Journal of Algebraic Combinatori&(1997), 377-392
© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Partial Flocks of Quadratic Cones with a Point
Vertex in PG(n, q), n Odd

CHRISTINE M. O'KEEFE* cokeefe@maths.adelaide.edu.au
Department of Mathematics, The University of Adelaide, Adelaide, 5005, Australia

J.A. THAS jat@cage.rug.ac.be
Department of Pure Mathematics and Computer Algebra, University of Gent, Krijgslaan 281, B-9000 Gent,
Belgium

Received December 15, 1995; Revised June 24, 1996

Abstract. We generalise the definition and many properties of flocks of quadratic coneg&dGo partial
flocks of quadratic cones with vertex a point in @Gq), for n > 3 odd.
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1. Introduction

For information on the properties of quadrics in projective spaces, see [4, Section 5.1]
[5, Chapter 16] and especially [8, Chapter 22]. In the following, we always assume tha
n > 3is odd.

InPG(n, g), n > 3 o0dd, let'’ = vQ be a cone with vertex the pointand bas&, where
@ is a non-singular (parabolic) quadric in a hyperplan€iPG 1, q) not onv.

A partial flockof K of sizek is a set of hyperplanes, ..., mx of PG(n, g), each not on

v, such that for each j € {1,...,k} withi # j the (n — 2)-dimensional space; N x;
meetsk in a non-singular elliptic quadric. The set of (non-singular, parabolic) quadrics
amiNKfori =1,...,kis also called partial flockof .

Inthe casa = 3, since an elliptic quadric in PG, q) has no points, the above definition
coincides with the existing definition of a partial flock of a quadratic cone I(GP&.

2. The size of a partial flock,q even

It is easy to see that a partial flock of a quadratic cone it3p, g odd or even, has
size at most], since the conics in the flock are disjoint. In this section we use Lemma 1
(a generalisation of [12, 1.5.2]) to show that this bound also holds fomodd5 andq
even. Our proof is also valid in the case= 3.

*This work was supported by the Australian Research Council, Department of Pure Mathematics and Compute
Algebra of the University of Gent and the National Fund for Scientific Research of Belgium.
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Lemma 1l InPG(n,q), where n> 3is odd and q is everlet ¥ = {m1,..., ¢} be a
partial flock of the condC = vQ. Let u be the nucleus @ in the subspace P@ — 1, q)
of PG(n, ). Then each space Nxj, i # j, is disjoint from the linevu.

Proof: Suppose, to the contrary, that there ekist j such thatr; N ; Nvu = U/, say.
Thenu' is the nucleus of the (parabolic) quadiicN 7, sow; Ny N K is parabolic, a
contradiction. O

Theorem 2 In PG(n, q), where n> 3is odd and q is evera partial flock of a quadratic
cone has size at most q.

Proof: Let F be a partial flock of the con€ = vQ. Letu be the nucleus oD in the
subspace P@ — 1, q) of PG(n, g). By Lemma 1, no two elements & can meet on the
line vu. Since each element df must meebu\{v}, we havek < . O

3. Generalising known results

In this section we generalise some results which are well-known for flocks of quadratic
cones in P@3, q). In particular, the dual setting fay even generalises [12, 1.5.3], the al-
gebraic condition generalises [12, 1.5.5], the existence of the partial ov@ld @f+ 2, q)
generalises[12, 1.3], the process of derivatiomgfodd generalises [1] and the construction

of herds of caps fog even generalises [2, Theorem 1] (see also [11, Theorem 2.1]).

4. The dual setting

Case (1) g odd: First suppose thaf is odd. In PGn,q), let F = {m1,..., )} be
a partial flock of the condC = vQ. We apply a duality to PG, ). The pointv is
mapped to a hyperplang of PG(n, q) and the set of lines ok on v is mapped to
the set of all tangent hyperplanes to a non-singular quadriaf V. The hyperplanes
n1, ..., g of F are mapped to pointgy, ..., px of PG(n, q)\V. Fori # j the(n — 2)-
dimensional space; N 7; meetsk in the points of a non-singular elliptic quadric
Q~(n — 2,q); so the hyperplanér; N, v), generated byr; N 7; andv, contains
exactly the lines obQ on the coneyQ~(n — 2, g). It follows that the linep; p; meets
V in a point p;; on exactly the tangent hyperplanes@fwhich correspond under the
duality to the lines 0b Q™ (n — 2, q); so the tangent points of these hyperplanes are the
points of a non-singular elliptic quadri@~(n — 2, q) on Q'. Hencep;; is an interior
point of Q'.

Thus, forn andq odd, adual partial flockof a non-singular quadri@’ of a hyperplane
PG(n — 1, q) of PG(n, q) is a set of points of P@, q)\PGn — 1, q) such that the line
joining any two of them meets R@ — 1, q) in a point interior toQ’. It is clear that a
partial flock gives rise to a dual partial flock and conversely.

