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1. Introduction

For information on the properties of quadrics in projective spaces, see [4, Section 5.1],
[5, Chapter 16] and especially [8, Chapter 22]. In the following, we always assume that
n ≥ 3 is odd.

In PG(n, q), n ≥ 3 odd, letK = vQ be a cone with vertex the pointv and baseQ, where
Q is a non-singular (parabolic) quadric in a hyperplane PG(n − 1, q) not onv.

A partial flockofK of sizek is a set of hyperplanesπ1, . . . , πk of PG(n, q), each not on
v, such that for eachi, j ∈ {1, . . . , k} with i 6= j the (n − 2)-dimensional spaceπi ∩ π j

meetsK in a non-singular elliptic quadric. The set of (non-singular, parabolic) quadrics
πi ∩K for i = 1, . . . , k is also called apartial flockof K.

In the casen = 3, since an elliptic quadric in PG(1, q) has no points, the above definition
coincides with the existing definition of a partial flock of a quadratic cone in PG(3, q).

2. The size of a partial flock,q even

It is easy to see that a partial flock of a quadratic cone in PG(3, q), q odd or even, has
size at mostq, since the conics in the flock are disjoint. In this section we use Lemma 1
(a generalisation of [12, 1.5.2]) to show that this bound also holds for oddn ≥ 5 andq
even. Our proof is also valid in the casen = 3.

∗This work was supported by the Australian Research Council, Department of Pure Mathematics and Computer
Algebra of the University of Gent and the National Fund for Scientific Research of Belgium.
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Lemma 1 In PG(n, q), where n≥ 3 is odd and q is even, let F = {π1, . . . , πk} be a
partial flock of the coneK = vQ. Let u be the nucleus ofQ in the subspace PG(n − 1, q)

of PG(n, q). Then each spaceπi ∩ π j , i 6= j , is disjoint from the linevu.

Proof: Suppose, to the contrary, that there existi 6= j such thatπi ∩ π j ∩ vu = u′, say.
Thenu′ is the nucleus of the (parabolic) quadricK ∩ πi , soπi ∩ π j ∩ K is parabolic, a
contradiction. 2

Theorem 2 In PG(n, q), where n≥ 3 is odd and q is even, a partial flock of a quadratic
cone has size at most q.

Proof: Let F be a partial flock of the coneK = vQ. Let u be the nucleus ofQ in the
subspace PG(n − 1, q) of PG(n, q). By Lemma 1, no two elements ofF can meet on the
line vu. Since each element ofF must meetvu\{v}, we havek ≤ q. 2

3. Generalising known results

In this section we generalise some results which are well-known for flocks of quadratic
cones in PG(3, q). In particular, the dual setting forq even generalises [12, 1.5.3], the al-
gebraic condition generalises [12, 1.5.5], the existence of the partial ovoid ofQ+(n + 2, q)

generalises [12, 1.3], the process of derivation forq odd generalises [1] and the construction
of herds of caps forq even generalises [2, Theorem 1] (see also [11, Theorem 2.1]).

4. The dual setting

Case (1) q odd: First suppose thatq is odd. In PG(n, q), let F = {π1, . . . , πk} be
a partial flock of the coneK = vQ. We apply a duality to PG(n, q). The pointv is
mapped to a hyperplaneV of PG(n, q) and the set of lines ofK on v is mapped to
the set of all tangent hyperplanes to a non-singular quadricQ′ of V . The hyperplanes
π1, . . . , πk of F are mapped to pointsp1, . . . , pk of PG(n, q)\V. For i 6= j the(n − 2)-
dimensional spaceπi ∩ π j meetsK in the points of a non-singular elliptic quadric
Q−(n − 2, q); so the hyperplane〈πi ∩ π j , v〉, generated byπi ∩ π j andv, contains
exactly the lines ofvQ on the conevQ−(n − 2, q). It follows that the linepi pj meets
V in a point pi j on exactly the tangent hyperplanes ofQ′ which correspond under the
duality to the lines ofvQ−(n − 2, q); so the tangent points of these hyperplanes are the
points of a non-singular elliptic quadriĉQ−(n − 2, q) onQ′. Hencepi j is an interior
point ofQ′.

Thus, forn andq odd, adual partial flockof a non-singular quadricQ′ of a hyperplane
PG(n − 1, q) of PG(n, q) is a set of points of PG(n, q)\PG(n − 1, q) such that the line
joining any two of them meets PG(n − 1, q) in a point interior toQ′. It is clear that a
partial flock gives rise to a dual partial flock and conversely.

Case (2) q even:Now suppose thatq is even.
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We use the following notation, introduced in [7]. LetQ be a non-singular quadric in
PG(n, q), let PG(n − 1, q) be a hyperplane and letQ be a point of PG(n, q)\PG(n − 1, q)

not lying onQ and distinct from its nucleus. The projection ofQ from Q onto PG(n−1, q)

is the setR = {PQ∩ PG(n − 1, q) : P ∈ Q}. If n is odd andQ is hyperbolic then we write
R = R+ while if Q is elliptic then we writeR = R−. We note, see [7], that a setR has
type(1, q/2 + 1, q + 1) with respect to lines, that a setR+ contains a unique hyperplane
PG(n − 2, q) such that(PG(n − 1, q)\R+) ∪ PG(n − 2, q) is a setR− and that a setR−

contains a unique hyperplane PG(n − 2, q) such that(PG(n − 1, q)\R−) ∪ PG(n − 2, q)

is a setR+.
In PG(n, q), for oddn ≥ 5, letF = {π1, . . . , πk} be a partial flock of the coneK = vQ.

Again, we apply a duality to PG(n, q). The pointv is mapped to a hyperplaneV = PG(n −
1, q) of PG(n, q). LetG be the set of generators (((n−3)/2)-dimensional subspaces) lying
onQ. A ((n − 1)/2)-dimensional subspacevG, G ∈ G, is mapped by the duality to an
((n−1)/2)-dimensional subspace ofV, and we denote byR the union of the points lying on
such((n−1)/2)-dimensional subspaces ofV . The setR contains the subspace PG(n−2, q)

of V which is the dual of the lineuv, with u the nucleus ofQ. It can be shown thatR has type
(1, q/2+1, q+1) with respect to lines, by showing that an(n−2)-dimensional subspace of
PG(n, q) onv lies in exactly 1, q/2+1 orq+1 hyperplanes containing an elementvG, G ∈
G. Then, sinceR contains((n−1)/2)-dimensional subspaces not in PG(n−2, q), it follows
thatR is a setR+ in V (this also follows from|R| = qn−1/2+qn−2+· · ·+q+1+q(n−1)/2/2
and [7]). The hyperplanesπ1, . . . , πk ofF are mapped to pointsp1, . . . , pk of PG(n, q)\V.

