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We prove an homogenization result in W11 and in BV for a sequence (F.) of functionals of the form

1
F.(u) :/0 f(g,u') dt

where € is a positive parameter which tends to zero, f: R” x R™ — [0, 400) is [0, 1)"-periodic in the first
variable, convex in the second variable and satisfies a suitable growth condition of order one.

Under the additional assumption that f(z,-) is positively 1-homogeneous, we show how our result is
equivalent to the analogous homogenization result (dealt with by Acerbi and Buttazzo) in which growth
conditions of order p > 1 are considered.
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1. Introduction

Let us consider a functional F : W((0,1); R*) — [0, +00) of the type:

F(u) = /01 flu,u’) dt, (1.1)

where the Borel function f : R x R™ — [0, +0c) is assumed to be convex and positively
1-homogeneous in the second variable and satisfies the following growth condition:

MEI < flz,€) S AlEl for every (2,€) € R" x R,

with 0 < A < A < 4o00. It is known that the integral functional defined in (1.1) represents
the length of a curve u associated to the Finsler metric f (see [9]). Note the absence of
regularity (apart from Borel measurability) in the first variable; the main reason being
the fact that in some problems of geometry, physics and engineering (such as, for instance,
fields theory, general relativity, geometrical optics etc...) we have to consider metrics with
singularities. We recall that the case of a Riemannian manifold falls within this setting

taking f of the special form f(z,&) = \/gi;(x)E&7.
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The main result of this paper is an homogenization theorem concerning a sequence of
functionals of the type (1.1). Actually, we will study a more general situation.

Let f:R* x R* — [0, +00) be a Borel function satisfying the following properties:

f(z,+) is convex for every z € R”; (1.2)
f(-,€) is [0, 1)"-periodic for every ¢ € R™; (1.3)
M < flx,6) <A+ €])  for every (z,€) € R x R, (1.4)

where 0 < A < A < 400 are fixed constants. For every ¢ > 0 and v € WH((0,1); R),

set
Fs(u):/o f(gu> dt.

We shall prove that, for ¢ going to zero, F. tends (technically, I'-converges on W''((0, 1);
R™) with respect to the L'-topology) to the functional defined by

1
F(u) = / d(u')dt for every u € Wl’l(((), 1); Rn), (1.5)
0

where ¢ : R* — [0, +00) is a convex function satisfying (1.4) and given by

1

o9 = Jim [int{ [ 55yt w e W0, R, w(0) =0, u) = ¢}
e—0t 0 e

for every £ € R* (see Theorem 3.1). An analogous result in Sobolev spaces W'?((0,1);

R™), with p > 1, was proved by Acerbi and Buttazzo in [1].

In the study of minimum problems involving the functionals F. the linear growth (1.4)
does not allow the use of the direct methods of the Calculus of Variations, due to the
lack of compactness of minimizing sequences. This naturally leads to extend F. to the
whole space BV((0,1);R?) of functions of bounded variation, with F. = +oco outside
WH((0,1);R™). Also for such extensions we give an homogenization theorem, proving
that the limit is just the L'-lower semicontinuous envelope on BV/((0,1); R?) of the func-
tional which coincides with F', given in (1.5), on W1((0, 1); R"), and takes the value +oo
otherwise (see Theorem 5.2).

Finally, a particular attention is given to the case of periodic Finsler metrics (i.e. when f is
positively 1-homogeneous in the second variable). Indeed, in this case, the homogenization
result can be proved in a simpler way, by using a reparametrization technique; moreover,
it is possible to show the equivalence with the analogous result on the homogenization of
metrics with growth p > 1 proved by Acerbi and Buttazzo in [1] (see Remark 4.3).

The paper is organized as follows: in Section 2 we recall some definitions and state
some results on I'-convergence. In Section 3, we prove the homogenization result in
WH((0,1); R") and in Section 4 we specialize it in the positively 1-homogeneous case.
Finally, in Section 5 and 6 we study the homogenization in BV/((0,1); R*) without and
with boundary conditions, respectively.

Acknowledgements. We thank Prof. Gianni Dal Maso for suggesting us the problem and
for the useful discussions.
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2. Notation, preliminaries and first results

Throughout the paper n > 1 is a fixed integer. We set I = (0,1). We denote by
A(R) the family of all bounded open subsets of R. If B is a Borel subset of R |B] is
its Lebesgue measure. Given an open set A C R, we denote by C3°(A) the set of the
infinitely differentiable real valued functions with compact support contained in A. The
spaces LP(A;R") and W?(A;R?), (1 < p < 400, A open subset of R) will be simply
denoted by LP(A) and W1P(A), respectively.