Case (2) g evenNow suppose thaj is even.
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We use the following notation, introduced in [7]. Létbe a non-singular quadric in
PG(n, q), let PGn — 1, q) be a hyperplane and |€ be a point of P@, q)\PGn—1, q)
not lying onQ and distinct from its nucleus. The projection@from Q onto PGn—1, q)
isthe sefR = {PQNPGN—1,q): P € 9}. If nis odd andQ is hyperbolic then we write
R = R* while if Q is elliptic then we writéR = R~. We note, see [7], that a S& has
type(1,q/2+ 1, g + 1) with respect to lines, that a SBt" contains a unique hyperplane
PG(n — 2, q) such thaiPG(n — 1, 9)\R*") UPG(n — 2, q) is a setR~ and that a sek ~
contains a unique hyperplane BG- 2, q) such thatPG(n — 1, 9)\R™) UPG(h — 2, Q)
isasetRT.

In PG(n, q), foroddn > 5, let F = {4, ..., nx} be a partial flock of the con€ = vQ.
Again, we apply a duality to P@, g). The pointv is mapped to a hyperplané=PG(n —

1, q) of PG(n, q). LetG be the set of generatorg( — 3) /2)-dimensional subspaces) lying
on Q. A ((n — 1)/2)-dimensional subspaags, G € G, is mapped by the duality to an
((n—1)/2)-dimensional subspace ¥f and we denote bR the union of the points lying on
such((n—1)/2)-dimensional subspaces\f The sefR contains the subspace BG-2, )

of V which is the dual of the linav, with u the nucleus o®. It can be shown thaR has type
(1,9/2+1, g+1) with respect to lines, by showing that &an— 2)-dimensional subspace of
PG(n, q) onv liesin exactly 1q/2+1 org+ 1 hyperplanes containing an eleme@®, G €
G.Then, sincéR containg (n—1)/2)-dimensional subspaces notin @G-2, q), it follows
thatR isaseR* inV (this also follows fromR| = q"~1/24+-q" 2+ . .+-q+14+q"~1/2/2
and[7]). The hyperplanes,, ..., mx of 7 are mapped to poin{s, . .., px of PG(n, @)\ V.
Fori # j the (n — 2)-dimensional spacg; N x; does not meet the lingv and meetsC

in exactly the points of a non-singular elliptic guad@c (n — 2, q); hence the hyperplane
(mi Ny, v) does not contain any element Gf So the linep; p; meetsV in a point of
V\Rt =R\PGn - 2,q).

For n odd andq even adual partial flockof a setR* of type(1,9/2+ 1,g+ 1 ina
hyperplane PG — 1, q) of PG(n, q) is a set of points of P@, q)\PG(n — 1, q) such that
the line joining any two of them meets RG— 1, q) in a point of PGn — 1, g)\R™. Itis
clear that a partial flock gives rise to a dual partial flock and conversely.

We remark that the results of this last section also hold in thercas@ (see [12]); here
a setR" is the set of points of a dual regular hyperoval.

4.1. The algebraic conditions

Forq = 2", the map trace is defined by

h-1
trace: GKq) — GF(2), X sz'.
i=0

Theorem 3 In PG(n,q) for n > 3 odd let £ = vQ be a quadratic cone with vertex
the pointv and baseQ, whereQ is a non-singular quadric in a hyperplane not enand
let F = {m, ..., mx} be a set of hyperplanes not enWithout loss of generalitywe can
suppose that the quadratic colie= vQ has equation g1 +XaXa+- - - +Xn_3Xn_2 = X2_;,
sothatv = (0, ..., 0, 1) andQ has equation gx; + XoX3 + - - - + Xn_3Xp_2 = xﬁfl in the
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hyperplane P@& — 1, q) W|th equation x = 0. Fori = 1,..., k the hyperplaner; has
equation §'xo + - -- +a ;x,_1 4+ X, = 0 for some &’ ¢ GF(q) If g is odd Fis a
partial flock of K if and only if

_4(38) _ a(()j))( i _ (i)) _
(el —alls) el —ail) + (o — o)’

is a non-square in Gry) forall i, j € {1,...,k},i # j.Ifq is even F is a partial flock
of Cif and onlyif g, —a'’, £ 0and

a8 o)y el

foralli,j e {1,....k},i # |.

Proof: Fori, j € {1,...,k},i # j,thehyperplanér; Nxj, v) meetdC NPGN—-1, q) =
Q in the quadric@’ with equations

()

@) Yo+ (o =0

XoX1 + XoX3 + - -+ + Xp—3Xn_2 = anl-

@)

Atleastone ofa)’ —a\"), ..., @",—a'l’,) is not zero, for otherwiser; N 7;, v) meets

K in a hyperbolic quadratic cone with vertexsor; N ; meetskC in a hyperbolic quadric,
contrary to the definition of partial flock. Therefore, without loss of generality, we suppose

thata!’ + al)’. The quadriaQ’ is the intersection of the cone

PN . _

e - e
+ XoX3 + -+ + Xp_3Xn_2 = Xﬁ,l,

that is,

(a(i) (J))X + (a(()') _ a(()j))xr%_l + (ag) _ a;i)) X1Xp - - - -
(

)xaxna + (85 — a8’)xexs + (a5 — ay)xaxs +

+(an)y — &
y (I))Xn73Xn72 =0, (2)

