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Abstract A new infinite family of bipartite cubic 3-arc transitive graphs is con-
structed and studied. They provide the first known examples admitting a 2-arc tran-
sitive vertex-biquasiprimitive group of automorphisms for which the index two sub-
group fixing each half of the bipartition is not quasiprimitive on either bipartite half.
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1 Introduction

The study of cubic s-arc-transitive graphs goes back to the seminal papers of Tutte
[14, 15] who showed that s ≤ 5. More generally, Weiss [16] proved that s ≤ 7 for
graphs of larger valency. In [13], the last author introduced a global approach to the
study of s-arc-transitive graphs.

Given a connected graph � with an s-arc-transitive group G of automorphisms, if
G has a nontrivial normal subgroup N with at least three orbits on vertices, then G
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induces an unfaithful but s-arc-transitive action on the normal quotient �N (defined
in Sect. 2). The important graphs to study are then those with no “useful” normal quo-
tients, that is, those for which all nontrivial normal subgroups of G have at most two
orbits on vertices. A transitive permutation group for which all nontrivial normal sub-
groups are transitive is called quasiprimitive, while if the group is not quasiprimitive
and all nontrivial normal subgroups have at most two orbits we call it biquasiprimi-
tive. Thus the basic graphs to study are those which are (G, s)-arc transitive and G is
either quasiprimitive or biquasiprimitive on vertices.

Now suppose that our graph � were bipartite. Then the even subgroup G+ (the
subgroup generated by the vertex stabilisers Gv for all v ∈ V �) has index 2 in G and
is transitive on each of the two bipartite halves of � (see, for example, [7, Proposi-
tion 1]). Since G+ is vertex-intransitive, G is not vertex-quasiprimitive and so the
basic bipartite graphs are those where G is biquasiprimitive on vertices. The actions
of such groups were investigated in [11, 12]. However, when G is biquasiprimitive it
may still be possible to find a meaningful quotient of the graph. The subgroup G+ is
what is called locally transitive on s-arcs (see Sect. 2 for a precise definition and [8]
for an analysis of such graphs). If G+ is not quasiprimitive on each bipartite half (note
the two actions of G+ are equivalent) then we can form a G+-normal quotient and
obtain a new (smaller) locally s-arc-transitive graph. The existence of a 2-arc transi-
tive graph with such a group has been regarded as ‘problematic’ (see [11, Sect. 4]).
The main result of this paper is that there do indeed exist (G,2)-arc transitive graphs
such that G is biquasiprimitive but G+ is not quasiprimitive on each bipartite half.

Theorem 1.1 There exist infinitely many connected bipartite (G,2)-arc transitive
graphs � of valency 3, where G ≤ Aut(�), such that G is biquasiprimitive on vertices
but G+ is not quasiprimitive on either bipartite half.

Such permutation groups G were described in detail in [11, Theorem 1.1(c)(i)]
(see Corollary 9.8) and this theorem gives the first examples of 2-arc-transitive graphs
admitting such automorphism groups. (Our graphs are actually 3-arc transitive, but
only (G,2)-arc-transitive.) We also provide an infinite family of (G,1)-arc-transitive
graphs where G is biquasiprimitive on vertices but G+ is not quasiprimitive on each
orbit (Construction 3.1). The full automorphism group A of such a graph is 2-arc-
transitive but A+ is quasiprimitive on each bipartite half.

Graphs which are s-arc transitive are also s-distance transitive, provided their di-
ameter is at least s. Such graphs were studied in [4] where (G, s)-distance transitive
bipartite graphs with G biquasiprimitive on vertices, but G+ not quasiprimitive on
each bipartite half, were referred to as G-basic but not G+-basic (see [4, Proposi-
tion 6.3]). Our infinite family of graphs shows that connected 2-distance transitive
graphs with such an automorphism group do indeed exist and so this answers Ques-
tion 6.4 of [4] in the affirmative for s = 2.

We prove Theorem 1.1 by constructing and analysing a new infinite family of
finite bipartite (G,2)-arc transitive graphs �(f,α) of valency 3, where f is a posi-
tive integer and α lies in the Galois field GF(2f ), see Construction 6.1. The group
G ≤ Aut(�(f,α)) depends only on f , has order 22f +1(22f −1)2, and is biquasiprim-
itive on vertices, while G+ is not quasiprimitive on either bipartite half. Indeed we
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have N (of order 2f (22f − 1)) normal in G+ and intransitive on each bipartite half
(Proposition 9.5). These graphs are quite large, indeed their number of vertices is
22f (22f − 1)2/3 (Proposition 6.3). Infinitely many of them are connected (Propo-
sition 8.5). The number of pairwise non-isomorphic connected graphs produced by
Construction 6.1 grows exponentially with f (Proposition 8.5); and each connected
graph has relatively large girth (at least 10, Proposition 9.2) and diameter (at least
6f − 3, Proposition 6.3).

Note that G is not the full automorphism group of �(f,α). Moreover, overgroups
of biquasiprimitive and quasiprimitive groups are not necessarily biquasiprimitive or
quasiprimitive respectively. Indeed we have the following:

Theorem 1.2 For each connected graph � = �(f,α) defined in Construction 6.1,
with automorphism group A = Aut(�) given in Proposition 8.1, G is an index two
subgroup of A, � is (A,3)-arc-transitive, A is not biquasiprimitive on vertices and
A+ is quasiprimitive on each bipartite half.