We recall that the space BV(A) of functions of bounded variation on an open subset A of
R and with values in R* can be defined as the space of those functions u € L*(A) whose
distributional derivative u’ is a vector-valued Radon measure for which the total variation
in A, denoted by |uv/|(A) or [, |v], is finite. We indicate by u/, and u/ the absolutely
continuous and the singular part of the derivative v’ with respect to the Lebesgue measure,

and we set ut(to) = lim u(t), u™(to) = lim u(t).
t—td ity

Let ¢: R* — [0,+0c) be a convex function such that there exists A > 0 with ¢(¢) <
A(1 + [€]) for every ¢ € R?; then the limit
- S

t—+4o00 t

exists and is finite for every ¢ € IR", thus defining the so-called recession function
¢ R* — [0,400) of ¢. Note that ¢> is positively homogeneous of degree 1. For
every A € A(R) and u € BV(A) we set

, , ooy Ui
/qo(u/):/(p(u;) dt—l-/go ( ;
A A A |Us|

| ,S| is the Radon-Nikodym derivative of u! with respect to its total variation, and
ul

)] (2.1)

where

the last integral denotes the integration of qu(ﬁ_j) with respect to |ul|. Formula (2.1)
defines a “natural” extension of [, ¢(u') di from Wh'(A) to BV(A); indeed, by [13],
the right-hand side of (2.1) is the L'(A)-lower semicontinuous envelope on BV(A) of the
functional which takes the value fA qb(u') dt on the functions u € I/Vl’l(A) and +oo on

BV(A)\ W'1(A).

['-convergence

Let X be a metric space endowed with a metric d. Let (F}) be a sequence of functionals
defined on X with values in [—oo, +00]. For every z € X we set

(F— limianh)(x) = inf {limianh(:ch) cd(zp, ) — 0}

h—+oco h—+oco
(F— lim sup Fh) (z) = inf {lim sup Fi(zp) : d(zp,x) — O} .
h—+oco ‘ h—+oco
We say that the sequence (F},) I'-converges to a functional F': X — [—o0,+oc] with
respect to the topology induced by d, and we write F}, L ForI- lim F,=Faf

h—+00

(T- Jim inf Fy)(z) = (T-limsup Fy)(z) = F(x)

h—+00
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for every + € X. This means that for every x € X: (a) if (z),) converges to z then
F(z) < liminf Fy(zy) and (b) there exists a sequence (x;) converging to z such that

h—~40c0
F(z) = lim Fj(zp). It turns out that I'-liminf F},, I-limsup F},, and I'- lim F} are
h—+oo h—+o0 h—+00 h—+oo

lower semicontinuous on X.
If (F}) is a constant sequence, i.e. F, = F for every h and for some functional F', then

the T-limit exists and is given by the lower semicontinuous envelope of F.

Given a family (F%).>o of functionals on X, we say that it I-converges to a functional F
for ¢ which tends to 0 if (F,,) T-converges to F' whenever (¢5,) is an infinitesimal sequence
of positive numbers. We define (see [5, Proposition 3.3])

(F— lim inf Fs) (z) = inf{ (F— lim inf Fsh) (x) : (¢1) infinitesimal sequence}

e—0t h—+oo
(F— lim sup Fs) () = sup{ (F— lim sup Fsh) (z) : (¢p) infinitesimal sequence} .
e—=0F h—+co

Both functionals are lower semicontinuous on X.

For the definitions and the main properties of I'-convergence and relaxation we refer to

[10, 11, 6, 7].

Setting of the problem and first results

Let f:R"xR*— [0, +00) be a Borel function satisfying the following properties
f(z,-) is convex for every = € R™; .
f(-,€) is [0,1)"-periodic for every ¢ € R"; (2.3)
MEN< fz,6) <AL+ [€])  for every (z,€) € R* x R

where 0 < A < A < +o00 are fixed constants. For every ¢ > 0 and A € A(R) we define
Y ou') dt if LA
R )= {11 (E) fue WHHA 25)
400 ifue BV(A)\ WI’I(A).

Remark 2.1. For every A € A(R) set G(u, A) = Syl dtifu e W(A), and G(u, A) =
+ooifu € BV(A)\W"'(A). By standard lower semicontinuity and approximation results
for functions of bounded variations (see, e.g., [12]), it turns out that the L'(A)-lower
semicontinuous envelope of G(-, A) is given by

Glu, A) = /A | (2.6)

for every u € BV(A). Therefore, estimates (2.4) on f imply that for every A € A(IR)
the T-lower and the T-upper limits of any sequence (F., (-, A)) with respect to the L'(A)-
topology are finite on BV(A). In particular, if the sequence admits a T-limit F(-, A),
then

/\/A|u'| < F(u, A) §A(|A|+/A|u’|) (2.7)

for every u € BV (A).
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Proposition 2.2. Let (F.,) be a sequence of functionals as defined in (2.5), with e, — 0.
Then there exisls a subsequence (Fso—(h)> of (F.,) and a functional F defined on the pairs

(u, A) with A € A(R) and u € BV(A), such that

F. A) LN F(-, A) on BV (A) with respect to the LI(A)-topology,

c(h)('a
Jor every A € A(R). Moreover, for every such set A and uw € BV (A) there exists a Borel

measure on A which coincides with F(u,-) on the open subsets of A.