For i 6= j the(n − 2)-dimensional spaceπi ∩ π j does not meet the lineuv and meetsK
in exactly the points of a non-singular elliptic quadricQ−(n − 2, q); hence the hyperplane
〈πi ∩ π j , v〉 does not contain any element ofG. So the linepi pj meetsV in a point of
V\R+ = R−\PG(n − 2, q).

For n odd andq even adual partial flockof a setR+ of type (1, q/2 + 1, q + 1) in a
hyperplane PG(n − 1, q) of PG(n, q) is a set of points of PG(n, q)\PG(n − 1, q) such that
the line joining any two of them meets PG(n − 1, q) in a point of PG(n − 1, q)\R+. It is
clear that a partial flock gives rise to a dual partial flock and conversely.

We remark that the results of this last section also hold in the casen = 3 (see [12]); here
a setR+ is the set of points of a dual regular hyperoval.

4.1. The algebraic conditions

Forq = 2h, the map trace is defined by

trace: GF(q) → GF(2), x 7→
h−1∑
i =0

x2i
.

Theorem 3 In PG(n, q) for n ≥ 3 odd, let K = vQ be a quadratic cone with vertex
the pointv and baseQ, whereQ is a non-singular quadric in a hyperplane not onv, and
let F = {π1, . . . , πk} be a set of hyperplanes not onv. Without loss of generality, we can
suppose that the quadratic coneK = vQhas equation x0x1+x2x3+· · ·+xn−3xn−2 = x2

n−1,

so thatv = (0, . . . , 0, 1) andQ has equation x0x1 + x2x3 + · · · + xn−3xn−2 = x2
n−1 in the
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hyperplane PG(n − 1, q) with equation xn = 0. For i = 1, . . . , k the hyperplaneπi has
equation a(i )0 x0 + · · · + a(i )

n−1xn−1 + xn = 0 for some a(i )j ∈ GF(q). If q is odd, F is a
partial flock ofK if and only if

−4
(
a(i )

0 − a( j )
0

)(
a(i )

1 − a( j )
1

) − · · ·
− 4

(
a(i )

n−3 − a( j )
n−3

)(
a(i )

n−2 − a( j )
n−2

) + (
a(i )

n−1 − a( j )
n−1

)2

is a non-square in GF(q) for all i , j ∈ {1, . . . , k}, i 6= j . If q is even, F is a partial flock
ofK if and only if a(i )

n−1 − a( j )
n−1 6= 0 and

trace

((
a(i )

0 − a( j )
0

)(
a(i )

1 − a( j )
1

) + · · · + (
a(i )

n−3 − a( j )
n−3

)(
a(i )

n−2 − a( j )
n−2

)(
a(i )

n−1 − a( j )
n−1

)2

)
= 1

for all i , j ∈ {1, . . . , k}, i 6= j .

Proof: Fori, j ∈ {1, . . . , k}, i 6= j , the hyperplane〈πi ∩ π j , v〉meetsK∩ PG(n−1, q) =
Q in the quadricQ′ with equations

(
a(i )

0 − a( j )
0

)
x0 + · · · + (

a(i )
n−1 − a( j )

n−1

)
xn−1 = 0,

(1)
x0x1 + x2x3 + · · · + xn−3xn−2 = x2

n−1.

At least one of(a(i )
0 −a( j )

0 ), . . . , (a(i )
n−2 −a( j )

n−2) is not zero, for otherwise〈πi ∩ π j , v〉 meets
K in a hyperbolic quadratic cone with vertexv, soπi ∩ π j meetsK in a hyperbolic quadric,
contrary to the definition of partial flock. Therefore, without loss of generality, we suppose
thata(i )

0 6= a( j )
0 . The quadricQ′ is the intersection of the cone

(
a( j )

0 − a(i )
0

)−1((
a(i )

1 − a( j )
1

)
x1 + · · · + (

a(i )
n−1 − a( j )

n−1

)
xn−1

)
x1

+ x2x3 + · · · + xn−3xn−2 = x2
n−1,

that is,

(
a(i )

1 − a( j )
1

)
x2

1 + (
a(i )

0 − a( j )
0

)
x2

n−1 + (
a(i )

2 − a( j )
2

)
x1x2 + · · ·

+ (
a(i )

n−1 − a( j )
n−1

)
x1xn−1 + (

a( j )
0 − a(i )

0

)
x2x3 + (

a( j )
0 − a(i )

0

)
x4x5 + · · ·

+ (
a( j )

0 − a(i )
0

)
xn−3xn−2 = 0, (2)

with the hyperplane (1) not through its vertex. We determine exactly when the quadric
Q′ is non-singular and elliptic. Let the matrixA = [ai j ] i, j =1,...,n−1, whereaii is twice
the coefficient ofx2

i in (2) and for i < j ai j = aji is the coefficient ofxi x j in (2).
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ThenA is

2
(
a(i )

1 − a( j )
1

) (
a(i )

2 − a( j )
2

) (
a(i )

3 − a( j )
3

)
. . . . . .

(
a(i )

n−3 − a( j )
n−3

) (
a(i )

n−2 − a( j )
n−2

) (
a(i )

n−1 − a( j )
n−1

)
(
a(i )

2 − a( j )
2

)
0

(
a( j )

0 − a(i )
0

)
0 . . . 0 0 0(

a(i )
3 − a( j )

3

) (
a( j )

0 − a(i )
0

)
0 0 . . . 0 0 0(

a(i )
4 − a( j )

4

)
0 0

. . .
. . . 0 0 0

.

.

.
.
.
.

.

.

.
. . .

. . .
.
.
.

.

.

.
.
.
.(

a(i )
n−3 − a( j )

n−3

)
0 0 0 . . . 0

(
a( j )

0 − a(i )
0

)
0(

a(i )
n−2 − a( j )

n−2

)
0 0 0 . . .

(
a( j )

0 − a(i )
0

)
0 0(

a(i )
n−1 − a( j )

n−1

)
0 0 0 . . . 0 0 2

(
a(i )

0 − a( j )
0

)


with determinant (expanding by the last row; then expanding the two resulting subdetermi-
nants by the last column and first row respectively)

|A| = (−1)(n−3)/2
(
a(i )

0 − a( j )
0

)n−3(
4
((

a(i )
0 − a( j )

0

)(
a(i )

1 − a( j )
1

) + (
a(i )

2 − a( j )
2

)
× (

a(i )
3 − a( j )

3

) + · · · + (
a(i )

n−3 − a( j )
n−3

)(
a(i )

n−2 − a( j )
n−2

)) − (
a(i )

n−1 − a( j )
n−1

)2)
.

