course
plays a crucial role. We ran stress tests on a laptop with a 2.4 GHz Intel
Core 2 Duo processor and 4 GB of RAM. We noticed that in our implementa-
tion octopus maps are generally computed in about one second per iteration,
with occasional peaks at two seconds when the constraints of the drawing are
particularly entangled. Such numbers make octopus maps suitable for a near
real-time tool. On the other hand, the prototype implementation for country
maps takes more time for the computation of each map (between 10 and 15
seconds). We consider also the latter to be an acceptable result, given that
our framework needs a time interval of comparable length to perform a smooth
animation to morph a map into the next one. Both results are of course subject
to improvement on more powerful hardware.

An additional note is required on data storing and access. As explained
above, all the query logs collected by K-root instances are downloaded and
stored on the Hadoop cluster. The average delay between the instant when a
query is received by an instance and the time when the corresponding data is
actually available on the cluster varies largely. It depends on many factors, e.g.
the latency in the communication between instances and central repository or
the delay in the storage time depending on the load of the clusters. Although
query logs are usually available five minutes after being generated at various
locations, every now and then the system experiences huge delays imposed by
distant nodes (e.g. Tokyo and Delhi). Therefore at the moment our prototype
implementation applies a safe delay interval of one hour, to wait for the data
from all instances to be correctly sent and stored. Note that this delay is
completely independent from our framework. We plan to reduce this gap in the



692 Di Battista et al. How to Visualize the K-root Name Server

near future, allowing for an even more up-to-date visualization.
The default time period between two layout updates in the prototype imple-

mentation is set to five minutes. The average time needed to run each MapRe-
duce job is heavily influenced by the current load on the Hadoop cluster. Under
normal circumstances it usually takes less than one minute to process all the
query logs spanning a time interval of five minutes. That means that in the
future the system could be improved allowing a smaller refresh rate. However,
as explained in Section 2, the current refresh rate is already acceptable for all
common operational needs.

5 Back to the User

This section describes the impact of our visualization framework from the per-
spective of different types of potential users. We also give a comparison between
the two visualization approaches presented in Section 2, based on the feedback
collected during the design and implementation phases.

We identify two types of potential users: 1. All the RIPE NCC employees di-
rectly or indirectly involved with the management and improvement of K-root;
2. The vast audience of ISP operators that rely on K-root as one of the founda-
tions for their DNS services. About users of type 2, it must be observed that
the possibility to visualize data specific of a certain ISP is currently inhibited by
the standard privacy policies adopted by the RIPE NCC. That is motivated by
the strict confidentiality of all the query logs collected by K-root instances. The
policy can be openly discussed and expanded (e.g. introducing anonymization
rules) once the large community of ISPs and network operators proves interest
for the service. For this reason, the remainder of this section focuses on users
of type 1.

The cooperation with the RIPE NCC played a major role throughout the cre-
ation of our visualization framework. Fifteen staff members at the RIPE NCC
were periodically involved in testing and evaluation. Four of them were also re-
sponsible for major discussions on requirements and qualities of the visualization
approach, being personally responsible for the maintenance and development of
K-root. Their participation to the design process allowed to precisely focus on
the requirements while looking for a suitable metaphor. As an example, during
our initial interactions the users gave a negative evaluation of a first version of
the migration graph where both usual and unusual migration patterns were rep-
resented using country adjacencies. This allowed to devise the current version
of the graph.

We collected feedback during plenary meetings, presentations, and informal
discussions. All the users were periodically presented with snapshots and ex-
ample movies of the two implemented approaches (see [3] for some examples),
and asked to compare them with respect to the understandability of the main
information requirements discussed in Section 2. In particular, once a stable
prototype of the two visualization metaphors was ready, the users were asked
to provide at least one preference for each requirement, together with a brief
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motivation. The results of such a comparison are presented and explained in
Table 1. Note that the second requirement in the table (Topology of the migra-

tion graph) is a minor concern, because the topology is a needed input of the
framework, rather than an expected output.

Country map Octopus map

Usual migration patterns X

Topology of the migration graph X

Unusual migration patterns X X

Workload of each instance X

Status of the service offered to an ISP X X

Table 1: Results of the comparison between the two available implementations
for our visualization framework. For each requirement, users were requested to
choose at least one between the two alternatives. The preferred alternative is
marked with a checkmark. In case of comparable preference, both alternatives
are marked.