Remark 2.3. The result of this proposition clearly implies that
Fsc(h)('v A) EN F(-, A) on W' (A) with respect to the L'(A)-topology.

The proof of Proposition 2.2 relies on the following technical lemma, which will be needed
later on, too, and which can be obtained following the proof of Theorem 19.1 in [7].

Lemma 2.4. For cvery n > 0 and for every A, A", B € A(R), with A" cC A", there
exists a constant M > 0 with the following property: for every ¢ > 0, u € WH'(A") and
v € WYY(B) there exists a function p € C(A”), with ¢ = 1 in a neighbourhood of A’
and 0 < ¢ <1 such that

Fe(pu+ (1 =)o, AU B) < (14 n)[Fe(u, A") + Fe(0, B)] + M|lu = vl|11(s) + 1,
where S = (A" \ A')N B.

Proof (of Proposition 2.2). The compactness for the I'-convergence (see Theorem 16.9
in [7]) guarantees the existence of a subsequence (F_ h)) with the following property: if for
every A € A(R) we denote by F~(-, A) and F*(-, A) the I-lower and the I-upper limits,
respectively, of the sequence (Fag(h)(-,A)) on BV(A), then the inner regular envelopes
of F* and F~ have a common value F(u, A) at every pair (u, A) with A € A(R) and
u € BV(A); ie.

F(u, A) = sup{ FE(u, &) : A' € A(R), A’ CC A},

By means of Lemma 2.4 and standard techniques it is possible to see that F'*(u, ) is inner
regular on A for every u € BV(A), so that F' < '~ < 't = F'. In other words, we have
the convergence of (Fsa(h)(" A)) to F(-,A) on BV(A).

The measure property of F(u,-) follows from Theorem 18.5 in [7], taking into account
Lemma 2.4. 0

3. Homogenization in W"!

Here and in the sequel f is the function introduced in Section 2 satisfying conditions (2.2),
(2.3) and (2.4), and (F.) is the family of functionals defined in (2.5). In this section we

prove the following result.

Theorem 3.1. For every bounded open subsel A of R the limit T- lim F.(-, A) exisls on

e—0t

W A) with respect to the L*(A)-topology, and, for every u € WH(A), takes the value

F(u, A) = /Aqﬁ(u') dt , (3.1)
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where ¢ : R — [0, 4+00) is a convex function such thal

ML < @(6) S AL+ [ED),  for every £ € R (3.2)

Moreover, ¢ is given by the following formula:

616 = tim [t { [ 1

Jor every € € R™. Finally, for every A € A(R) and ug € W"'(A) the family (F.(-, A))
['-converges to F(-, A) on ug + Wol’l(A) with respect to the L'(A)-topology.

(ORI~

o) dtiu e WHY(T), w(0) =0, u(l) = {}} , (3.3)

Proposition 3.2. The limil in (3.3) exisls for every ¢ € R™ and defines a continuous
Junction ¢: R* — [0, +00) satisfying (3.2).

Proof. The existence of the limit in (3.3) can be obtained as in Proposition II1.8 in [1],
the proof of which is independent of the fact that the growth condition for f is of order
p > 1. Estimates (3.2) are an easy consequence of (2.4). Let us come to the proof of the
continuity.

For every ¢ > 0 and ¢ € R set

M.(¢) = inf{/ol f(g,u') dt :u e WHH(T), u(0) =0, u(l) = f} . (3.4)

Fix £, € Rmand e > 0. Let u € WH(T), with u(0) = 0 and u(1) = £. For any o € (0, 1),
define

u(t) if0<t<1—o;
vo(t) = u(l = o) + Z0=9 (¢ _y(1 — o) floo<t<l1.