If q is odd, by [8, 22.2.1], the quadricQ′ is non-singular and elliptic if and only if
(−1)(n−1)/2|A| is a non-square in GF(q), which is if and only if

−4
(
a(i )

0 − a( j )
0

)(
a(i )

1 − a( j )
1

) − · · · − 4
(
a(i )

n−3 − a( j )
n−3

)(
a(i )

n−2 − a( j )
n−2

) + (
a(i )

n−1 − a( j )
n−1

)2

is a non-square in GF(q).

For q even, by [8, 22.2.1], the quadricQ′ is non-singular if and only if|A| 6= 0, that
is, if and only if a(i )

n−1 − a( j )
n−1 6= 0. Further, the non-singular quadricQ′ is elliptic if and

only if trace((|B| − (−1)(n−1)/2|A|)/(4|B|)) = 1, where the matrixB = [bi j ] i, j =1,...,n−1

hasbii = 0 andbji = −bi j = −ai j for i < j . (The formula(|B| − (−1)(n−1)/2|A|)/(4|B|)
should be interpreted as follows: the termsai j are replaced by indeterminateszi j , the
formula is evaluated as a rational function over the integersZ, and thenzi j is specialized
to ai j to give the result.) ThusB is

0
(
a(i )

2 − a( j )
2

) (
a(i )

3 − a( j )
3

)
. . . . . .

(
a(i )

n−3 − a( j )
n−3

) (
a(i )

n−2 − a( j )
n−2

) (
a(i )

n−1 − a( j )
n−1

)
−

(
a(i )

2 − a( j )
2

)
0

(
a( j )

0 − a(i )
0

)
0 . . . 0 0 0

−
(
a(i )

3 − a( j )
3

)
−

(
a( j )

0 − a(i )
0

)
0 0 . . . 0 0 0

−
(
a(i )

4 − a( j )
4

)
0 0

. . .
. . . 0 0 0

.

.

.
.
.
.

.

.

.
. . .

. . .
.
.
.

.

.

.
.
.
.

−
(
a(i )

n−3 − a( j )
n−3

)
0 0 0 . . . 0

(
a( j )

0 − a(i )
0

)
0

−
(
a(i )

n−2 − a( j )
n−2

)
0 0 0 . . . −

(
a( j )

0 − a(i )
0

)
0 0

−
(
a(i )

n−1 − a( j )
n−1

)
0 0 0 . . . 0 0 0





                

P1: VTL/SRK P2: VTL/PMR/ASH P3: PMR/ASH QC:

Journal of Algebraic Combinatorics KL472-04-Okeefe July 30, 1997 11:0

382 O’KEEFE AND THAS

and|B| = (a(i )
0 − a( j )

0 )n−3(a(i )
n−1 − a( j )

n−1)
2. Thus, the non-singular quadricQ′ is elliptic if

and only if

trace

((
a(i )

0 − a( j )
0

)(
a(i )

1 − a( j )
1

) + · · · + (
a(i )

n−3 − a( j )
n−3

)(
a(i )

n−2 − a( j )
n−2

)(
a(i )

n−1 − a( j )
n−1

)2

)
= 1. 2

4.2. The corresponding partial ovoid ofQ+(n + 2, q)

Theorem 4 In PG(n, q), n ≥ 3 odd, let F be a partial flock of size k of the quadratic
coneK = vQ. Then there exists a partial ovoid of the non-singular hyperbolic quadric
Q+(n + 2, q) of size kq+ 1 comprising k conics mutually tangent at a common point.
Conversely, given any such partial ovoid there exists a partial flockF ofK.

Proof: EmbedK in a non-singular hyperbolic quadricQ+ in PG(n+2, q) and let⊥ denote
the polarity determined byQ+. LetF = {π1, . . . , πk}. First, since PG(n, q) ∩Q+ = vQ,

the lineL = PG(n, q)⊥ meetsQ+ in the single pointv. For i = 1, . . . , k, π⊥
i is a plane on

L meetingQ+ in a (non-singular) conicCi onv. Since, fori, j ∈ {1, . . . , k}, i 6= j, πi ∩ π j

meetsK and hence alsoQ+ in a non-singular elliptic quadric, it follows that〈π⊥
i , π⊥

j 〉 also
meetsQ+ in a non-singular elliptic quadric. Hence no two points ofCi ∪ C j are collinear
onQ+, soC1 ∪ · · · ∪ Ck is a partial ovoid ofQ+ of sizekq + 1. The converse is immediate
as the polarity is bijective and involutory. 2

Corollary 5 Let q be even. A partial ovoid ofQ+(n + 2, q) which is a union of conics
mutually tangent at a common point has size at most q2 + 1.

Proof: Theorems 2 and 4. 2

The construction in Theorem 4 gives a bound on the size of a partial flock. Ifn > 3 and
q is even, this is not as good as the bound in Theorem 2.

Theorem 6 In PG(n, q), n ≥ 3 odd, let F be a partial flock of size k of the quadratic
coneK = vQ in PG(n, q). Then k≤ q(n−1)/2.

Proof: GivenF , by Theorem 4 there exists a partial ovoidO of sizekq+1 ofQ+(n+2, q).
ThusO ≤ q(n+1)/2 + 1 ([8, A VI]) and the result follows. 2

We remark that in the casen = 3, the bound is best possible as there exist partial flocks
of sizeq of a quadratic cone in PG(3, q), calledflocks,associated with certain ovoids of
Q+(5, q).

LetF = {π1, . . . , πk} be a partial flock ofK = vQ in PG(n, q), n odd. If the elements
of the partial flock contain a commonm-dimensional subspaceξ , then the corresponding
partial ovoid ofQ+(n + 2, q) is contained in an(n + 1 − m)-dimensional subspace. In
particular, ifm = n− 3 and ifξ ∩K is non-singular then the corresponding partial ovoid is
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contained in a quadricQ(4, q). If, further,q is odd then there corresponds a partial spread
of sizekq+ 1 of the generalized quadrangleW(q). If k = q then this is a spread and there
arises a translation plane.