+(a) —a

with the hyperplane (1) not through its vertex. We determine exactly when the quadric
Q' is non-singular and elliptic. Let the matrik = [a;j]; j=1,..n—1, Wherea; is twice
the coefficient ofx? in (2) and fori < ajj =a;; is the coefficient ofxx; in (2).
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ThenAis
Z(ai" a(”) ((u) (J)) (a(a"—aéj)) ((u)3_aT(11_)3) ((u)z_ (J)z) ((')1—31(11)1)
(aéi) _ a;l)) 0 (a(()” _ aé')) 0 0 0 B
(aé” aél )) (aéj) aé' )) 0 0 0 0 0
@-a) o 0 0 0 0
@a-aty o o o o @-a) o
(an), - ) 0 0 o . @ -a) 0 0
( © aﬁljl) 0 0 0 0 0 2<ag> B a(()j))

with determinant (expanding by the last row; then expanding the two resulting subdetermi
nants by the last column and first row respectively)

|A|=(—l)(”‘3)/2(ag)—aéj))” 3( ((a(()” a(()”)( f)—aij))vL( i _ (j))
() —a) 4o (s — el @ — ) — (el - ay)")

If g is odd, by [8, 22.2.1], the quadriQ’ is non-singular and elliptic if and only if
(=1 ™-V/2| Al is a non-square in GH), which is if and only if
Q)

~a(a) —a) ) —ai") =~ el —alls) (o~ aly) + (2, — L)’
is a non-square in GE).

For q even, by [8, 22.2.1], the quadri@’ is non-singular if and only ifA| # 0, that
is, if and only n‘a,ﬂ')l (”1 # 0. Further, the non-singular quadiiZ is elliptic if and
only if trace((|B] — (=1)™"Y/2|A))/(4|B)) = 1, where the matriB = [bj;]i j=1. .,
hasbij = 0 andbji = —b;j = —ajj fori < j. (The formula(|B| — (—1)"~ 1>/2|A|)/(4|B|)
should be interpreted as follows: the terms are replaced by indeterminates, the
formula is evaluated as a rational function over the integerand therg;; is specialized
to &; to give the result.) ThuB is

0 -al) (@) o (el @ -al) (el
W) o @Wea)o.. o o o
_(ag)_ m) _(aén_ag)) 0 0 0 0 0
_(afli) u‘)) 0 0 0 0 0

£

£

£

|
A o o
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and|B| = @) — a{")"3@", —a'”))2. Thus, the non-singular quadr’ is elliptic if

and only if

trace( (aé') _ aéj)) (af) - aij)) +oe (ar(1i—)3 - 31(1]_)3) (ar(1i_)2 - 31(1]_)2)>

4.2. The corresponding partial ovoid gf(n + 2, q)

Theorem 4 In PG(n, q), n > 3 odd let F be a partial flock of size k of the quadratic
conekC = vQ. Then there exists a partial ovoid of the non-singular hyperbolic quadric
Q™ (n + 2, q) of size kg+ 1 comprising k conics mutually tangent at a common point.
Converselygiven any such partial ovoid there exists a partial flogElof /C.

Proof: Embed in a non-singular hyperbolic quadigZ" in PG(n+2, q) and letL denote
the polarity determined b@*. Let F = {m1, ..., my}. First, since P@, q) N 9t = vQ,
the lineL = PG(n, g)* meetsQ™* in the single poinb. Fori = 1,...,k, ;- is a plane on
L meetingQ* in a (non-singular) coni€; onv. Since, fori, j € {1,...,k},i # j, @ N7x;
meetskC and hence als@* in a non-singular elliptic quadric, it follows that -, nJ-L) also
meetsQ™ in a non-singular elliptic quadric. Hence no two point’pfJ C; are collinear
onQ*,soC; U---UCis a partial ovoid of@™ of sizekqg + 1. The converse is immediate
as the polarity is bijective and involutory. O

Corollary 5 Let g be even. A partial ovoid @*(n + 2, q) which is a union of conics
mutually tangent at a common point has size at mést g.

Proof: Theorems 2 and 4. O

The construction in Theorem 4 gives a bound on the size of a partial flook> I8 and
g is even, this is not as good as the bound in Theorem 2.

Theorem 6 In PG(n,q), n > 3 odd let F be a partial flock of size k of the quadratic
conek = vQ in PG(n, q). Then k< q"~/2,

Proof: GivenF, by Theorem 4 there exists a partial ov@ldf sizekq+1 of 91 (n+2, q).
ThusO < q"™Y/2 4 1 ([8, A VI]) and the result follows. O

We remark that in the case= 3, the bound is best possible as there exist partial flocks
of sizeq of a quadratic cone in P@, q), calledflocks,associated with certain ovoids of
Q% (5,0).

Let F = {m1, ..., nx} be a partial flock ofC = vQ in PG(n, q), n odd. If the elements
of the partial flock contain a comman-dimensional subspacge then the corresponding
partial ovoid of @*(n + 2, q) is contained in argn + 1 — m)-dimensional subspace. In
particular, ifm = n — 3 and if§ N KC is non-singular then the corresponding partial ovoid is
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contained in a quadriQ(4, q). If, further,q is odd then there corresponds a partial spread
of sizekq + 1 of the generalized quadrandié(q). If k = g then this is a spread and there
arises a translation plane.