Then, v, € WH(T), v,(0) = 0 and v,(1) = (. Hence, it follows that

/;f(%”,d,) dtg/olf(g,u') dt+A/1

< /Olf (gu> dt + Ao + ¢ — u(1 — o)),

1

M.(¢)

IN

(1 FofC (i —0')|> dt

-

When o tends to 0 we obtain

Yosu
MO < [ (Br) disac-gl
0
Taking the infimum with respect to v and hence passing to the limit, we have

lim M.(C) < Tim M.(€) + AlC — €.

e—0t e—0t

The result follows by symmetry. O
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Lemma 3.3. Let (¢3,) be an infinilesimal sequence of positive numbers such that for every
A € A(R) the limit F(-, A) = F-hliin F., (-, A) exists on WHPH(A) or on BV(A) (with
—+00
respect to the L'(A)-topology). Then for every u € W' A) or, respectively, u € BV(A),
and for every ( € R and T € R we have
Flu+(,A) = F(u, A), Fluoypr,A+T) = F(u,A),
where Yp(t) =1 —T.

Proof. The proof is an easy consequence of the definition of I'-convergence, taking into
account that ¢ € R” can be approximated by a sequence (¢,m;) with my, € Z". O

Proof (of Theorem 3.1). Assume that (¢3) is an infinitesimal sequence of positive num-

bers such that for every A € A(R) the limit F'(-, A) = T'- hlim F., (-, A) exists on WhI(A)
—+o0

(with respect to the L'(A)-topology). We set ug(t) = £ for ¢ € Rrand ¢t € R

Step 1. We prove that there exists a convex function ¢o: R* — [0, +00) such that

F(u, A) = /Aqbo(u') dt

for every A € A(R)and u € WH'(A). Let A € A(R)be fixed. Then for every u € WH1(A)
and F open subset of A

(a) F(u,E)=F(v,E)ifu=wva.e. onk;

(b) there exists a Borel measure on A which coincides with F(u,-) on the open subsets
of A;

(¢) F(u,E) <A [ (1+ ) dt;

(d) F(u+¢, E) = F(u, E) for every ¢ € R

(e) F(-, F) is sequentially weakly lower semicontinuous on W'!(A).

Indeed, property (a) is obvious, (b), (c¢) and (d) follow from Proposition 2.2, Remark 2.1
and Lemma 3.3, respectively, while (e) is an immediate consequence of the fact that F is
a I'- limit with respect to the L'-topology.

Therefore we can apply Theorem 1.1 in [4] (see also [2]): the function

bo(t, ) = lim sup e (L= 2oL+ p))

p—0t 2P

(3.5)
gives the integral representation

F(u, A) = /Aqbo(t,u') dt

for every u € WH'(A). By (3.5) and Lemma 3.3 we obtain that ¢o(t, &) is constant with
respect to the first variable; thus we can drop the dependence on {. Moreover, the function
¢o is a convex function and it is not difficult to see that (2.7) and (3.5) implies (3.2) for
¢o; hence, the function ¢y turns out to be continuous.

Step 2. $(€) < ¢o(€) for every £ € R™.
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Let £ € R" From the definition of T-limit there exists a sequence (u;) in Wh'(T)
converging to ug in L(T), such that

lim F,, (up, I) = F(ug, I) = ¢o(€).

h—~4o00

By Lemma 2.4 for every 0 < 1 < 1/2 there exists M > 0 such that for every h € N we
can find a function wy, € WH'(I) with w;(0) = 0 and w(1) = £ such that

Fah(whv [) < (1 + n)[FEh(uhv [) + FEh(“&? An)] + Ml‘uh - uﬁHLl(I) + 7,
where A, = (0,7) U (1 —n,1). Then by formula (3.3) for ¢

G(€) < liminf Fr, (wy, I) < (14 1) (do(€) + 2A(1 + [€])n) + 1.

h—+00
We conclude letting n tend to 0.
Step 3. 3(&) > ¢o(§) for every € € R™.
Since ¢ and ¢, are continuous (Proposition 3.2 and Step 1 above) we can assume ¢ € (.

Let M.(€) be as in (3.4). Fix o > 0; then there exist n > 0 and v € W"'(I), with
u(0) =0, u(1) = &, such that

/0 f (E,u) dt < M, (€) + % < lim M.(¢) + - + % =¢(¢) +o. (3:6)

n e—=0*t

CTS

Set v(t) = u(t) — ue(t), when ¢ € [0,1] and extend v by periodicity on the whole real line.
For every h € IN, let us define

Ehn t
wh(t) = u§(t) + ;v <(€h/77)> for every t € R.

Since v is bounded, (wy,) converges to ug in the L!(I)-topology. Moreover, since ¢ € 7,
we may assume that 7 is such that ¢/n € Z". Hence, we have

(=]

1 R S B ¢ t
wp, " . . .
f (—,w') dt < E / f (—u — N4> (—— — ) dt
/0 e — e ey e T

=

| ih) 1 (Eu')d.
S<+77/of?7’ !

Passing to the lower limits and taking into account (3.6), we obtain

1
Flue, I) < liminf/ f (ﬂ,wﬁl> dt
0 Eh

h—+00

1 1
< lim (1 4 €_h> / f (ij) dt = / f (E,u'> dt < ¢(&) + o.
h—+00 n/ Jo n 0 n

Since, by Step 1, F(ug, I) = ¢o(£), the result follows letting o tend to 0.