4.3. Derivation of a partial flock ofK, q odd

Let Q(n + 1, q) be the non-singular quadric of PG(n + 1, q) defined by the equation
x0x1+x2x3+· · ·+xn−3xn−2−x2

n−1+xnxn+1 = 0 and let⊥ denote the polarity determined
byQ(n+1, q). The tangent hyperplaneH0 ofQ(n+1, q) at the pointp0 = (0, . . . , 0, 1, 0)

has equationxn+1 = 0 and intersectsQ(n + 1, q) in the quadratic coneK0 with equation
x0x1 + x2x3 + · · · + xn−3xn−2 − x2

n−1 = xn+1 = 0 and vertexp0.

LetF0 be a partial flock of sizek ofK0, where fori = 1, . . . , k the elementπi of F0 has
equationsa(i )

0 x0 + · · · + a(i )
n−1xn−1 + xn = xn+1 = 0. For i = 1, . . . , k, we define the line

Li = π⊥
i , and note thatLi meetsQ(n + 1, q) in p0 and the further point

pi =
(

a(i )
1 , a(i )

0 , a(i )
3 , a(i )

2 , . . . , a(i )
n−2, a(i )

n−3,
−1

2
a(i )

n−1,
1

4

(
a(i )

n−1

)2 − a(i )
0 a(i )

1

− a(i )
2 a(i )

3 − · · · − a(i )
n−3a(i )

n−2, 1

)
.

Sincepi ∈ Q(n + 1, q), it follows that the hyperplaneHi = p⊥
i with equation

a(i )
0 x0 + a(i )

1 x1 + · · · + a(i )
n−1xn−1 + xn + a(i )

n+1xn+1 = 0,

where

a(i )
n+1 = 1/4

(
a(i )

n−1

)2 − a(i )
0 a(i )

1 − a(i )
2 a(i )

3 − · · · − a(i )
n−3a(i )

n−2, (3)

meetsQ(n + 1, q) in a quadratic coneKi . For eachi, j ∈ {1, . . . , k} with i 6= j , define
the (n − 1)-dimensional spaceπi j = Hi ∩ Hj . For each j ∈ {1, . . . , k} let π j j be the
(n − 1)-dimensional spaceπ j .

Theorem 7 With the notation introduced above, for any j∈ {1, . . . , k}, the setF j =
{πi j : i = 1, . . . , k} is a partial flock of the quadratic coneK j in Hj .

Proof: We use the notation and definitions made in this subsection. Let the collineation
σ of PG(n + 1, q) be defined by

σ : (x0, x1, . . . , xn+1) 7→
(

x0 − a( j )
1 xn+1, x1 − a( j )

0 xn+1, . . . , xn−3 − a( j )
n−2xn+1,

xn−2 − a( j )
n−3xn+1,xn−1 + 1

2
a( j )

n−1xn+1,xn + a( j )
0 x0

+ a( j )
1 x1 + · · · + a( j )

n−1xn−1 + a( j )
n+1xn+1,xn+1

)
.
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Thenσ fixesQ(n + 1, q) setwise and fixes the pointp0 and the hyperplaneH0, hence also
fixesK0. For i = 1, . . . , k the (n − 1)-dimensional spaceπi is mapped to the space with
equations

A(i )
0 x0 + · · · + A(i )

n−1xn−1 + xn = xn+1 = 0,

whereA(i )
0 = a(i )

0 − a( j )
0 , . . . , A(i )

n−1 = a(i )
n−1 − a( j )

n−1. Thus, without loss of generality we can

suppose thata( j )
0 = · · · = a( j )

n−1 = 0; so pj = (0, . . . , 0, 1), Hj is the hyperplane with
equationxn = 0, K j is the cone with equationsx0x1 + · · · + xn−3xn−2 − x2

n−1 = xn = 0

andF j comprises thek (n − 1)-dimensional spacesxn = xn+1 = 0 anda(i )
0 x0 + a(i )

1 x1 +
· · · + a(i )

n−1xn−1 + a(i )
n+1xn+1 = xn = 0, for i = 1, . . . , j − 1, j + 1, . . . , k.

We will use Theorem 3 to show thatF j is a partial flock. First, leti, ` ∈ {1, 2, . . . , k},
with j 6= i 6= ` 6= j . We must prove that

−4

(
a(i )

0

a(i )
n+1

− a(`)
0

a(`)
n+1

) (
a(i )

1

a(i )
n+1

− a(`)
1

a(`)
n+1

)
− · · · − 4

(
a(i )

n−3

a(i )
n+1

− a(`)
n−3

a(`)
n+1

) (
a(i )

n−2

a(i )
n+1

− a(`)
n−2

a(`)
n+1

)

+
(

a(i )
n−1

a(i )
n+1

− a(`)
n−1

a(`)
n+1

)2

is a non-square in GF(q). Putbj = a(i )
j andcj = a(`)

j . So we must prove that

−4

(
b0

bn+1
− c0

cn+1

) (
b1

bn+1
− c1

cn+1

)
− · · · − 4

(
bn−3

bn+1
− cn−3

cn+1

) (
bn−2

bn+1
− cn−2

cn+1

)
+

(
bn−1

bn+1
− cn−1

cn+1

)2

is a non-square in GF(q). Multiplying by (bn+1)
2(cn+1)

2, we see that this is equivalent to
showing that

F(i, `)= −4b0b1(cn+1)
2 − 4c0c1(bn+1)

2 + 4b0c1bn+1cn+1

+ 4b1c0bn+1cn+1 − · · · − 4bn−3bn−2(cn+1)
2 − 4cn−3cn−2(bn+1)

2

+ 4bn−3cn−2bn+1cn+1 + 4bn−2cn−3bn+1cn+1 + (bn−1)
2(cn+1)

2

+ (cn−1)
2(bn+1)

2 − 2bn−1cn−1bn+1cn+1

is a non-square. On rearranging this expression, we find that

F(i, `)= (cn+1)
2((bn−1)

2 − 4b0b1 − · · · − 4bn−3bn−2)

+ (bn+1)
2((cn−1)

2 − 4c0c1 − · · · − 4cn−3cn−2) + bn+1cn+1

× (−2bn−1cn−1 + 4b0c1 + 4b1c0 + · · · + 4bn−3cn−2 + 4bn−2cn−3)
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and hence, taking account of (3), that

F(i, `)= 4(cn+1)
2bn+1 + 4(bn+1)

2cn+1

+ bn+1cn+1(−2bn−1cn−1 + 4b0c1 + 4b1c0 + · · · + 4bn−3cn−2 + 4bn−2cn−3)

= bn+1cn+1(4cn+1 + 4bn+1 − 2bn−1cn−1 + 4b0c1 + 4b1c0 + · · ·
+ 4bn−3cn−2 + 4bn−2cn−3)

= bn+1cn+1((cn−1)
2 − 4c0c1 − · · · − 4cn−3cn−2 + (bn−1)

2 − 4b0b1 − · · ·
− 4bn−3bn−2 − 2bn−1cn−1 + 4b0c1 + 4b1c0 + · · ·
+ 4bn−3cn−2 + 4bn−2cn−3).