4.3. Derivation of a partial flock ok, g odd

Let Q(n + 1,q) be the non-singular quadric of P&+ 1, q) defined by the equation
XoX1 4+ XoX3+ -+ - + Xn_3Xn_2 — xﬁfl +XnXn+1 = 0 and letl denote the polarity determined
by Q(n+1, g). The tangent hyperplartéy of Q(n+1, q) at the pointpg = (0, ..., 0, 1, 0)
has equationx,,; = 0 and intersect®(n + 1, q) in the quadratic con&, with equation
XoX1 + XaX3 + - - + Xn_3Xn_2 — X2_; = Xn41 = 0 and vertexpo.

Let Fo be a partial flock of siz& of /Cp, where fori = 1, ..., k the elementr; of Fy has
equationsa((,')xo +-- 4 ar(]'jlxn_l + Xn = Xny1 = 0. Fori =1, ..., k, we define the line
Li = nil, and note that; meetsQ(n + 1, q) in pg and the further point

M A0 A0 YN Y SN0 1( 0

_ 5 o
Pi = <a§'),ao 8358 B By 5 1) —aj’'a;’

el - gl 1),

Sincep; € Q(n + 1, @), it follows that the hyperplangl; = p;* with equation
al’xo+a"x + -+ 8 Xo 1 4 X + 8 Xar1 =0,

where
Al = 1Al - o'l e - el ®

meetsQ(n + 1, q) in a quadratic con&;. For each, j € {1,...,k} withi # j, define
the (n — 1)-dimensional space;; = H; N H;. For eachj € {1,...,k} let 7j; be the
(n — 1)-dimensional space;.

Theorem 7 With the notation introduced abovéor any je({1,...,k}, the setF; =
{mj i =1,...,k} is a partial flock of the quadratic con€; in H;.

Proof: We use the notation and definitions made in this subsection. Let the collineation
o of PG(n + 1, q) be defined by
. e e )
0 (X0, X1, .-+, Xng1) > (Xo A" Xny1, X1 — 8y Xntls - -5 Xn—3 — Ay oXn41,
9 1 ) (i
Xn—2 — 8, 3Xn+1,%Xn-1+ Ean,lxn-q—l’xn + a5 " Xo

+ax + -+ aly Xo1 + a,ﬁﬁlxnﬂ,xnﬂ).
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Theno fixes Q(n + 1, q) setwise and fixes the poipt and the hyperplankly, hence also
fixesKo. Fori = 1, ..., k the (n — 1)-dimensional space; is mapped to the space with
equations

Ao+ + Al X 1 4 Xy = Xny1 = 0,

D a(()j), ce Aﬂll = ar(]ijl —a,_;. Thus, without loss of generality we can

whereA{’ = a
suppose thaa!’ = --- = a'’, = 0; sop; = (0,...,0, 1), H; is the hyperplane with
equationx, = 0, K; is the cone with equationgXxy + - - - + Xn_3Xn—2 — xﬁ_l =X, =0
andF; comprises th& (n — 1)-dimensional spaces, = x,;1 = 0 anda$’xo + a’x; +
ot a X1+ A X =X =0,fori =1,...,j -1, j+1... .k

We will use Theorem 3 to show tha is a partial flock. First, let, € € {1, 2, ..., Kk},

with j #£1i # £ # j. We must prove that

M

(S ) () () ()
A A/ \al  as a,  ay,/\al, &l
o © \?
1 A
o o
i1 G

0
]

_4< bo _ i) < by _ i) L _4<bn—3 _ E) <bn—2 _ Cn—Z)
Prhir  Chsr Prhyr Chpa Prhir Chsr Prhir Chpr
2
(bnl Cnl)
_l’_ —
bn+1 Cht+1

is a non-square in GE). Multiplying by (bn,1)?(ca11)?, we see that this is equivalent to
showing that

is a non-square in GE). Putb; = a{”’ andc; = a/”’. So we must prove that

F(i, £) = —4bobi (Cry1)? — 4coC1(Bn11)? + 4boCibnyaCara
+4b1CobntaCapr — - — 4bn—3bn—2(cn+1)2 - 4Cn—30n—2(bn+1)2
+ 4bn_3Ch—2bn41Cnr1 + 4Pn_2Ch—3bni1Cart + (Bn_1)?(Cns1)?
+ (€n—1)?(Bn+1)? — 2Dn_1Cr—1Pns1Crrt

is a non-square. On rearranging this expression, we find that

F (i, €) = (Cny1)?((bn_1)? — dbgby — - -+ — 4by_3bn_)
+ (Bn41)?((Cn-1)2 — 4CoC1 — - - - — 4Cn-3Cn-2) + bns1Cnia
X (—=20bp_1Cn—1 +4boCy +4b1Co + - - - +4bp_3Ch_2 + 4bn_2Ch_3)
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and hence, taking account of (3), that

F (i, €) = 4(Cn1)?nr1 + 4(0ni1) Cny
+ bnt1Cnp1(—20p_1Cn_1 + 4boC1 +4b1Co + - - - + 4bn_3Cn_2 + 4bn_2Cn_3)
=Dbni1Chy1(4Cni1 + 4bny1 — 20n_1Cn_1 + 4boCy + 4biCo + - - -
+ 4bn_3Ch_2 + 4bn_2Ch_3)
=bnt1Cnr1((Cn1)? — 4CoCy — - - — 4Cn_3Cn—2 + (bn_1)? — 4boby — - --
— 4b,_3bn_o — 2bn_1Ch_1 + 4bgCy + 4bico + - - -
+ 4bn_3Cnh—2 + 4bn_2Cq3).