We do not know if there are examples where G is the full automorphism group.

Question 1.3 Is there a (G,2)-arc transitive graph � such that G = Aut(�) is bi-
quasiprimitive on vertices but G+ is not quasiprimitive on each bipartite half?

2 Preliminary graph definitions

We consider simple, undirected graphs �, with vertex-set V � and edge-set E�.
A graph is called cubic if it is regular of valency 3. For a positive integer s, an s-
arc of a graph is an (s + 1)-tuple (v0, v1, . . . , vs) of vertices such that vi is adjacent
to vi−1 for 1 ≤ i ≤ s and vj−1 �= vj+1 for 1 ≤ j ≤ s − 1. The distance between two
vertices v1 and v2, denoted by d�(v1, v2), is the minimal number s such that there
exists an s-arc between v1 and v2. For a connected graph �, we define the diameter
of �, denoted diam(�), as the maximum distance between two vertices of �.

We denote a complete graph on n vertices by Kn and a complete bipartite graph
with bipartite halves of sizes n and m by Kn,m. The disjoint union of m copies of �

is denoted by m�.
Let � be a graph, G ≤ Aut(�), and N � G. The (normal) quotient graph �N is

the graph with vertex-set the set of N -orbits, such that two N -orbits B1 and B2 are
adjacent in �N if and only if there exist v ∈ B1 and w ∈ B2 with {v,w} ∈ E�.

Tables 1 and 2 describe some properties P that hold for the G-action on a con-
nected graph �, where G ≤ Aut(�) and we require that G be transitive on each set
in some collection P (�) of sets. For the local variant we require that for each vertex
v of �, the stabiliser Gv be transitive on each set in a related collection P (�, v) of
sets. These concepts are sometimes used without reference to a particular group G,
especially when G = Aut(�).

Next we describe coset graphs, which will be used to describe our family of
graphs, and some of their properties.
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Table 1 Properties for G-action on a connected graph �

Property P (�) = {�i |1 ≤ i ≤ s}, �s �= ∅

(G, s)-arc transitivity �i is the set of i-arcs of �

G-arc transitivity s = 1 and �1 is as in previous line

(G, s)-distance transitivity �i is {(v,w) ∈ V � × V �|d�(v,w) = i}
G-distance transitivity s = diam(�) and �i is as in previous line

Table 2 Local properties for G-action on a connected graph �

Local property P (�, v) = {�i(v)|1 ≤ i ≤ s}, �s(v) �= ∅ for some v

local (G, s)-arc transitivity �i(v) is the set of i-arcs of � with initial vertex v

local G-arc transitivity s = 1 and �1(v) is as in previous line

local (G, s)-distance transitivity �i(v) is �i(v) := {w ∈ V �|d�(v,w) = i}
local G-distance transitivity s = diam(�) and �i(v) is as in previous line

Definition 2.1 Given a group G, a subgroup H and an element g ∈ G such that
HgH = Hg−1H , the coset graph Cos(G,H,HgH) is the graph with vertices
the right cosets of H in G, with Hg1 and Hg2 forming an edge if and only if
g2g

−1
1 ∈ HgH .

Note that a coset graph is indeed undirected since g2g
−1
1 ∈ HgH if and only if

g1g
−1
2 ∈ Hg−1H .

Lemma 2.2 Let � = Cos(G,H,HgH). Then the following facts hold.

(a) � has |G : H | vertices and is regular with valency |H : Hg ∩ H |.
(b) The group G acts by right multiplication on the coset graph with kernel⋂

x∈G Hx , and G is arc-transitive.
(c) � is connected if and only if 〈H,g〉 = G.
(d) If 〈H,g〉 ≤ K < G, then � = m� where m = |G : K| and � =

Cos(K,H,HgH).
(e) � has |G : 〈H,g〉| connected components, each isomorphic to

Cos(〈H,g〉,H,HgH).
(f) For η ∈ NAutG(H), the map η̄ : Hx 	→ Hxη is a permutation of V � and induces

an isomorphism from � to Cos(G,H,HgηH).

Proof Statements (a) to (c) can be found in [10].
Assume 〈H,g〉 ≤ K < G. By Theorem 4(i, iii) of [10], there is no edge of �

between vertices (that is, H -cosets) lying in distinct K-cosets. On the other hand, by
the last paragraph of the proof of that same theorem, for all K-cosets Kx, the graph
induced on the H -cosets contained in Kx is isomorphic to � = Cos(K,H,HgH).
Hence (d) holds. Statement (e) follows from (d) (taking K = 〈H,g〉) and (c).

Let η ∈ NAutG(H) and � = Cos(G,H,HgηH). Then η maps H -cosets to H -
cosets and so induces the permutation η̄ : V � → V � : Hx 	→ Hxη of V � = V �.
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Let {Hx,Hy} be an edge of �, that is, yx−1 ∈ HgH . Now yη(xη)−1 = (yx−1)η ∈
(HgH)η . Since η normalises H , we have (HgH)η = HgηH , and so {Hxη,Hyη}
is an edge of �. Conversely, let {Hxη,Hyη} be an edge of �, so that yη(xη)−1 =
(yx−1)η ∈ HgηH . Then yx−1 ∈ (HgηH)η

−1
, and since η normalises H ,

(HgηH)η
−1 = HgH . Therefore η̄ sends the edge-set of � to the edge-set of � and

(f) holds. �

3 1-arc-transitive examples

In this section, we construct an infinite family of G-arc-transitive graphs such that G

is biquasiprimitive on vertices but G+ is not quasiprimitive on each bipartite half.