Step 4. Up to now we have proved that all the I'-convergent sequences (F, ), with e, — 0,
have the same limit, given by (3.1). Taking into account Proposition 2.2, we obtain
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the T-convergence of (F.) by applying Proposition 8.3 in [7] (Urysohn property of I'-

convergence), which asserts that (F.,) converges to F if and only if every subsequence of

€h
(F.

-, ) contains a further subsequence converging to F.

Step 5. Let A € A(R) and uy € WH(A). In order to prove the I'-convergence on
ug + Wol’l(A) it is now sufficient to show that for every u € ug + Wol’l(A) we can find a
sequence (wp) in ug + Wol’l(A) such that

limsup F;, (wp, A) < F(u, A).

h—+00
From the convergence of (F;, (-, A)) on WH(A) we obtain a sequence (u;) in WHi(A)
which converges to u in L'(A) and such that hlim F., (up, A) = F(u, A). Fix n > 0 and

—+o0

K compact subset of A. Apply Lemma 2.4 to join the functions uj, and u, with A” = A,
A" D K, B = A\ K. Then there exists a constant M > 0 and a sequence (wy) in
ug + Wy ' (A) converging to u in L*(A), such that

Fe(wn, A) < (14 ) [Fey (un, A) + Foy (u, AN K]+ Ml|un — ul|21a) + 7.
Since F,,(u, A\ K) <A fA\K(l + |u']) dt, we conclude by passing to the upper limit and

taking the arbitrariness of n and K into account.

Since this holds for any sequence (Fy, ), the theorem follows taking into account Proposi-
tion 8.3 in [7], as in Step 4. O

4. Homogenization in W' : the positively homogeneous case

In this section we assume that the integrand function f in (2.5) is positively homogeneous
of degree 1 in the second variable, i.e.

flz,af) = af(z,§) for every (z,¢) € R* x R* and a > 0. (4.1)

In Remark 4.3 we point out how, under this additional condition on f, Theorem 3.1 is
equivalent to the analogous homogenization theorem proved in [1] for integrand functions
satisfying a growth condition of order p > 1. We shall also see (Remark 4.4) how Theorem
3.1 can be obtained in a simpler way, if (4.1) holds.

The key fact is that the positive 1-homogeneity makes the functional F.(-,.J) (J open
interval) invariant under reparametrizations of curves in Wtt(.J); more precisely, if u,v €
Wh(J) and v = w o 7 with 7 an absolutely continuous, increasing function from .J onto

J, then F.(u,J) = F.(v,J).

Lemma 4.1. Let J be a bounded open interval of R, and ug € WYL(J). Lel (uy) be a
sequence in ug + Wyt (J), bounded in WV(J). Then, for every h € I\ there exists a
Lipschitz function 1, from J onlo J with strictly positive derivative a.e. and such thal
(upoTy) is a sequence of Lipschilz functions which is bounded in W'>°(.J) and belongs to

Ug + W0171<J)

Proof. It is not restrictive to assume J = (0,1). For every h € Nset L, = f01 |uy | dt,
and let oy, : [0,1] — [0, 1] be the function defined by

T4 ug
t) = dr.
on(t) /01+Lh T
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Clearly, 04,(0) =0, 0,(1) =1 and o, > 0 a.e.. Set 7, = 0;1 and vy = uy 0 7p; it is easy to
see that 7, and v, are absolutely continuous and

1+ Ly
1 Ju (7 (s))]

va(s) = uh(m(s))

for a.e. s € J. (4.2)

By assumption (Lj) has an upper bound, say C'; then (v;) is a sequence of Lipschitz
functions whose Lipschitz constants are bounded by 1 + C. O

The following proposition is a bit more general than what needed in the subsequent
remark, which relates the homogenization results for 1-homogeneous and p-homogeneous
integrand functions.

Proposition 4.2. Lel p > 1. For every e > 0 let f. : R* x R* — [0, 4+00) be a Borel
function satisfying the following properties

J-(z,-) is positively homogeneous of degree 1 for every x € R?

MEI< fel@, &) <AL+ [E])  for every (x,€) € R x R”,
where 0 < A < A < +o0 are fizred conslants. For every A € A(R), u € WH(A) and
v e WHP(A) define

FJ%@ZL#(WW'@)) dt Gs(vaA)Z/A(fs(v(t),v'(t)))p dt.