Simplifying, we find that

F(i, £) = Cni1bny1((Ch1 — bn_1)? — 4(co — bo)(cr — by) — - --
- 4(Cn—3 - bn—S)(Cn—Z - bn—Z))-

Applying Theorem 3 to the pairs;, 7; andn,, ; of hyperplanes in the partial flocky
of Ko shows that each df,.; andc,,; is a non-square in GH). Similarly, applying
Theorem 3 to the planes andzr, of the partial flockFq of Ko shows that the third factor
is a non-square in G{). ThusF (i, ¢£) is a non-square in GH).

Finally, leti € {1,...,k} withi # j. We must prove that

i \?2 i i i i
(ﬁ) _4<£> <£>_..._4(&) (ﬁ)
20,) e e ) \atl,

is a non-square in GH). But this expression is@") )~ and the result follows, sina ,

is a non-square in GH) as above. O

We say that the partial flocks, . . ., 7 arederivedfrom the partial flockFg.

Forn andq odd, letpg, p1, ..., px bek + 1 points of the non-singular quadrig(n + 1,
g) and letHg, Hy, ..., Hx be the tangent hyperplanes &n + 1, q) at these points,
respectively. The& (n — 1)-dimensional spaceblp N H; fori = 1,..., k determine a
partial flock of the conély = Ho N Q(n + 1, q) if and only if the spaceHy N H; N H;
meetsQ(n + 1, q) in a non-singular elliptic quadric for eachj € {1, ..., k} withi # j.

Let Fo be a partial flock ofCo = Ho N Q(n + 1, q) and letpg, p1, ..., px be thek + 1
points associated withy as above. Forany € {1, ..., k} the(n — 1)-dimensional spaces
HoN Hj andH; N Hj, fori =1,..., kwithi # j, determine a partial flock of the cone
Kj = Hj N Q(n+ 1,q) by Theorem 7. Thus, any three distinct elemeHisH;, H,
of {Ho, ..., Hg} intersect in an(n — 2)-dimensional space which meaXn + 1,q) in a
non-singular elliptic quadric, that is, the polar spagep; p,)* meetsQ(n + 1,q) in a
non-singular elliptic quadric.

Following the convention established in the case= 3, we refer to a set of points
Po, - - -, Pk With the above properties agartial BLT-set.
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Let {po, P1, ..., px} be a partial BLT-set of the quadri@(n + 1,q). From p;,i €
{0, 1, ..., k}, we projectQ(n+1, q) onto a hyperplane P@, g) not containingp;, thereby
obtaining a well-known representation@fn+1, q) in PG(n, q) (see [10, 3.2.2, 3.2.4]). If
Hi is the tangent hyperplane @f(n+1, q) atp;, thenH; N Q(n+1, g) N PG(n, ) isanon-
singular quadri@(n—1, q) inthe(n—1)-dimensional spadd; N PG(n, q) = PG(n—1, q).

If pp; NPGIN, Q) = p] for j € {0,1,...,k} andj # i, then it is easy to see that
{Po: PL -~y P{_1, P41, - - -» Py} is @ dual partial flockF of Q(n — 1, q); it is also clear
thatF is the dual of the flockr;. Conversely, itF” is any dual partial flock 0@(n — 1, q)
then p; together with the points af(n + 1, q) which correspond to the points &f form

a partial BLT-set ofQ(n + 1, g).

Further, we can construct a partial ovoid of siap+ 1 of @ (n + 2, q) directly from a
partial BLT-set ofQ(n + 1, q) of sizek + 1, without going via the associated partial flock
as in Section 4.2. Leftpo, p1, ..., Px} be a partial BLT-set of the quadri@(n+ 1, q) in
PG(n+ 1, q). Nowembed P@ + 1, q) asahyperplanein R@ + 2, q) sothat9(n+ 1, q)
is embedded in a quadri@* (n+ 2, q) in PG(n + 2, g). Let p be the pole of PG + 1, q)
under the polarity determined b9 (n + 2, g). Each of the planes$p, po, pi) fori =
1..., k meetsQ™(n + 2, ) in a conic, and the union of these conics is a partial ovoid of
sizekq+1of QT (n+2,q).

4.4. Herds of caps, q even
Theorem 8 In PG(n, g), forn odd and q everfori =1, ..., k and for ce GF(q), let

7 al %+ +al X1+ X =0,

Co={(1a",a),....,a",, @)% 1i=1,....k} U{@O,...,0,1)} and
Co={(1a) +ca” +c¥%al, a) +cal’ + M2, ...,a", +cal,
+c¥2al @)% 1i=1,....k} U{@O,...,0 1)},

forsome &’ e GF(q). Ifthe setF = {m, ..., mx} of k hyperplanes is a partial flock of the
quadratic conegC : XpX1 + XoXz + « - - + Xn_3Xn_2 = xﬁ_l then each of, andC,, for all

c e GF(qg), isa(k+ 1)-capin PG(n+1)/2,q) forn > 3and a(k + 1)-arc in PG(2, q)
forn=3.