Construction 3.1 Let H = Zp × Zp × Z2 where p ≡ 1 (mod 3) is a prime. Let a

be an element of multiplicative order 3 in Zp . We define a graph � with vertex-set H

and edges of the form
{
(x, y,0), (x + 1, y + 1,1)

}
,

{
(x, y,0),

(
x + a, y + a2,1

)}
,

{
(x, y,0),

(
x + a2, y + a,1

)}
.

This yields an undirected bipartite graph with bipartite halves �1 = {(x, y,0)|x, y ∈
Zp} and �2 = {(x, y,1)|x, y ∈ Zp}.

Some automorphisms of � are:

• tu,v : (x, y, ε) 	→ (x + u,y + v, ε) ∈ Aut(�), we denote {tu,v|u,v ∈ Zp} by
N ∼= Z

2
p;

• τ : (x, y, ε) 	→ (ax, a2y, ε) ∈ Aut(�);
• σ : (x, y, ε) 	→ (y, x, ε) ∈ Aut(�);
• ν : (x, y, ε) 	→ (−x,−y,1 − ε) ∈ Aut(�).

We easily see from this construction that � is cubic with the neighbours of the
vertex (x, y, ε) being (x + (−1)ε, y + (−1)ε,1), (x + (−1)εa, y + (−1)εa2,1) and
(x + (−1)εa2, y + (−1)εa,1)}.

Proposition 3.2 Let G = N � 〈τ, σν〉 ∼= Z
2
p �S3. Then G is biquasiprimitive on V �

but G+ is not quasiprimitive on each bipartite half and � is (G,1)-arc transitive but
not (G,2)-arc transitive. The full automorphism group of � is A = N � 〈τ, σ, ν〉 ∼=
Z

2
p � (S3 × Z2). Then � is (A,2)-arc transitive, A is biquasiprimitive on V � and

A+ is quasiprimitive on the bipartite halves.

Proof The group N clearly acts transitively on each bipartite half and σν switches �1
and �2, so G is transitive on V �. Moreover, since no nontrivial element of 〈τ, σν〉
centralises N : and since 〈τ, σν〉 leaves invariant no subgroup of N of order p, it fol-
lows that N is the unique minimal normal subgroup of G and so G is biquasiprimitive
on vertices. Now G+ = N � 〈τ 〉 has {tu,0|u ∈ Zp} ∼= Zp as a normal subgroup that is
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intransitive on �1 and �2. Thus G+ is not quasiprimitive on each bipartite half. Fi-
nally, G(0,0,0) = 〈τ 〉, which acts regularly on the set of three neighbours of (0,0,0),
and so � is (G,1)-arc transitive but not (G,2)-arc transitive.

Let A = N � 〈τ, σ, ν〉. Then N is also the unique minimal normal subgroup of A

and of A+ = N � 〈τ, σ 〉. Thus A is biquasiprimitive on vertices and A+ is quasiprim-
itive on each bipartite half. Moreover, A(0,0,0) = 〈τ, σ 〉 ∼= S3 acts 2-transitively on the
set of three neighbours of (0,0,0) and so � is (A,2)-arc transitive.

Let X be the full automorphism group of �. Since A is vertex-transitive, we have
X = AXα (where α ∈ V �) and so |Xα| divides 48 [14, 15]. Since |Aα| = 6, it follows
that |X : A| divides 8. Consider the action of X on the set of right cosets of A. If A

is core-free in X, it follows that X ≤ S8, contradicting p2 dividing |A| and p ≥ 7.
Thus A contains a normal subgroup M of X. Since N is the unique minimal normal
subgroup of A, it follows that N ≤ M . However, N is the unique Sylow p-subgroup
of A and hence of M , and so N � X. Hence X has a normal subgroup that acts
regularly on each bipartite half and so, by [9, Lemma 2.4], Xα acts faithfully on
�(α). Thus Xα = Aα = S3 and hence X = A. �

4 Finite fields

This section contains facts about finite fields that we need later. We denote a field of
order q by GF(q).

Definition 4.1 Let x be an element of a field F . The subfield generated by x is the
unique smallest subfield containing x. The element x is called a generator of F if
the subfield generated by x is F , in other words, if x is not contained in any proper
subfield of F .

Lemma 4.2 Let f be an integer and let α ∈ GF(2f ). The subfield generated by α is
GF(2e) if and only if the order of α divides 2e − 1 but does not divide 2s − 1 for any
proper divisor s of e. In particular, α is a generator of GF(2f ) if and only if the order
of α does not divide 2e − 1 for any proper divisor e of f .