Then (F.(-, A)) T-converges on W' (A) with respect to the L'(A)-topology for every A €
A(R) if and only if (G.(-, A)) T-converges on W'P(A) wilh respect lo the LP(A)-topology
Jor every A € A(R). If F(-, A) and G(-, A) are their respective T-limils, then there exists
a Borel function f: R* x R™ — [0, 400) such that

F(u, A) = /Af(u,u') dt , G(v, A) = /A(f('u,'u'))p dt
whenever u € WH(A) and v € WHP(A).

Proof. Step 1. Let (g4) be an infinitesimal sequence such that for every A € A(R) the
sequences (F, (-, A)) and (G., (-, A)) T-converge on W(A) in the L!'(A)-topology and,
respectively, on W'P?(A) in the LP(A)-topology; let F'(-, A) and G(-, A) be their respective
limits. Then there exist Borel functions f,g: R x R* — [0, +00) such that

F(u, A) = / flu,u') dt, G(v, A) = / g(v,v') dt
A A
for every A € A(R), u € W' (A) and v € W'P(A). Moreover,

flz, &) = liminflinf{F(u, (0,m)):u € Wl’l(O,n), uw(0) =z, u(n) =z +nt}, (4.3)

n—0t N

g(z, &) = lim infl inf{G(v,(0,n)) : v € W"(0,n), v(0) =z, v(n) =z +nt}, (4.4)

n—0t N

whenever (z,£) € R x R,
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These facts are an easy consequence of Theorem 7.1 in [3] and Theorem 6.1 in [2] (growth
condition of order p > 1 or p = 1 respectively). We want to show that g = f7.

Let (z,¢) € R* x R* and > 0 be fixed. Define

I, = inf{F,, (u,(0,7)) :u € WH(0,7), uw(0) ==z, u(y) =z +né} (4.5)
Jn = inf{G.,(v,(0,n)) : v € W'P(0,1), v(0) =, v(n) =x + nt}. (4.6)

We show that

Ty = g (1P (4.7)

Let v be an admissible function for problem (4.6). By Jensen’s inequality we have

G€h<v’ (0’77>> = /;(fsh(U’U,))p dt > 771_p</077 fsh(v,v') dt)p > 771_p<]h>p'

We prove that this lower bound is actually the infimum J,. For every § > 0 let us be
an admissible function for problem (4.5) such that F, (us,(0,n)) < I, + §. Consider the
function as: [0,n] — [0,7n] defined by

o3(1) = 77" / (fon sy ) + 6) ds

where 5 = 1 fo J(us,us) + 6) ds. Thus, o5 is an absolutely continuous function with
strictly p051tlve derlvatlve a.e. and o5(0) = 0, os(n) = n; then its inverse 75 is an
absolutely continuous function from [0, 7] onto [0, n] with strictly positive derivative a.e.,
and vs = us o 75 is absolutely continuous. From the growth conditions of f;, it follows
that v} is bounded; in particular vs € W'?(0,n). Moreover, we have

/on(fah(véyvé))p ds = ~§ /On(fsh(ua(ﬁ(s))aufs(Té(S))))p(fah(ué(Té(S))aUS(T«S(S)) +8))7" ds
< < n(%(’h +4)+46)".

When § tends to 0 the last term tends to n'~P(1;)?, hence J, < n'~P(I;)?. This proves
(4.7).

Let now (8;) be an infinitesimal sequence of positive numbers; for every h € N let u
be an admissible function for problem (4.5) such that F%,(ug,(0,7)) < I + 6. In view
of the invariance of F, (-, (0,7)) with respect to reparametrizations, we can replace (up)
by the sequence obtained from Lemma 4.1 applied to (up). It can be easily verified that
Lemma 2.4 holds without change for the family (F.) now under consideration. Thus, as
in Step 5 in the proof of Theorem 3.1, we deduce the I'-convergence of (F,(+,(0,7)) on
{ue WHH0,n): w(0) ==z, u(n) =z + n&}. By Corollary 7.20 in [7] it follows that

inf{F(u, (0,1)) : w € WH(0,1), (0) =2, u(n) = ¢+ ¢} = lim I

The same result for the sequence (G., (-, (0,7))) can be obtained by analogous techniques:
see Theorems 21.1 and 7.8 in [7]. Thus

inf{G(v, (0,7)) v € W'(0,1), 0(0) = o, v(n) =2+ e} = Tim .
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Therefore, in view of (4.7),

g(z, &) = liminfl lim n'~?(1;)? :(liminfl lim [h)p = (f(x,8)".

n—0t 1) h—+4o0 n—0t 7} h—=+oo

Step 2. As remarked above, Lemma 2.4 still holds for the sequence (F.) we deal with
at present. As a consequence, we obtain for (F.) the compactness property stated in
Proposition 2.2. The analogous result for the family (G.) follows from Theorem 19.6 in
[7]. This, together with Step 1, allows to conclude the proof of the Proposition, taking
into account the Urysohn property of T'-convergence (see [7, Proposition 8.3]). O