Proof: SupposeF = {1, ..., 7y} is a partial flock of the quadratic corié. We first

show that no three points 6£,\{(0, ..., 0, 1)} are collinear. Suppose to the contrary that
forsomei, j, £ € {1,..., k} the matrix
. . : oo
1oa) &y oAy, (&)
OORNC! M () )2
1 &) & ...ooal, (&)
) )2

1oa’ & oA, (ah)
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has rank2. Itfo_llows easily th:_at there exist elementsys, . S 02 € GF(qQ) such that
a’+a)  a’+a? a”+a” o
i 2 j 2 1 2 2 2 i 2 = ’
@)+ @) (@) @) () (a)
avgi—)z + 31(1]—)2 argj—)z +a,’; a’, + a1(wi—)2 o
- - = - = " = Up_2.
(@) + @) @)+ @2 (@) + @)
Using the algebraic condition in Theorem 3 we obtain:
trace(os (2 +ay) +as(a)’ +af’) + - +an2(a) s +as)) = 1, 4)
taceon(ay) +a) +as(@’ +ay) + - tano(@ls +aly) =1 ()

waceas(al) + a) +as(alf +a) + - Fan o6y ral) =1 (©)

Adding Egs. (4), (5) and (6) implies that trgb¢ = 1, a contradiction. Thu€,,\{(0, ...,
0, 1)}isak-cap of PG(n+1)/2, ). Finally, suppose that two points@f, are collinear with
(0,...,0,1). Thenthereexist j € {1, ..., k}suchthag!’ +a{’, a’ +af’, ..., a", +
a,ﬂj_)z are all zero. But this contradicts the condition in Theorem 3. Thus a(k + 1)-cap
of PG((n+1)/2, @).

Next, forc € GF(q), we consideC,. Forr =0,2,...,n— 3 andfori, j € {1,...,k}
let

i () () () @) ()
i al+a’ Gatay 12 a1t

= — - +C— - . .
(@) + @) @) @)t (k)T @)’

Suppose that some three pointsGgf{(0, ..., 0, 1)} are collinear; so for somi |, ¢ €
{1, ..., k} there existxg, az, . .., an_3z such that
a:)j = aéz = ozéi = oo,

ij jt [z
ay; =a, =0, =y,

0‘:11—3 = arjis = o3 = an-s.
Consider
M, A M, A
O, A & +a (), A0 . +a @, A0
w(ay’ +a)) = — — (&) + &) +c—— — (& +a")
(a1 + (a”y) (@21 + (a”)
) %)
12 Ghaatan M, ()
+c (aT(‘I|)1)2+(ar(1])l)2 (al +a’1 )

=cp +bp,
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wherec = @’ +a)@" +al’y/(@",)? + @\",)?) and traceb ) = 0, ash} is of

the formt + t2 for somet € GF(q). Analogously, we write

ao(ay” +ai”) = ¢’ + by,
ao(aiﬁ) + aii)) — Céi 4 bli’
where traceb(if) =trace(bg) =0. On adding these three equations, we obtaia @ioj +

cd’++cli-+bo, whereby = b +b) b satisfies traogy) = 0. Repeating these calculations
with O replaced by forr =2,4,...,n — 3, we obtain:

0=by+c) +c) +cf,

ij jl li
O=bns+cl ;+Cis+ch g,

foranalogous expressiohs dj , crje, cf‘ € GF(q) satisfyingtracé,) = - - - = tracgb,_3)

= 0. Adding these(n — 1)/2 equations shows that & b + ¢ + Cj; + C;, where
b=bo+by+ - +bys cj = cgj + cizj 4+ 4+ ch_g andcj,, ¢, are analogous. Fur-
ther, trac€b) = 0, and by Theorem 3, we have trgcg) = tracgc;j,) = tracgc,) = 1,
implying that tracé0) = 1, a contradiction. Thus we have shown tlg{{(0, ..., 0, 1)} is
ak-cap. Finally, suppose that two points@fare collinear with(0, .. ., 0, 1). Then there
existi, j € {1,...,k} suchthag’ +a)’ +c@ +al) +c2@", +a’),..., a5+
ally +c@l, +al,) +c¥2@", +al’)) are all zero. Multiplying the first expression
by @ + al)/(@" )% + @))?), we see that 0= ¢ + d, where traced) = 0.
Thus trac(acioj) = 0, and analogously (multiplying the remaining expressionsdéy +

a§j>)/((a,(1ill)2 +@D)?), ... (aéilz +a) /@ )2 + @) respectively), we find

thlat traceec'zj) = ... = trace(cL'_s) = 0. Thus tracécj) = trace(cioj + (:'2J 4+ 4+
03_3) = 0, contradicting Theorem 3. Hence, fore GFQq), C. is a (k + 1)-cap of
PG((n+ 1)/2,Qq). O

Such a set ofk + 1)-caps, of which there ap+ 1, is called aherdof (k + 1)-caps. By
Theorem 2, the caps have maximum siz¢ 1.