Proof Since the multiplicative group of GF(2f ) is cyclic of order 2f − 1, it follows
that the multiplicative group of the subfield GF(2e) of GF(2f ) is precisely the sub-
group of order 2e − 1, with e dividing f . This subgroup is unique, since there is a
unique subgroup of each order in a cyclic group. Thus the order of α divides 2e − 1
if and only if α ∈ GF(2e). The result follows. �

Lemma 4.3 Let f be an integer, f ≥ 2, and let α be a generator of GF(2f ). Then

(a) α2i �= α + 1 for all positive integers i < f except possibly i = f/2 (with f even),
and

(b) α2i �= α for all positive integers i < f .

Proof Suppose α2i = α + 1 for some integer i < f . Then since GF(2f ) has char-
acteristic 2, we have α22i = (α2i

)2i = (α + 1)2i = α2i + 1 = α, so α22i−1 = 1.
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Since 0 �= α ∈ GF(2f ), we also have that α2f −1 = 1. Hence the order of α divides
gcd(22i − 1,2f − 1) = 2gcd(2i,f ) − 1. Since gcd(2i, f ) divides f and α is a genera-
tor, Lemma 4.2 implies that gcd(2i, f ) = f , that is, f divides 2i. Since f > i, this
implies that f is even and i = f/2. This proves (a).

Suppose α2i = α for some positive integer i < f . Then α2i−1 = 1. Hence the
order of α divides gcd(2i − 1,2f − 1) = 2gcd(i,f ) − 1. Since gcd(i, f ) is a divisor of
f and α is a generator, Lemma 4.2 implies that gcd(i, f ) = f , that is, f divides i,
contradicting f > i. This proves (b). �

Lemma 4.4 Let f be an integer, f ≥ 3. Then the number of generators of GF(2f ) is
strictly greater than 2f −1.

Proof For f = 3, all elements of GF(23) \ {0,1} are generators, hence there are 6
generators and the claim holds. Assume f ≥ 4. Let f = ∏k

i=1 p
ei

i , where the pi are
distinct primes and each ei ≥ 1. Let fi = f/pi . Then all elements which are not gen-
erators are in one of the subfields GF(2fi ). Hence the number of generators is 2f −
|⋃k

i=1 GF(2fi )|. We have |⋃k
i=1 GF(2fi )| ≤ 1+�k

i=1(2
fi −1) since 0 is in all fields.

Since fi ≤ f/2 for all i, we have |⋃k
i=1 GF(2fi )| ≤ 1 + k(2f/2 − 1) ≤ k2f/2. Since

f ≥ ∏k
i=1 pi ≥ 2k , we have k ≤ log2(f ), and so |⋃k

i=1 GF(2fi )| ≤ log2(f )2f/2. It is
easy to check that, for f ≥ 4, log2(f ) ≤ 2f/2−1, and so log2(f )2f/2 ≤ 2f −1. We can
now conclude that the number of generators is at least 2f − 2f −1 = 2f −1.

Suppose we get equality. Then we have equality in all our inequalities. In particular
1 + k(2f/2 − 1) = k2f/2, and so k = 1, and k = log2(f ), so f = 2k . Thus f = 2, a
contradiction. Therefore, the number of generators is greater than 2f −1. �

Lemma 4.5 Let � be an integer, � ≥ 2. Then the number of generators of GF(22�)

which do not satisfy the equation x2� = x + 1 is strictly greater than 2�(2�−1 − 1).

Proof By Lemma 4.4, GF(22�) contains more than 22�−1 generators. Since the equa-
tion x2� = x + 1 has degree 2�, it has at most 2� solutions. Hence the number of
generators not satisfying the equation is greater than 22�−1 − 2� = 2�(2�−1 − 1). �

5 The group PSL(2,2f )

The elements of a group PSL(2, q) may be viewed as permutations of X :=
GF(q) ∪ {∞}. More precisely, ta,b,c,d is the element

ta,b,c,d : x 	→ ax + b

cx + d
for all x ∈ X, (1)

where a, b, c, d ∈ GF(q) are such that ad − bc is a nonzero square of GF(q). We
adopt the convention that ∞ is mapped by ta,b,c,d onto ac−1 and that an element of
GF(q) divided by 0 is ∞. For q = 2f , all nonzero elements of GF(q) are squares,
and the automorphism group of PSL(2, q) is P�L(2, q) = 〈PSL(2, q), τ 〉, where

τ : ta,b,c,d 	→ ta2,b2,c2,d2 for each ta,b,c,d ∈ PSL(2, q). (2)
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In this paper, we will take T = PSL(2,2f ) for some f ≥ 1. For each subfield
GF(2e) of GF(2f ), we identify PSL(2,2e) with the subgroup of T of those ta,b,c,d

with all of a, b, c, d ∈ GF(2e). In our construction, we will use the following notation
for elements of H = PSL(2,2) ≤ T :

a = t1,1,1,0 : x 	→ 1 + 1

x
, b = t1,1,0,1 : x 	→ x + 1. (3)

Note that a has order 3, b has order 2, and H = 〈a〉 � 〈b〉 ∼= S3. For α ∈ GF(2f ), we
will also need the following elements of T :

uα = t1,α,0,1 : x 	→ x + α, cα = auα = tα+1,α2+α+1,1,α. (4)

Let P be the Sylow 2-subgroup of T containing the involution b = u1, that is, P =
{uα|α ∈ GF(2f )}. Then NT (P ) ∼= AGL(1,2f ) is the set of permutations tr,s,0,1 : x 	→
rx + s with r �= 0.