Remark 4.3. [1] deals with the homogenization of functionals

G.(u, A) = / g(=,u') dt
A &
where A € A(R), u € W'?(A), p > 1, and g(x,£) is a non-negative Borel function
periodic in z, convex in € and such that A¢£]P < g(z, &) < AT+ [€]P) (0 < XA < A < 400)
for every (z,£) € R* x R". Theorem III.1 in [1] proves that for every A € A(R) the
limit T- lim G.(-, A) exists on W'?(A) with respect to the L?(A)-topology, and can be

e—0t
/ o(u') dt,
A

represented in the form
where p : R* — [0, +00) is a convex function satisfying
AMEP < (&) < AL+ [E]P), for every ¢ € R™

By means of Proposition 4.2 this result implies Theorem 3.1 in case f (the integrand
function in the definition of F;) is positively 1-homogeneous in the second variable (take
g = f?). On the contrary, if g is positively p-homogeneous in the second variable, then
the homogenization result of Theorem III.1 in [1] follows from Theorem 3.1.

Remark 4.4. We point out that if f is positively 1-homogeneous with respect to the
second variable, then Step 3 in the proof of Theorem 3.1 can be obtained in the following
way. Let M.(§) be as in (3.4). For any h € Nand o > 0, there exists u € W"'(I) such
that u7(0) =0, uf(1) = ¢ and

rain) = [ (B y) @ w40,

h

In particular

R s [ f(%s) di 4o < A1+IE) 4o

&
by the growth condition (2.4), it follows that |[(u7)'| 717y is bounded indipendently of A.

Now, let 77 :[0,1] — [0,1] and v] = uJ o 77 be as in Lemma 4.1; then, there exists v €
Wh(T), with v7(0) = 0 and v7(1) = £, such that, up to a subsequence, (v{) converges to
v” uniformly on [0, 1]. Thanks to the homogeneity of f, we have F.,(vf,I) = F., (uj,I).
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Passing to the lower limits, using Jensen’s inequality and taking into account Proposition
3.2, we have

$o(€) = ¢o ( / (07) ds) < / go((v7)') ds = F(v7, I) <liminf I, (of, 1)
= liminf F,, (uj, 1) < lim M., ({)+0=¢(£) + 0.

h—+00 ) h—+00
We conclude letting o tend to 0.

Remark 4.5. We observe that the functional F(-, ) is lower semicontinuous on W' (I)
with respect to the L'(I)-topology, since it is a [-limit. Therefore, an application of
Lemma 4.1 guarantees the existence of a solution to the problem of minimizing F(-, I) on
the space of curves belonging to W'!(T), whereas in the general case with linear growth,
the lack of compactness of the minimizing sequences leads to introduce the space BV, in
order to obtain a solution for the minimum problem. This latter case will be treated in
the next section.

5. Homogenization in BV

We now study the homogenization in the space BV. To this purpose, we recall the
following result from [8, Theorem 3.5].

Theorem 5.1. Let F' be a functional with values in [0,400) defined on the pairs (u, A)

with A € A(R) and v € BV (A), and satisfying the following properties: for every A €

A(R), u,v € BV(A) we have

(i)  F(u+¢ A) = F(u,A) for every ¢ € R?;

(ii) F(uotr,A+T)= F(u, A) for every T € R, where (Y7 ou)(t) = u(t — T);

(i) P A) < A(IA+ [o(A);

(iv) there exists a Borel measure p on A such that p(E) = F(u, E) for every open subsel
E of A;

(v) F(-,A) is sequentially L'(A)-lower semicontinuous;

(vi) F(u,A) = F(v,A) when u=v a.e. on A;

(vii) inf,s0 R, F (-, Iy) is sequentially L'(Iy)-lower semicontinuous al ug for every & € R”
and for every bounded open interval Iy with 0 € 1y and |Iy| = 1;

here R, F(w, o) = 1F(Orw,71y), Orw(t) = tu(L), and ue(t) = t&. Then there exists a
Borel function ¢o: R™ — [0, 4+00) such that

F(u, A) = /Aqbo(u;) dt +/Aqb8°(ﬁ) [ul|  for every A € A(R) and v € BV(A). (5.1)

Theorem 5.2. For cvery bounded open subsel A of R, the limil - lim F.(-, A) exisls on

e—07t

BV (A) with respect to the L*(A)-topology, and, for every u € BV (A), takes the value

us
',|) | (5.2)

5

FluA) = [ o) dt+ [ o7

|u

where ¢ is given in (3.3).
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Proof. Let (¢5,) be an infinitesimal sequence of positive numbers such that for every A €

A(R) the limit F/(-, A) = T- h]im F., (-, A) exists on BV(A), according to Proposition 2.2.
—+00

By Lemma 3.3, we obtain that F' satisfies (i), and (ii) of Theorem 5.1 and by (2.7)
and Proposition 2.2 it follows that F satisfies (iii) and (iv) of Theorem 5.1, respectively.
Finally, (v) and (vi) are an immediate consequence of the fact that F/(-, A) is a I-limit
with respect to the L'(A)-topology. Hence, in order to represent F' in integral form, it is
enough to prove that property (vii) of Theorem 5.1 holds, too.