Remarks:

(1) Forn = 3 we refer to [2] and [11]. In this case tlike + 1)-arcs of Theorem 8 extend
to (k + 2)-arcs by adjoining the point0, 1, 0). Further, the converse of Theorem 8
holds.

(2) There are #-1/2 herds of caps projectively equivalent to those arising in Theorem 8
and obtained by interchanging in turn each subset of the pairs of coordinate:
(X01 Xl)v (X21 X3)7 R (Xn73» Xn—2)~
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5. Examples and characterisations of partial flocks ofC
5.1. The linear partial flocks

Let €K = vQ be a quadratic cone in R@ q), wheren is odd. Let PGn — 2, q) be an
(n — 2)-dimensional subspace of P& q) such that P@ — 2, q) N K is a non-singular
elliptic quadric. Therk hyperplanes on P@ — 2, q) not containing are a partial flock of
KC of sizek, called alinear partial flock; clearlyk < qg.

A partial flock is linear if and only if the corresponding dual partial flockipoints
of aline.

Theorem 9 Let F = {m,...,nx} be a partial flock of size k of the quadratic cone
K =vQinPG(n, g), n > 3odd. Suppose that for somegjie {1, ..., Kk} withi # j the
elements ofF cover the points okC\v&;, where&; = m Ny N K. Then k> g and if

k = g thenF is linear.

Proof: LetS = K\v&; and suppose the elements/itover the points of.

For P € S, let Np denote the number of elementsBfon P. By hypothesisNp > 1
for P € S. Now count the ordered pai®, ;) whereP € S, 7, € F andP € =,. We
obtain:

adQl =& D =151 = Z Np = k(1Q[ — I&jD.

PeS

Thusk > g and ifk = q then equality must hold throughout the expressionNso= 1
for all P € § andF partitions/C\v&;;. We note thatr; N v&; = mj Nv&; = &;j. Let
L,me{l,....q}, € #m, and let&m = m, Ny N K. We have shown thafm € v&ij;
som, Nv&; = m N V&) = Em. We may assume that# £. Thenm N, N K =
mi N Nv&j = &j N Em is a non-singular elliptic quadric in sonte — 2)-dimensional
subspace of P@, q). Thus&jj = Em, henceF is linear. O

The elements of a linear partial flock of sikehave a commorin — 2)-dimensional
subspace; so the corresponding partial ovoid of kize- 1 lies in a 3-dimensional space.
In fact this partial ovoid lies in an elliptic quadric.

5.2. Partial flocks with partial BLT-set a normal rational cure odd

These examples generalise the Fisher-Thas-Walker flocks (8, g odd, [3, 13], since
by [1] such a flock in P@3, q) has BLT-set a normal rational curve @4, q).

Theorem 10 InPG(n, q) forn > 3o0dd and q oddlet K be the quadratic cone with equa-
tion XoX1 + - - - + Xn_3Xn_2 = X2_,. Fort € GF(q), let; be the hyperplane with equation
ant"Xo + agtX1 + an_1t""Ixe + apt?Xg + - - - + Anr3),2t "X 3 + an_1),2t V2% 2 +
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an+1)2t MY/, 1 + X, = Owhere fori= 1,2, ..., (n — 1)/2 and for some elementa
non-square in GFj), we have

n+1 o n+1
4a,,1-ia = (-1) ( ) and 3<2n+1)/2 = 5(_1)(n+3)/2< nt1 )
2

Thenthe sef = {m; : t € GF(q)} is a partial flock of size q of, with BLT-set a normal
rational curve of PGn + 1, q) if and only if ga,---a, # 0. (For a given non-square
o € GF(q), q odd there exists such a partial flock |f and only(if/2)(—1)™+3/2(" * 1) is
either zero or a non-square.

Proof: We use Theorem 3. Fart € GH(Q), s # t, we have

—4(@nt" — ans") (art — a1S) — 4(@n—_1t""t — an_18" ) (at? — as?) —
— 4antay2t "I — 8325 (8ot TP — an1)28" V)

2
+ (a(n+1)/2t(n+1)/2 - a(n+1)/25(n+1)/2)

= (" + ") (—dana — 4an_1a — -+ - — 4ant3)28n-1)2 + a(2n+1)/2)
+(t"s + ts) (danay) + (1"71s? + 178" (dangdp) + - + (1T 2SNH/2
+OVESTI) (4o gy 28y 2) + 1SV (= 288, )

— O{(t _ S)n+l’

by the definition ofay, ..., a, and noting that the coefficient qt"** + s"*1) in the
expression is

(n-1)/2
o Z (—1)i+1<n —:_ 1) + %(_1)(n+3>/2(nni'll> Z( |+1(n ‘If‘ 1) .
i—1

By Theorem 3,F is a partial flock of C of size q. The associated BLT-set is the
normal rational curve {(ait, ant", at?, an-1t"1, ..., an_1),2t V2, amyg)pt MI/2)
(=1/2)an 12t M2, (@/H"E 1) Lt e GR@IU{(O,...,0,1,0)}. O

5.3. Other non-linear partial flocks

The first examples generalise the Kantor flocks in®@), for g odd [9], see also [12,
1.5.6].