Lemma 5.1 Let α ∈ GF(2f ). Using the notation introduced above, the following
facts hold.

(a) CT (b) = P . In particular, uαb = buα = uα+1 and CH (b) = 〈b〉.
(b) For α �= 0, the element zα := tα−1,0,0,1 ∈ NT (P ). Moreover uα = bzα and the

order of zα is equal to the multiplicative order of α.
(c) cτ i

α = c−1
α if and only if α2i = α + 1.

(d) NT (H) = H .
(e) If the subfield generated by α is GF(2e), then 〈H,uα〉 = PSL(2,2e).

Proof (a) The centraliser of b in T is easily computed. Since uα ∈ P , it then com-
mutes with b, and buα = uα+1. Also CH (b) = CT (b) ∩ H = 〈b〉.
(b) A calculation shows that uzα

y = uαy ∈ P , and so zα ∈ NT (P ). Also uα = u
zα

1 = bzα .

Since z
j
α = tα−j ,0,0,1 the rest of the statement follows.

(c) This is a simple calculation left to the reader.
(d) Let D = NT (〈a〉). Now D is a dihedral group D2(2f ±1), see [5, Sect. 260]. Since
〈a〉 ∼= C3 is characteristic in H ∼= S3, NT (H) ≤ NT (〈a〉) = D, and so NT (H) =
ND(H). Since an S3 subgroup in a dihedral group D2n, n odd, is self-normalising,
we have that ND(H) = H . Thus NT (H) = H .
(e) Suppose the subfield generated by α is GF(2e). If e = 1, then α = 0 or 1,
uα ∈ H and 〈H,uα〉 = H = PSL(2,2). Assume now e ≥ 2. Since all the subscripts
of uα = t1,α,0,1 are in GF(2e), we obviously have 〈H,uα〉 ≤ PSL(2,2e). Suppose
that 〈H,uα〉 ≤ M , where M is a maximal subgroup of PSL(2,2e). Since 〈H,uα〉
contains a subgroup isomorphic to S3, M cannot be isomorphic to AGL(1,2e) (for
e even, 3 divides |AGL(1,2e)| but no involution in AGL(1,2e) inverts an element
of order 3). Also since 〈H,uα〉 contains subgroups which are isomorphic to C2

2 , M

cannot be isomorphic to D2(2e±1). It follows from the list of maximal subgroups of
PSL(2,2e) (see [5, Sect. 260]) that M ∼= PSL(2,2s) for some proper divisor s of e.
Since b,uα ∈ M commute, they lie in the same Sylow 2-subgroup S of M , so there
exists d ∈ M such that bd = uα . Hence bd = uα = bzα (by Part (b)), and so dz−1

α
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centralises b. Since CT (b) = P by (a), we obtain that d ∈ Pzα . Since zα ∈ NT (P )

has order n := |α|, it follows that d has order divisible by n. Moreover, d must be in
NM(S) ∼= AGL(1,2s), and so the order of d divides 2s − 1. Thus n divides 2s − 1, a
contradiction to Lemma 4.2. Thus, 〈H,uα〉 = PSL(2,2e). �

6 The family of graphs

Let f be a positive integer, and let T , H , a, b, α, zα (for α �= 0), uα , and cα be as in
Sect. 5.

Construction 6.1 Let G = T 2
� 〈π〉, where π ∈ Aut(T 2) is such that (x, y)π =

(y, x), for all elements (x, y) ∈ T 2. Let L = 〈(a, a), (b, b)〉 < T 2, and

gα = (uα, buα)π = (uα,uαb)π = (t1,α,0,1, t1,α+1,0,1)π. (5)

By Lemma 6.2(c) below, g−1
α = gα(b, b). Thus Lg−1

α L = Lgα(b, b)L = LgαL. De-
fine � = �(f,α) = Cos(G,L,LgαL).

We shall need information about the following subgroups:

Xα = 〈L,gα〉, Nα = 〈
L,

(
c−1
α , cα

)〉
. (6)

Lemma 6.2 The following facts hold.

(a) |G| = 22f +1(22f − 1)2.
(b) (a, a)gα = (c−1

α , cα), where cα is as in (4) and has order 3. Thus Nα ≤ Xα .
(c) g−1

α = gα(b, b) and (b, b)gα = (b, b).
(d) For f ≥ 2 and α a generator of GF(2f ), either Nα = T 2 or Nα = {(t, tν)|t ∈

T } ∼= T for some ν ∈ Aut(T ).