Let w € BV(I), 7 > 0, and (v;) a sequence in W"!(71y) converging to O1u and such that

F(Oiu,7ly) = lim F,, (v, 71y).

h—~oc0

For every h € N, let uy(t) = Luy(rt); clearly, up, € Wh'(Iy) and (us) converges to u in
L'(Iy). Then, it follows that

1
R F(u,ly) = —F(O1u,7l)
7- T

Up

1
= lim —F,, (vp,7lo) = lim f( uy) dt > G(u),

h—s+4oo T h=too J1 7 en [T’

where G =T- lirriL F.(-, Ip). Passing to the infimum when 7 > 0, we have
e—0

inf R, F(u,Iy) > G(u) for every u € BV (1y). (5.3)

>0

Let (uy) be a sequence in BV (Iy) converging to ug in L'(1y); recalling the lower semicon-

tinuity of G, by (5.3) we have

lim inf inf R, F(up, Ip) > lim inf G(uy)

h—4o00 >0 h—+o0o

> Gug) = 1r>n; R F(ug, Ip).

Indeed, since ug € Wh'(1y), by Theorem 3.1, G(ug) = F(ug, Iy) = ro d(€) dt = inf 5o R;
F(ug, Iy). This proves property (vii).

By Theorem 5.1 we conclude that F' can be represented as in (5.1). In view of Theorem 3.1,
bo = ¢.

Since we have proved that all the I'-convergent sequences (F;,) have the same limit, we
can conclude as in Step 4 of the proof of Theorem 3.1. O

6. Homogenization in BV with boundary data
Let a,b € R” be fixed. For every ¢ > 0 and u € BV(I) define

FO(U) — ,[[ f(%,ul> dt if u € WLI([),'U,(O) = (]f’u(‘l> — b’
) +00 otherwise on BV (I).
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Theorem 6.1. The limit T- lim F? exists on BV (I) with respect to the L'(I)-topology,

e—0+

and, for every u € BV(I), takes the value

/¢ dﬁ+/¢“

where ¢ is defined in (3.3).

) [+ ¢ (u™(0) —a) + ¢ (b—u™(1)),  (6.1)

Proof. Denote by ®(u) the right-hand side in (6.1). Let (g4) be an infinitesimal sequence
of positive numbers.

Step 1. We prove that & <T' — hrnlan on BV(I).

h—+4oo
Let (uy) be a sequence in W' (I) which converges in L'(I) to a function v € BV(I) and
such that u,(0) = a and uy(1l) = b. For every o > 0 let I, = (—o,1 + o) and define u,
and @ as the extensions of u; and u, respectively, to I, with value a on (—0,0) and b on

(1,1 + o). Then by Theorem 5.2

o< [ oyt [ o

< liminf F, (up, I,) <liminf F? (un) + 2Ao|u).

h—r+0c0 h—+0c0

Let now o tend to 0.

Step 2. We prove that I' — lim sup Faoh < ® on BV(I).

h—+o00

Let u € BV(I) and o > 0. Define J, = (0,1 — o) and

a on (0,0),
U = { U on J,,
b on (1 —o,1).

By Theorem 5.2 there exists a sequence (u;) in W'(T) which converges to u, in L'(T)

lim F,, (un, [ /qb
h—+o0

Apply Lemma 2.4 with A" =1 2>D> A’ 5D J,, B=1\J,, u = uy and v = u,. Then
for every n > 0 we can find a sequence (wy) in Wh'(T), with w,(0) = @ and wy(1) = b,
which converges to u, in L'(I) and

and

limsup Fy, (wy, I) < (1 + 77)[/ o(ul)+ 2Ao] + 1
T

h—+00

Thus
(F — hmsupF )(ua) < (1 + n)[/lqﬁ(u;) +2A0] + 1.

h—+o00
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Now let n and o tend to 0; taking into account the lower semicontinuity of the upper
I-limit we have

(F— lim sup FEO) ) < 11m1nf/¢

h—+00 o—0t

<hm1nf/qb )+ ¢*(ut (o) —a) + ¢ (b—u (1 — o)) + 2A0]

o—0t

= ®(u
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