Theorem 11 Fort € 7 € GF(q), q odd let 7 have equation &xo + al”"xq + - - - +

a1 X1+ %, = 0,whered” € GF(q). Foreachte 7, leta” +a{’ +-- - +a’, = bt",

where b is a non-square in G&) ando € AutGF(q), let ", = Oand for j = 2i,i =
0.1,....(n—3)/2 letal’ =t. ThenF = {m : t € T}is a partial flock of siz¢7 | of the

conek in PG(n, q) with equation X1 + - - - + Xn_3Xn_2 = xﬁfl.
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Proof: We use Theorem 3, noting that forj € 7,i # j, we have

~a(a) o) (@ — ") -~ a(als Al ~als) + (afs —all)’
=4b( — j)°*,
which is a non-square in G§). O
For example, lea" = —bt” and let all the termay, , be zeroj = 1,..., (n — 3)/2.
Thenm; has equatiotixg — bt"x; + txo + tX4 + - -+ + txXh_3 + Xn = 0, so contains the
subspace with equatiop = X3 = Xo = X4 = --- = Xp_3 = Xy = 0. If 7 = GF(q) then

the above partial flock induces a Kantor flock of the crpa = x2_, in the subspace with
projective coordinate&g, X1, Xn—1, Xn)-

In this example, for # 1, the hyperplanes of the partial flock intersect in ¢he- 3)-
dimensional spacg; = X, = Xg+ X2 + - -- + Xn_3 = 0. So foro # 1 we have a partial
ovoid of @*(n + 2, q) of sizeq? + 1 and lying in a 4-dimensional space RGq). As
PG(4, q) intersect™ (n + 2, q) in a non-singular quadri© (4, q), we obtain an ovoid of
Q(4, q) (which is, in fact, a Kantor ovoid oD (4, q) [9]).

Now, let F be a partial flock of siz& of a quadratic con& in PG(m, q), for some odd
m > 3, and suppose that all the hyperplanegAnntersect in a common-dimensional
subspace. By Theorem 4, there is associated a partial Gvofdizekq+1 of 9T (m+2, q)
such that the points ab generate arim — r + 1)-dimensional subspace. Now embed
ot(m+2,q9)in QT (n+ 2, q) wheren is odd anch > m. ThenQ is a partial ovoid of size
kg + 1 of @7 (n + 2, ) consisting ok mutually tangent conics, so by Theorem 4 there is
associated a partial flock of sikef a quadratic cone in P@, q) such that the hyperplanes
of the partial flock intersect in a comma@n — m + r)-dimensional subspace.

For example, letn = 3 andk = g and letF be alinear flock ofC (sor = 1). Then there
exists a partial flock of sizg of a quadratic cone in P@, q) for each oddh > 3 such that
the hyperplanes in the partial flock intersect in a comr@ror 2)-dimensional subspace,
that is, the partial flock is linear.

More generally, letO be a partial ovoid of siz&q + 1 of a (singular or non-singular)
quadricQ in PG(m, q) (wheremis odd or even), and suppose tiiatomprisek mutually
tangent conics. Embe@ in Q*(n + 2, q) wheren + 2 > m andn is odd (the smallest
possible value fon will depend on the type a®). ThenQ is a partial ovoid 0©* (n+2, q)
comprisingk mutually tangent conics, hence determines a partial flock of lsiné a
quadratic cone in P@, q). If the points of© generate ah-dimensional space then the
hyperplanes in the partial flock intersect in a comnior- ¢ + 1)-dimensional subspace.

For example, letn = 6 and letQ = L Q' be the singular quadric with vertex a lihe
and base a non-singular quadgx in PG(4, q). Let O be an ovoid of@ consisting ofg
mutually tangent conics (from an ovol@ of Q' consisting ofg mutually tangent conics
many such ovoid€® can be constructed). Emb&lin a Q" (n + 2, q), n odd andn > 7.
Then there arises a partial flock of sig®f a quadratic cone in P@, q), the hyperplanes
of which intersect in at least an — 5)-dimensional space (®' is an elliptic quadric, then
they intersect in at least an — 4)-dimensional space).
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6. Partial flocks for small gq

In PG(n, 2), a partial flock of a quadratic corié = vQ with vertexv has size at most two.
Further, every partial flock o€ of cardinality 2 is linear.

In PG(5, 3), let € = vQ be the quadratic cone with equatirgx; + XoXz = xf. Using the
notation py, as, . . ., as] for the hyperplanegxy+a; X1 +- - - +asxs = 0, a partial flock ofcC
of size sixin PG5, 3)is 7 ={[0,0,0,0,0,1],[0,0,1,1,0,1],[0,1,2,2,0,1],[2,0, 2, 2,
0,1],[2,1,0,1,1,1],[2,1,1,0, 2, 1]}. Thus forn > 3 andq odd, there exist partial flocks
of size greater thaq.

It is an open problem to determine the maximum size of a partial flock of a quadratic
cone in P@n, g) for g odd.
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