Proof (a) follows from the fact that |G| = 2|T |2.
(b) We have (a, a)gα = (auα , (ab)uα )π = (cα, c−1

α )π = (c−1
α , cα), by (4), and hence

Nα ≤ Xα . Since cα is conjugate to a, it has order 3.
(c) We have g2

α(b, b) = (uα, buα)π(uα, buα)π(b, b) = (uα, buα)(buα,uα)(b, b) =
(1,1) since uαb = buα by Lemma 5.1(a). Thus g−1

α = gα(b, b). We also have
(b, b)gα = (buα , buαb)π = (b, b)π = (b, b), using Lemma 5.1(a) for the second equal-
ity.
(d) The projections of Nα onto each of the two coordinates are equal to 〈a, b, cα〉.
Since uαb = buα , the subgroup 〈a, b, cα〉 of T is normalised by each of a, b and uα .
Hence 〈a, b, cα〉� 〈a, b,uα〉, and 〈a, b,uα〉 = T by Lemma 5.1(e). Thus 〈a, b, cα〉 =
T since T is simple, and so Nα = T 2 or Nα

∼= T . In the latter case, Nα is a diagonal
subgroup of T 2 and hence Nα = {(t, tν)|t ∈ T } ∼= T for some ν ∈ Aut(T ). �

We first describe some general properties of the graphs �(f,α).
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Proposition 6.3 Let f ≥ 1 be an integer and α be an element of GF(2f ). Let � =
�(f,α), G, T , L, π be as in Construction 6.1. Then � is bipartite, cubic, and, if �

is connected, then it has diameter at least 6f − 3. Moreover, G+ = T 2, G ≤ Aut(�)

and |V �| = 22f (22f − 1)2/3.

Proof By Lemma 6.2(b), (a, a)gα = (c−1
α , cα), which is not in L since cα �= c−1

α , and,
by Lemma 6.2(c), (b, b)gα = (b, b). Thus the intersection Lgα ∩ L = 〈(b, b)〉 ∼= C2,
and so the graph � has valency |L : Lgα ∩ L| = 3 (hence is cubic) by Lemma 2.2(a).
Moreover, T 2 has two orbits on the cosets of L, and since T 2 ∩LgαL = ∅, no vertices
in the same orbit are adjacent. Hence � is bipartite. Since T 2 is an index 2 subgroup
of G and its orbits are the two bipartite halves, the even subgroup G+ is precisely T 2.
The number of vertices of � is |G|/|L| = 22f (22f − 1)2/3, with each bipartite half
of size 22f −1(22f − 1)2/3.

Suppose � is connected and let d = diam(�). We have |�1(L)| = 3 and |�i(L)| is
at most 2|�i−1(L)| for 2 ≤ i ≤ d . Hence the number of vertices of � is at most 1 +
3 + 3.2 + · · ·+ 3.2d−1 = 1 + 3(2d − 1). Therefore 22f (22f − 1)2/3 ≤ 1 + 3(2d − 1),
or equivalently, 22f (22f − 1)2/9 + 2/3 ≤ 2d , which implies 22f (22f − 1)2/9 < 2d .

Thus (22f −1)/3 < 2
d
2 −f . Now for all f ≥ 1, we have (22f −1)/3 ≥ 22f /4 = 22f −2,

and so 22f −2 < 2
d
2 −f . Therefore, 2f − 2 < d

2 − f and d > 6f − 4. Since
⋂

x∈G Lx

is trivial, it follows from Lemma 2.2(b) that G acts faithfully on �, and hence G ≤
Aut(�). �

Note that the bound on the diameter is not tight. For example, for f = 3 a
MAGMA [2] computation shows that �(3, α) has diameter 21 for α a generator of
GF(8) (we will see in Corollary 8.6 that the graph is connected in this case).

7 Equality and connectivity

We first have a lemma determining when graphs obtained by Construction 6.1 have
the same edge-set.

Proposition 7.1 Let f ≥ 1. Let α,β be elements of GF(2f ). Then �(f,α) = �(f,β)

if and only if β ∈ {α,α + 1}.

Proof Suppose that �(f,α) = �(f,β). Then the double cosets LgαL and LgβL

coincide, and so gβ ∈ LgαL. Since π centralises L, this implies, using (5), that
(uβ, buβ) = (h1, h1)(uα, buα)(h2, h2) for some h1, h2 ∈ H . Thus h1buαh2 = buβ =
bh1uαh2, and so h1 commutes with b. Since b centralises P by Lemma 5.1(a) and
uα,uβ ∈ P , we also have h1uαbh2 = uβb = h1uαh2b, and so h2 also commutes
with b. Hence h1, h2 ∈ CH (b) = 〈b〉 by Lemma 5.1(a). If h1 = h2, then α = β , and
if h2 = h1b then β = α + 1.

Conversely, if β = α + 1, then gβ = (uβ,uβb)π = (uαb,uα)π = gα(b, b), and so
LgαL = LgβL. Thus �(f,α) = �(f,β). �

For f = 1 Construction 6.1 yields only one graph.
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Lemma 7.2 �(1,0) = �(1,1) = 2K3,3.

Proof Here T = H , and by Proposition 7.1, �(1,0) = �(1,1) so we may as-
sume α = 0. Thus uα = 1 and gα = (1, b)π . It can be computed that 〈L,gα〉 =
{(x, y)|x−1y ∈ 〈a〉}∪ {(x, yb)π |x−1y ∈ 〈a〉} has index 2 in G. Therefore, by Lemma
2.2(e), �(1,0) has 2 connected components. Each must be bipartite and have valency
3 by Proposition 6.3, hence the conclusion. �

The next two general results allow us to determine the connected components of
�(f,α).

Lemma 7.3 Let α be an element of GF(2f ) and let GF(2e) be the subfield generated
by α. Then �(f,α) ∼= m�(e,α), where m = |T : PSL(2,2e)|2.

