Journal of Convex Analysis, Vol. 6, No. 1, pp. 183-194 (1999)

Denting Points in Bochner Banach Ideal Spaces X(E)

H. Benabdellah

Dep. de Mathematiques, Faculte des Sciences, Semlalia, B.P : S15, Marrakech, Marocco, benabdellah@ucam.ac.ma

Abstract: Let $(X, \|.\|_{X})$ be an order-continuous Banach ideal space over a $\sigma-$ finite measure space $(\Omega,\Sigma,\mu)$ and $E$ a Banach space. We prove that a function $f$ of the vector Banach ideal space $X(E)$ is a denting point of the unit ball of $X(E)$ if and only if : (i) the modulus function $|f| : t\longmapsto \|f(t)\|$ is a denting point of the unit ball of $X$ and (ii) $f(t)/ \|f(t)\|$ is a denting point of the unit ball of $E$ for almost all $t$ in $\supp(f)$. This gives an answer to the open problem raised in the paper [3].

Full text of the article:


[Previous Article] [Next Article] [Contents of this Number]
© 1999--2000 ELibM for the EMIS Electronic Edition