The comparison highlights a slight preference towards the octopus map im-
plementation. The motivations expressed by different users to justify their pref-
erence, together with comments gathered during previous evaluation phases, are
also quite valuable because they allow to determine advantages and disadvan-
tages of the two implementations. They also confirm that both approaches are
valid and preferred over the previously adopted visualization. We summarize
them as follows. 1. Both visualizations are appreciated for the new insight they
provide on existing data. In particular that applies to the detection of usual
and unusual migrations, which did not emerge from previous visualizations (see
e.g. the one presented in Section 2). That gives a better representation of
the dynamics of the system, and can help both as a validation tool for load
distribution and as a system for anomaly detection. 2. The circular shapes
of instances in an octopus map are generally more readable than the complex
shapes in a country map, and the corresponding area can be estimated more
precisely. 3. The octopus map conveys information on usual flows of clients in a
more explicit and static way, by means of tentacles with appropriate color and
width. On the other hand the usual flow of country maps, although generally
considered more appealing, only relies on the size of flowing bubbles to give an
indication on the amount of flow. 4. The country map represents every adja-
cency implicitly while the octopus map needs tentacles. The first representation
is preferred because it displays input information in a simple way, without using
overwhelming graphical elements. The second is instead less preferred because
tentacles may intersect each other or present different lengths, potentially caus-
ing confusion for the users. 5. Unusual migrations are basically identical in the
two approaches, so no clear preference applies. The adoption of impact graph-
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ics (i.e. arrows overlaid onto the map) is particularly appreciated because it
helps operators to spot anomalies at a glance, distinguishing them from usual
migration patterns, even when they are not paying attention to the overall ani-
mation. 6. The visualization of the status of a specific ISP is also realized in the
same way both for country maps and octopus maps, so there is no particular
preference between the two.

Furthermore, the two approaches present differences that are relevant from
a more theoretical point of view. 1. The total area needed by a country map
is usually much less than the one needed for an octopus map, which positively
affects the readability of the visualization. 2. Only octopus maps can represent
any kind of graph, although dense non-planar graphs can result in poor and
confusing visualizations.

The actual visualization, already presented in Section 4 as a prototype tool,
is available on a big screen in the Global Information Infrastructure department
at the RIPE NCC. The animation constantly runs as a background monitoring
tool for the operators of K-root. That means that 1. unusual patterns catch the
attention of the operators more easily, because of the way they are visualized,
and therefore motivate deeper analysis and appropriate countermeasures when
needed, while 2. all the other features (usual migrations, size of instances, etc)
are always visible and operators can every now and then enjoy an overview of
the system and get inspiration for long-term improvements of K-root.

On a related note, operators find it particularly interesting to use the system
together with BGPlay [10], an already existing tool for the visualization of
inter-domain routing and its evolution. Once an unusual migration is spotted,
BGPlay can be used to check if there is a correlation with some routing change
or if the event needs a more thorough analysis.

6 State of the Art

The problem of using geographical maps to visualize non-geographical informa-
tion has been extensively studied. In this section we provide a brief overview of
the literature, focusing on similarities and differences with our approach.

A methodological reference is provided by the cognitive study in [16]. It iden-
tifies four semantic primitives to be used when representing information entities
with a geographical metaphor. Boundaries : discontinuities in the information
space can be represented with borders. Aggregate: homogeneous zones prefer-
ably represent homogeneous entity types. We use aggregate and boundaries to
group clients using the same instance and to separate such groups, respectively.
Loci : information items preferably have a meaningful location in the informa-
tion space. We link together or put side-by-side instances that are expected to
share clients. Trajectories : semantic relationships between information entities
at different locations can be shown with paths or routes. We exploit different
types of trajectories to represent migrations.