Proof Let K = PSL(2,2e)2
� 〈π〉 viewed as a subgroup of G. Then gα ∈ K and

L ≤ K , and so 〈L,gα〉 ≤ K . By Lemma 2.2(d), �(f,α) = m� where m = |G : K|
and � = Cos(K,L,LgαL). Finally, m = |G : K| = 2|T |2/(2|PSL(2,2e)|2) = |T :
PSL(2,2e)|2. �

Proposition 7.4 Let f ≥ 2 and α ∈ GF(2f ) be a generator.

(a) If f is odd, or if f is even and α2(f/2) �= α + 1, then �(f,α) is connected.
(b) If f is even and α2(f/2) = α+1, then �(f,α) has |T | connected components, each

containing |T |/3 vertices and isomorphic to Cos(〈T , ν〉,H,HuανH) where
H = PSL(2,2) and ν = τ (f/2).

Proof We set Xα = 〈L,gα〉 and Nα = 〈L, (c−1
α , cα)〉 as in (6). By Lemma 2.2(e), the

number of connected components of �(f,α) is |G : Xα| and all connected compo-
nents are isomorphic to Cos(Xα,L,LgαL).

We have α /∈ {0,1}, since α is a generator and f �= 1.
By Lemma 6.2(b), Nα ≤ Xα , and by Lemma 6.2(d), either Nα = T 2 or Nα =

{(t, tν)|t ∈ T } for some ν ∈ Aut(T ). In the latter case, since Nα contains (a, a),
(b, b) and (c−1

α , cα), ν must be in CAut(T )(〈a, b〉) and must satisfy cν
α = c−1

α . Since
〈a, b〉 = PSL(2,2), we have CAut(T )(〈a, b〉) = CAut(T )(PSL(2,2)) = Aut(GF(2f )) =
〈τ 〉 ∼= Cf , where τ is the Frobenius automorphism described in (2).

Assume f is odd, or f is even and α2(f/2) �= α + 1. Then by Lemma 4.3(a), α2i �=
α + 1 for all i < f , and so by Lemma 5.1(c), cτ i

α �= c−1
α for all i < f . Hence there

is no ν ∈ CAut(T )(〈a, b〉) satisfying cν
α = c−1

α . Thus Nα = T 2, and so Xα = G since
gα /∈ T 2. Thus �(f,α) is connected and (a) holds.

Now assume f is even and α2i = α + 1, where i = f/2. Let ν := τ i . By Lemma
5.1(c), ν ∈ CAut(T )(〈a, b〉) and satisfies cν

α = c−1
α , and so Nα = {(t, tν)|t ∈ T } ∼= T .

Notice ν is an involution. We have Nα ≤ Xα , and so 〈Nα,gα〉 ≤ 〈Xα,gα〉 = Xα . On
the other hand, Xα = 〈(a, a), (b, b), gα〉 ≤ 〈(a, a), (b, b), (c−1

α , cα), gα〉 = 〈Nα,gα〉.
Thus Xα = 〈Nα,gα〉. Notice that uν

α = t
1,α2i

,0,1
= uα+1 = uαb, and so gα =

(uα,uν
α)π . Therefore, 〈Nα,gα〉 = 〈Nα,π〉 = Nα �〈π〉. Hence, |Xα| = 2|Nα| = 2|T |.
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Moreover, Xα = {(t, tν)πε |t ∈ T , ε ∈ {0,1}}. Also the number of connected compo-
nents is |G : Xα| = |T | by Lemma 2.2(e).

We now prove that Xα is isomorphic to 〈T , ν〉. We define

φ : Xα → 〈T , ν〉 : (t, tν)πε 	→ tνε.

We first show that φ is a homomorphism, that is, that φ((t1, t
ν
1 )πε1(t2, t

ν
2 )πε2) =

φ((t1, t
ν
1 )πε1)φ((t2, t

ν
2 )πε2). This clearly holds for ε1 = 0. We now prove the case

ε1 = 1.

φ
((

t1, t
ν
1

)
π

(
t2, t

ν
2

)
πε2

) = φ
((

t1, t
ν
1

)(
tν2 , t2

)
ππε2

)

= φ
((

t1t
ν
2 , tν1 t2

)
π1−ε2

)

= t1t
ν
2 ν1−ε2

= t1νt2νν1−ε2

= (t1ν)
(
t2ν

ε2
)

= φ
((

t1, t
ν
1

)
π

)
φ
((

t2, t
ν
2

)
πε2

)
.

Thus φ is a homomorphism. Clearly, Kerφ = 1, and |Xα| = |〈T , ν〉| = 2|T |, and so φ

is a bijection. Therefore, φ is an isomorphism.
Notice that φ(L) = 〈a, b〉 = H and φ(gα) = uαν.
By Lemma 2.2(e), each connected component of �(f,α) is isomorphic to

Cos(Xα,L,LgαL), and φ induces a graph isomorphism Cos(Xα,L,LgαL) ∼=
Cos(〈T , ν〉,H,HuανH). Thus (b) holds. �

Note that the proof of Proposition 7.4 uses the fact that T is simple through Lemma
6.2(d) and hence requires f ≥ 2.

Putting together Lemma 7.3 and Proposition 7.4, we get the following corollary.

Corollary 7.5 Let f ≥ 2 and let GF(2e) be the subfield generated by α.