Simplifying, we find that

F(i, `)= cn+1bn+1((cn−1 − bn−1)
2 − 4(c0 − b0)(c1 − b1) − · · ·

− 4(cn−3 − bn−3)(cn−2 − bn−2)).

Applying Theorem 3 to the pairsπi , π j andπ`, π j of hyperplanes in the partial flockF0

of K0 shows that each ofbn+1 and cn+1 is a non-square in GF(q). Similarly, applying
Theorem 3 to the planesπi andπ` of the partial flockF0 of K0 shows that the third factor
is a non-square in GF(q). ThusF(i, `) is a non-square in GF(q).

Finally, let i ∈ {1, . . . , k} with i 6= j . We must prove that(
a(i )

n−1

a(i )
n+1

)2

− 4

(
a(i )

0

a(i )
n+1

) (
a(i )

1

a(i )
n+1

)
− · · · − 4

(
a(i )

n−3

a(i )
n+1

) (
a(i )

n−2

a(i )
n+1

)

is a non-square in GF(q). But this expression is 4(a(i )
n+1)

−1 and the result follows, sincea(i )
n+1

is a non-square in GF(q) as above. 2

We say that the partial flocksF1, . . . ,Fk arederivedfrom the partial flockF0.

Forn andq odd, letp0, p1, . . . , pk bek + 1 points of the non-singular quadricQ(n + 1,
q) and let H0, H1, . . . , Hk be the tangent hyperplanes toQ(n + 1, q) at these points,
respectively. Thek (n − 1)-dimensional spacesH0 ∩ Hi for i = 1, . . . , k determine a
partial flock of the coneK0 = H0 ∩ Q(n + 1, q) if and only if the spaceH0 ∩ Hi ∩ Hj

meetsQ(n + 1, q) in a non-singular elliptic quadric for eachi, j ∈ {1, . . . , k} with i 6= j .
LetF0 be a partial flock ofK0 = H0 ∩Q(n + 1, q) and letp0, p1, . . . , pk be thek + 1

points associated withF0 as above. For anyj ∈ {1, . . . , k} the(n − 1)-dimensional spaces
H0 ∩ Hj andHi ∩ Hj , for i = 1, . . . , k with i 6= j , determine a partial flock of the cone
K j = Hj ∩ Q(n + 1, q) by Theorem 7. Thus, any three distinct elementsHi , Hj , H`

of {H0, . . . , Hk} intersect in an(n − 2)-dimensional space which meetsQ(n + 1, q) in a
non-singular elliptic quadric, that is, the polar space(pi pj p`)

⊥ meetsQ(n + 1, q) in a
non-singular elliptic quadric.

Following the convention established in the casen = 3, we refer to a set of points
p0, . . . , pk with the above properties as apartial BLT-set.
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Let {p0, p1, . . . , pk} be a partial BLT-set of the quadricQ(n + 1, q). From pi , i ∈
{0, 1, . . . , k}, we projectQ(n+1, q) onto a hyperplane PG(n, q) not containingpi , thereby
obtaining a well-known representation ofQ(n+1, q) in PG(n, q) (see [10, 3.2.2, 3.2.4]). If
Hi is the tangent hyperplane ofQ(n+1, q) at pi , thenHi ∩Q(n+1, q) ∩ PG(n, q) is a non-
singular quadricQ(n−1, q) in the(n−1)-dimensional spaceHi ∩ PG(n, q) = PG(n−1, q).

If pi pj ∩ PG(n, q) = p′
j for j ∈ {0, 1, . . . , k} and j 6= i, then it is easy to see that

{p′
0, p′

1, . . . , p′
i −1, p′

i +1, . . . , p′
k} is a dual partial flockF ′

i of Q(n − 1, q); it is also clear
thatF ′

i is the dual of the flockFi . Conversely, ifF ′ is any dual partial flock ofQ(n − 1, q)

then pi together with the points ofQ(n + 1, q) which correspond to the points ofF ′ form
a partial BLT-set ofQ(n + 1, q).

Further, we can construct a partial ovoid of sizekq + 1 ofQ+(n + 2, q) directly from a
partial BLT-set ofQ(n + 1, q) of sizek + 1, without going via the associated partial flock
as in Section 4.2. Let{p0, p1, . . . , pk} be a partial BLT-set of the quadricQ(n + 1, q) in
PG(n + 1, q). Now embed PG(n + 1, q) as a hyperplane in PG(n + 2, q) so thatQ(n + 1, q)

is embedded in a quadricQ+(n + 2, q) in PG(n + 2, q). Let p be the pole of PG(n + 1, q)

under the polarity determined byQ+(n + 2, q). Each of the planes〈p, p0, pi 〉 for i =
1, . . . , k meetsQ+(n + 2, q) in a conic, and the union of these conics is a partial ovoid of
sizekq + 1 ofQ+(n + 2, q).

4.4. Herds of caps, q even

Theorem 8 In PG(n, q), for n odd and q even, for i = 1, . . . , k and for c∈ GF(q), let

πi : a(i )
0 x0 + · · · + a(i )

n−1xn−1 + xn = 0,

C∞ = {(
1, a(i )

1 , a(i )
3 , . . . , a(i )

n−2,
(
a(i )

n−1

)2)
: i = 1, . . . , k

} ∪ {(0, . . . , 0, 1)} and

Cc = {(
1, a(i )

0 + ca(i )
1 + c1/2a(i )

n−1, a(i )
2 + ca(i )

3 + c1/2a(i )
n−1, . . . , a(i )

n−3 + ca(i )
n−2

+ c1/2a(i )
n−1,

(
a(i )

n−1

)2)
: i = 1, . . . , k

} ∪ {(0, . . . , 0, 1)},

for some a(i )j ∈ GF(q). If the setF = {π1, . . . , πk} of k hyperplanes is a partial flock of the
quadratic coneK : x0x1 + x2x3 + · · · + xn−3xn−2 = x2

n−1 then each ofC∞ andCc, for all
c ∈ GF(q), is a (k + 1)-cap in PG((n + 1)/2, q) for n > 3 and a(k + 1)-arc in PG(2, q)

for n = 3.