There are at least two systems whose features are similar to the ones in our
framework: GMap and BGPlay Island. GMap [24] visualizes clustered graphs



JGAA, 16(3) 675–699 (2012) 695

by means of geographical maps. After determining the layout of the graph
with a force directed approach, clusters of nodes are detected according to their
relative distance. A cluster is represented with one or more geographical regions.
GMap produces maps that look very similar to our maps. However, its target
is quite different from ours: 1. if two vertices are connected by an edge it is
not guaranteed that they have a common boundary, 2. if two vertices have a
common boundary is not guaranteed that they are connected by an edge, and
3. GMap is not meant to visualize maps whose borders evolve over time. Using
the terminology of [16] we can say that in [24] the Aggregate primitive prevails
over the others. BGPlay Island [11] extends the widely used BGPlay routing
visualization system [10] and uses a topographic metaphor to show hierarchies of
Internet Service Providers (ISPs). However, BGPlay Island uses the metaphor
of a terrain map rather than the one of a political map and the most stressed
primitive in it is the Locus.

Other related literature is the one on cartograms. Area cartograms are draw-
ings derived from standard geographical maps, where each country is deformed
so that its area is proportional to a variable specific of that country, e.g. its pop-
ulation. The deformation process should preserve the original shape as much as
possible. The idea behind cartograms is very close to our map metaphor, which
in fact can be seen as an area cartogram derived from an imaginary world. Many
algorithms for computing area cartograms are available in the literature (see,
for example, [19, 22, 27]). However, their attempt to preserve the original shape
is irrelevant in our setting, since our countries do not have a prescribed shape.
Also, they have high computational time, which makes them unsuited for a
real-time monitoring tool. In [27] the latter issue is tackled with an algorithm
that can be parallelized, but, unfortunately, results are exposed to inaccuracy
(e.g. overlap between countries). Recent approaches [32, 12, 23, 28, 4, 6, 5] for
the computation of area cartograms tend to keep the countries in their original
locations but give them a regular shape, like a rectangle or a “T” or and “L”.
However, the more regular the shapes are, the less graphs can be represented.
Further, none of the above results takes into account scenarios that include pla-
nar map graphs. Finally, the computed layouts are sometimes hard to read and
therefore not suitable for an intuitive visualization.

Voronoi diagrams represent an option for partitioning information spaces
into separate regions. In [29] the authors introduce an adaptive version of the
multiplicatively weighted Voronoi diagram [26], where each vertex in a graph is
assigned a closed region with prescribed area. Similarly to Voronoi diagrams,
however, adjacencies between regions depend on geometric proximity. Hence
the solution is not compatible with the notion of adjacency graph.

In a recent work [17] it is shown that planar graphs can be represented
with adjacent convex hexagons. Such shapes could be a valid alternative for
our scope. We think that it is possible to modify the proposed algorithm to
represent also planar map graphs, using polygons with more sides and loosing
the convexity. However, the problem of assigning prescribed areas to the shapes
seems difficult to be addressed.

A previous attempt at visualizing the activity of Internet services, including
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K-root, is described in [21]. The authors present a visualization called Influence
Map, which renders a compressed representation of geo-spatially distributed
Internet data. Sets of clients sending requests to the same instance are located
on a real geographical map and a coordinate centroid is computed. Then a circle
is displayed, centered at the centroid and composed of wedges that represent
the amount, distribution and latency of clients. Such a tool differs from our
approach, in that it is meant to visualize static snapshots of the service, not
focusing on the migrations of clients.

7 Conclusions and Future Work

We have presented a framework for the visualization of K-root, one of the 13 root
name servers in the world. It relies on a map metaphor that uses animations to
show the migration of clients among the instances that compose the server.

While in [30] it is argued that animations are not generally suitable to convey
information on trends in data visualization, it is also argued that they are quite
useful to create a visualization that is appealing to the user. At the same
time, a real-time monitoring tool necessarily deals with the evolution of the
underlying data. In our framework we find a reasonable balance between the
two needs, using graphical elements that are independent on the animation. A
static snapshot of each step of the animation contains all the information we
want to visualize, as Fig. 2 and 3 clearly show. The animation is only needed to
gracefully link two consecutive steps, helping the user to focus on the context.

There are several future research directions that can be undertaken. One
would be to deploy our system to other root servers. Such a step is techni-
cally easy, but it has drawbacks from the organizational point of view, since
logs of queries are strictly confidential and dealing with them requires an ade-
quate agreement. Another interesting possibility would be to apply the same
techniques to other Internet services based on anycast. One possible example,
mostly interesting nowadays, is the IPv6 6to4 Relay Routing Service, devised
to facilitate the transition between IPv4 and IPv6.
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