Proof: SupposeF = {π1, . . . , πk} is a partial flock of the quadratic coneK. We first
show that no three points ofC∞\{(0, . . . , 0, 1)} are collinear. Suppose to the contrary that
for somei, j, ` ∈ {1, . . . , k} the matrix1 a(i )

1 a(i )
3 . . . a(i )

n−2

(
a(i )

n−1

)2

1 a( j )
1 a( j )

3 . . . a( j )
n−2

(
a( j )

n−1

)2

1 a(`)
1 a(`)

3 . . . a(`)
n−2

(
a(`)

n−1

)2


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has rank 2. It follows easily that there exist elementsα1, α3, . . . , αn−2 ∈ GF(q) such that

a(i )
1 + a( j )

1(
a(i )

n−1

)2 + (
a( j )

n−1

)2 = a( j )
1 + a(`)

1(
a( j )

n−1

)2 + (
a(`)

n−1

)2 = a(`)
1 + a(i )

1(
a(`)

n−1

)2 + (
a(i )

n−1

)2 = α1,

...

a(i )
n−2 + a( j )

n−2(
a(i )

n−1

)2 + (
a( j )

n−1

)2 = a( j )
n−2 + a(`)

n−2(
a( j )

n−1

)2 + (
a(`)

n−1

)2 = a(`)
n−2 + a(i )

n−2(
a(`)

n−1

)2 + (
a(i )

n−1

)2 = αn−2.

Using the algebraic condition in Theorem 3 we obtain:

trace
(
α1

(
a(i )

0 + a( j )
0

) + α3
(
a(i )

2 + a( j )
2

) + · · · + αn−2
(
a(i )

n−3 + a( j )
n−3

)) = 1, (4)

trace
(
α1

(
a( j )

0 + a(`)
0

) + α3
(
a( j )

2 + a(`)
2

) + · · · + αn−2
(
a( j )

n−3 + a(`)
n−3

)) = 1, (5)

trace
(
α1

(
a(`)

0 + a(i )
0

) + α3
(
a(`)

2 + a(i )
2

) + · · · + αn−2
(
a(`)

n−3 + a(i )
n−3

)) = 1. (6)

Adding Eqs. (4), (5) and (6) implies that trace(0) = 1, a contradiction. ThusC∞\{(0, . . . ,

0, 1)} is ak-cap of PG((n+1)/2, q). Finally, suppose that two points ofC∞ are collinear with
(0, . . . , 0, 1). Then there existi, j ∈ {1, . . . , k} such thata(i )

1 +a( j )
1 , a(i )

3 +a( j )
3 , . . . , a(i )

n−2 +
a( j )

n−2 are all zero. But this contradicts the condition in Theorem 3. ThusC∞ is a(k+1)-cap
of PG((n + 1)/2, q).

Next, forc ∈ GF(q), we considerCc. For r = 0, 2, . . . , n − 3 and fori, j ∈ {1, . . . , k}
let

αi j
r = a(i )

r + a( j )
r(

a(i )
n−1

)2 + (
a( j )

n−1

)2 + c
a(i )

r +1 + a( j )
r +1(

a(i )
n−1

)2 + (
a( j )

n−1

)2 + c1/2 a(i )
n−1 + a( j )

n−1(
a(i )

n−1

)2 + (
a( j )

n−1

)2 .

Suppose that some three points ofCc\{(0, . . . , 0, 1)} are collinear; so for somei, j, ` ∈
{1, . . . , k} there existα0, α2, . . . , αn−3 such that

α
i j
0 = α

j `
0 = α`i

0 = α0,

α
i j
2 = α

j `
2 = α`i

2 = α2,

...

α
i j
n−3 = α

j `
n−3 = α`i

n−3 = αn−3.

Consider

α0
(
a(i )

1 + a( j )
1

) = a(i )
0 + a( j )

0(
a(i )

n−1

)2 + (
a( j )

n−1

)2

(
a(i )

1 + a( j )
1

) + c
a(i )

1 + a( j )
1(

a(i )
n−1

)2 + (
a( j )

n−1

)2

(
a(i )

1 + a( j )
1

)
+ c1/2 a(i )

n−1 + a( j )
n−1(

a(i )
n−1

)2 + (
a( j )

n−1

)2

(
a(i )

1 + a( j )
1

)
= ci j

0 + bi j
0 ,
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whereci j
0 = (a(i )

0 + a( j )
0 )(a(i )

1 + a( j )
1 )/((a(i )

n−1)
2 + (a( j )

n−1)
2) and trace(bi j

0 ) = 0, asbi j
0 is of

the formt + t2 for somet ∈ GF(q). Analogously, we write

α0
(
a( j )

1 + a(`)
1

) = cj `
0 + bj `

0 ,

α0
(
a(`)

1 + a(i )
1

) = c`i
0 + b`i

0 ,

where trace(bj `
0 ) = trace(b`i

0 ) = 0. On adding these three equations, we obtain 0= ci j
0 +

cj `
0 +c`i

0 +b0, whereb0 = bi j
0 +bj `

0 +b`i
0 satisfies trace(b0) = 0. Repeating these calculations

with 0 replaced byr for r = 2, 4, . . . , n − 3, we obtain:

0 = b2 + ci j
2 + cj `

2 + c`i
2 ,

...

0 = bn−3 + ci j
n−3 + cj `

n−3 + c`i
m−3,

for analogous expressionsbr , ci j
r , cj `

r , c`i
r ∈ GF(q)satisfying trace(b2) = · · · = trace(bn−3)

= 0. Adding these(n − 1)/2 equations shows that 0= b + ci j + cj ` + c`i , where
b = b0 + b2 + · · · + bn−3, ci j = ci j

0 + ci j
2 + · · · + ci j

n−3 andcj `, c`i are analogous. Fur-
ther, trace(b) = 0, and by Theorem 3, we have trace(ci j ) = trace(cj `) = trace(c`i ) = 1,

implying that trace(0) = 1, a contradiction. Thus we have shown thatCc\{(0, . . . , 0, 1)} is
a k-cap. Finally, suppose that two points ofCc are collinear with(0, . . . , 0, 1). Then there
existi, j ∈ {1, . . . , k} such thata(i )

0 +a( j )
0 +c(a(i )

1 +a( j )
1 )+c1/2(a(i )

n−1 +a( j )
n−1), . . . , a(i )

n−3 +
a( j )

n−3 + c(a(i )
n−2 + a( j )

n−2) + c1/2(a(i )
n−1 + a( j )

n−1) are all zero. Multiplying the first expression

by (a(i )
1 + a( j )

1 )/((a(i )
n−1)

2 + (a( j )
n−1)

2), we see that 0= ci j
0 + d, where trace(d) = 0.

Thus trace(ci j
0 ) = 0, and analogously (multiplying the remaining expressions by(a(i )

3 +
a( j )

3 )/((a(i )
n−1)

2 + (a( j )
n−1)

2), . . . , (a(i )
n−2 + a( j )

n−2)/((a
(i )
n−1)

2 + (a( j )
n−1)

2) respectively), we find

that trace(ci j
2 ) = · · · = trace(ci j

n−3) = 0. Thus trace(ci j ) = trace(ci j
0 + ci j

2 + · · · +
ci j

n−3) = 0, contradicting Theorem 3. Hence, forc ∈ GF(q), Cc is a (k + 1)-cap of
PG((n + 1)/2, q). 2

Such a set of(k + 1)-caps, of which there areq + 1, is called aherdof (k + 1)-caps. By
Theorem 2, the caps have maximum sizeq + 1.

Remarks:

(1) Forn = 3 we refer to [2] and [11]. In this case the(k + 1)-arcs of Theorem 8 extend
to (k + 2)-arcs by adjoining the point(0, 1, 0). Further, the converse of Theorem 8
holds.

(2) There are 2(n−1)/2 herds of caps projectively equivalent to those arising in Theorem 8
and obtained by interchanging in turn each subset of the pairs of coordinates
(x0, x1), (x2, x3), . . . , (xn−3, xn−2).
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5. Examples and characterisations of partial flocks ofKKK

5.1. The linear partial flocks

Let K = vQ be a quadratic cone in PG(n, q), wheren is odd. Let PG(n − 2, q) be an
(n − 2)-dimensional subspace of PG(n, q) such that PG(n − 2, q) ∩ K is a non-singular
elliptic quadric. Thenk hyperplanes on PG(n − 2, q) not containingv are a partial flock of
K of sizek, called alinear partial flock; clearlyk ≤ q.

A partial flock is linear if and only if the corresponding dual partial flock isk points
of a line.

Theorem 9 Let F = {π1, . . . , πk} be a partial flock of size k of the quadratic cone
K = vQ in PG(n, q), n > 3 odd. Suppose that for some i, j ∈ {1, . . . , k} with i 6= j the
elements ofF cover the points ofK\vEi j , whereEi j = πi ∩ π j ∩ K. Then k≥ q and if
k = q thenF is linear.

Proof: Let S = K\vEi j and suppose the elements ofF cover the points ofS.

For P ∈ S, let NP denote the number of elements ofF on P. By hypothesis,NP ≥ 1
for P ∈ S. Now count the ordered pairs(P, π`) whereP ∈ S, π` ∈ F and P ∈ π`. We
obtain:

q(|Q| − |Ei j |) = |S| ≤
∑
P∈S

NP = k(|Q| − |Ei j |).

Thusk ≥ q and if k = q then equality must hold throughout the expression, soNP = 1
for all P ∈ S andF partitionsK\vEi j . We note thatπi ∩ vEi j = π j ∩ vEi j = Ei j . Let
`, m ∈ {1, . . . , q}, ` 6= m, and letE`m = π` ∩ πm ∩ K. We have shown thatE`m ⊆ vEi j ;
so π` ∩ vEi j = πm ∩ vEi j = E`m. We may assume thati 6= `. Thenπi ∩ π` ∩ K =
πi ∩ π` ∩ vEi j = Ei j ∩ E`m is a non-singular elliptic quadric in some(n − 2)-dimensional
subspace of PG(n, q). ThusEi j = E`m, henceF is linear. 2

The elements of a linear partial flock of sizek have a common(n − 2)-dimensional
subspace; so the corresponding partial ovoid of sizekq + 1 lies in a 3-dimensional space.
In fact this partial ovoid lies in an elliptic quadric.

5.2. Partial flocks with partial BLT-set a normal rational curve, q odd

These examples generalise the Fisher-Thas-Walker flocks in PG(3, q) q odd, [3, 13], since
by [1] such a flock in PG(3, q) has BLT-set a normal rational curve onQ(4, q).

Theorem 10 In PG(n, q) for n ≥ 3odd and q odd, letK be the quadratic cone with equa-
tion x0x1 + · · · + xn−3xn−2 = x2

n−1. For t ∈ GF(q), let πt be the hyperplane with equation
antnx0 + a1t x1 + an−1tn−1x2 + a2t2x3 + · · ·+ a(n+3)/2t (n+3)/2xn−3 + a(n−1)/2t (n−1)/2xn−2 +
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a(n+1)/2t (n+1)/2xn−1 + xn = 0 where for i= 1, 2, . . . , (n − 1)/2 and for some elementα a
non-square in GF(q), we have

4an+1−i ai = (−1)i

(
n + 1

i

)
α and a2

(n+1)/2 = α

2
(−1)(n+3)/2

(
n + 1

n+1
2

)
.

Then the setF = {πt : t ∈ GF(q)} is a partial flock of size q ofK, with BLT-set a normal
rational curve of PG(n + 1, q) if and only if a1a2 · · · an 6= 0. (For a given non-square
α ∈ GF(q), q odd, there exists such a partial flock if and only if(1/2)(−1)(n+3)/2(

n + 1
n+1

2
) is

either zero or a non-square.)

Proof: We use Theorem 3. Fors, t ∈ GF(q), s 6= t, we have

−4(antn − ansn)(a1t − a1s) − 4(an−1tn−1 − an−1sn−1)(a2t2 − a2s2) − · · ·
− 4

(
a(n+3)/2t (n+3)/2 − a(n+3)/2s(n+3)/2

)(
a(n−1)/2t (n−1)/2 − a(n−1)/2s(n−1)/2

)
+ (

a(n+1)/2t (n+1)/2 − a(n+1)/2s(n+1)/2
)2

= (tn+1 + sn+1)
(−4ana1 − 4an−1a2 − · · · − 4a(n+3)/2a(n−1)/2 + a2

(n+1)/2

)
+ (tns + tsn)(4ana1) + (tn−1s2 + t2sn−1)(4an−1a2) + · · · + (

t (n+3)/2s(n−1)/2

+ t (n−1)/2s(n+3)/2
)(

4a(n+3)/2a(n−1)/2
) + t (n+1)/2s(n+1)/2

(−2a2
(n+1)/2

)
= α(t − s)n+1,

by the definition ofa1, . . . , an and noting that the coefficient of(tn+1 + sn+1) in the
expression is

α

(n−1)/2∑
i =1

(−1)i +1

(
n + 1

i

)
+ α

2
(−1)(n+3)/2

(
n + 1

n+1
2

)
= α

2

n∑
i =1

(−1)i +1

(
n + 1

i

)
= α.

By Theorem 3,F is a partial flock ofK of size q. The associated BLT-set is the
normal rational curve {(a1t, antn, a2t2, an−1tn−1, . . . , a(n−1)/2t (n−1)/2, a(n+3)/2t (n+3)/2,

(−1/2)a(n+1)/2t (n+1)/2, (α/4)tn+1, 1) : t ∈ GF(q)} ∪ {(0, . . . , 0, 1, 0)}. 2

5.3. Other non-linear partial flocks

The first examples generalise the Kantor flocks in PG(3, q), for q odd [9], see also [12,
1.5.6].

Theorem 11 For t ∈ T ⊆ GF(q), q odd, let πt have equation a(t)0 x0 + a(t)
1 x1 + · · · +

a(t)
n−1xn−1+xn = 0, where a(t)j ∈ GF(q). For each t∈ T , let a(t)

1 +a(t)
3 +· · ·+a(t)

n−2 = −btσ ,

where b is a non-square in GF(q) andσ ∈ AutGF(q), let a(t)
n−1 = 0 and for j = 2i, i =

0, 1, . . . , (n − 3)/2, let a(t)
j = t. ThenF = {πt : t ∈ T } is a partial flock of size|T | of the

coneK in PG(n, q) with equation x0x1 + · · · + xn−3xn−2 = x2
n−1.
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Proof: We use Theorem 3, noting that fori, j ∈ T , i 6= j, we have

−4
(
a(i )

0 − a( j )
0

)(
a(i )

1 − a( j )
1

) − · · · − 4
(
a(i )

n−3 − a( j )
n−3

)(
a(i )

n−2 − a( j )
n−2

) + (
a(i )

n−1 − a( j )
n−1

)2

= 4b(i − j )σ+1,

which is a non-square in GF(q). 2

For example, leta(t)
1 = −btσ and let all the termsa(t)

2i +1 be zero,i = 1, . . . , (n − 3)/2.

Thenπt has equationt x0 − btσ x1 + t x2 + t x4 + · · · + t xn−3 + xn = 0, so contains the
subspace with equationx0 = x1 = x2 = x4 = · · · = xn−3 = xn = 0. If T = GF(q) then
the above partial flock induces a Kantor flock of the conex0x1 = x2

n−1 in the subspace with
projective coordinates(x0, x1, xn−1, xn).

In this example, forσ 6= 1, the hyperplanes of the partial flock intersect in the(n − 3)-
dimensional spacex1 = xn = x0 + x2 + · · · + xn−3 = 0. So forσ 6= 1 we have a partial
ovoid ofQ+(n + 2, q) of sizeq2 + 1 and lying in a 4-dimensional space PG(4, q). As
PG(4, q) intersectsQ+(n + 2, q) in a non-singular quadricQ(4, q), we obtain an ovoid of
Q(4, q) (which is, in fact, a Kantor ovoid ofQ(4, q) [9]).

Now, letF be a partial flock of sizek of a quadratic coneK in PG(m, q), for some odd
m ≥ 3, and suppose that all the hyperplanes inF intersect in a commonr -dimensional
subspace. By Theorem 4, there is associated a partial ovoidO of sizekq+1 ofQ+(m+2, q)

such that the points ofO generate an(m − r + 1)-dimensional subspace. Now embed
Q+(m+ 2, q) inQ+(n + 2, q) wheren is odd andn ≥ m. ThenO is a partial ovoid of size
kq + 1 ofQ+(n + 2, q) consisting ofk mutually tangent conics, so by Theorem 4 there is
associated a partial flock of sizek of a quadratic cone in PG(n, q) such that the hyperplanes
of the partial flock intersect in a common(n − m + r )-dimensional subspace.

For example, letm = 3 andk = q and letF be a linear flock ofK (sor = 1). Then there
exists a partial flock of sizeq of a quadratic cone in PG(n, q) for each oddn ≥ 3 such that
the hyperplanes in the partial flock intersect in a common(n − 2)-dimensional subspace,
that is, the partial flock is linear.

More generally, letO be a partial ovoid of sizekq + 1 of a (singular or non-singular)
quadricQ in PG(m, q) (wherem is odd or even), and suppose thatO comprisesk mutually
tangent conics. EmbedQ in Q+(n + 2, q) wheren + 2 ≥ m andn is odd (the smallest
possible value forn will depend on the type ofQ). ThenO is a partial ovoid ofQ+(n+2, q)

comprisingk mutually tangent conics, hence determines a partial flock of sizek of a
quadratic cone in PG(n, q). If the points ofO generate anl -dimensional space then the
hyperplanes in the partial flock intersect in a common(n − ` + 1)-dimensional subspace.

For example, letm = 6 and letQ = LQ′ be the singular quadric with vertex a lineL
and base a non-singular quadricQ′ in PG(4, q). Let O be an ovoid ofQ consisting ofq
mutually tangent conics (from an ovoidO′ of Q′ consisting ofq mutually tangent conics
many such ovoidsO can be constructed). EmbedQ in aQ+(n + 2, q), n odd andn ≥ 7.

Then there arises a partial flock of sizeq of a quadratic cone in PG(n, q), the hyperplanes
of which intersect in at least an(n − 5)-dimensional space (ifO′ is an elliptic quadric, then
they intersect in at least an(n − 4)-dimensional space).
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6. Partial flocks for small q

In PG(n, 2), a partial flock of a quadratic coneK = vQ with vertexv has size at most two.
Further, every partial flock ofK of cardinality 2 is linear.

In PG(5, 3), letK= vQ be the quadratic cone with equationx0x1 + x2x3 = x2
4. Using the

notation [a0, a1, . . . , a5] for the hyperplanea0x0+a1x1+· · ·+a5x5 = 0, a partial flock ofK
of size six in PG(5, 3) isF = {[0, 0, 0, 0, 0, 1], [0, 0, 1, 1, 0, 1], [0, 1, 2, 2, 0, 1], [2, 0, 2, 2,

0, 1], [2, 1, 0, 1, 1, 1], [2, 1, 1, 0, 2, 1]}. Thus forn > 3 andq odd, there exist partial flocks
of size greater thanq.

It is an open problem to determine the maximum size of a partial flock of a quadratic
cone in PG(n, q) for q odd.
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