(a) If e is odd, or if e is even and α2(e/2) �= α + 1, then �(f,α) = m�(e,α), where
m = |T : PSL(2,2e)|2 and �(e,α) is connected.

(b) If e is even and α2(e/2) = α + 1, then �(f,α) has |PSL(2,2e)|−1|PSL(2,2f )|2
connected components, each isomorphic to Cos(〈PSL(2,2e), ν〉,H,HuανH),
where H = PSL(2,2) and ν = τ (e/2).

We can now deal with the case f = 2. Take GF(4) = {a + bi|a, b ∈ GF(2), i2 =
i + 1}. By Proposition 7.1, Construction 6.1 yields two graphs for f = 2, namely
�(2,0) and �(2, i).

Corollary 7.6 The two graphs obtained by Construction 6.1 for f = 2 are not con-
nected. More precisely,

(a) �(2,0) ∼= 200K3,3, and
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(b) �(2, i) ∼= 60 D where D is the incidence graph of the Desargues configuration,
called the Desargues graph (it is a double cover of the Petersen graph).

Proof Consider first α = 0. By Lemma 7.3, �(2,0) ∼= m�(1,0), where m =
|PSL(2,22) : PSL(2,21)|2 = 100. Part (a) follows from Proposition 7.2.

Now assume α = i. Then α2(f/2) = i2 = i + 1 = α + 1, so part (b) of Propo-
sition 7.4 holds. Here uα = t1,i,0,1 and ν = τ . Thus �(2, i) has |PSL(2,22)| =
60 connected components, each containing 60/3 = 20 vertices and isomorphic to
Cos(P�L(2,4),H,HuατH) where H = PSL(2,2). There are only two arc-transitive
cubic graphs on 20 vertices, the Desargues graph and the dodecahedron (see [1,
p. 148]). Since �(2, i) is bipartite by Proposition 6.3, its connected components can-
not be dodecahedrons, hence they are Desargues graphs. The Desargues graph has
vertices the points and lines of the Desargues configuration, with two vertices adja-
cent if they form a flag (incident point-line pair) of the configuration. It is a double
cover of the Petersen graph. �

8 Automorphism groups and isomorphisms for connected �(f,α)

The remainder of this paper is concerned mainly with the connected graphs �(f,α)

given by Construction 6.1, that is, we may assume from now on that α is a gener-
ator and, if f is even, then α2(f/2) �= α + 1 (see Corollary 7.5). By Lemma 7.2 and
Corollary 7.6, we may assume that f ≥ 3.

In this section, we determine the full automorphism group A of � = �(f,α) and
the normaliser of A in Sym(V �). This will then enable us to determine a lower bound
on the number of non-isomorphic such graphs, for a given f .

Proposition 8.1 Let f ≥ 3 be an integer and α ∈ GF(2f ). Let � = �(f,α), G, T ,
L, π be as in Construction 6.1 with � connected. The full automorphism group of �

is A = G × 〈σ 〉, where σ is given by (Lx)σ = Lπx for all x ∈ G. In particular, A

does not depend on the choice of α and � is (A,3)-arc transitive but not (A,4)-arc-
transitive. Moreover, the stabiliser in A of the vertex L is L × 〈πσ 〉 ∼= D12.

Proof Let A be the full automorphism group of �. By Proposition 6.3, G ≤ A. De-
fine the map σ on V � by (Lx)σ = Lπx for all x ∈ G. This is a well defined bijec-
tion, since π centralises L. Consider an edge {Lg1,Lg2}, that is, g2g

−1
1 ∈ LgαL. Its

image under σ is {Lπg1,Lπg2}. We have πg2(πg1)
−1 = πg2g

−1
1 π ∈ πLgαLπ =

LπgαπL. Recall that gα = (uα,uαb)π and uαb = buα , so πgαπ = (uαb,uα)π =
(b, b)gα . Thus LπgαπL = LgαL, so {Lg1,Lg2}σ is an edge, and σ ∈ A. We now
show that σ centralises G. Indeed, let h ∈ G and Lx ∈ V �, then (Lx)hσ = (Lxh)σ =
Lπxh = (Lπx)h = (Lx)σh. Hence σh = hσ , and σ ∈ CA(G). Since Z(G) = 1, we
have σ /∈ G. Also σ 2 = 1. Therefore, R := G×〈σ 〉 ≤ A. The stabiliser of L ∈ V � in
R is RL = L × 〈πσ 〉 ∼= S3 × C2 ∼= D12.

By Lemma 2.2(b), � is (G,1)-arc transitive, and so is (R,1)-arc transitive. Tutte
[14, 15] proved that the automorphism group of an arc-transitive finite graph with
valency 3 acts regularly on s-arcs for some s ≤ 5, and the stabiliser of a vertex has
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order 3.2s−1. Since |RL| = 12, R acts regularly on the 3-arcs of � (and hence is not
transitive on 4-arcs).

Suppose R < A. Since both R and A are transitive on V �, the Orbit-Stabiliser
Theorem implies that RL < AL, and so A would act regularly on s-arcs for some
s = 4 or 5. By Theorem 3 of [7], this is not possible. Hence A = R. �

Definition 8.2 Let � = �(f,α) (not necessarily connected). We define τ̄ : V � →
V � : L(c, d)πε 	→ L(cτ , dτ )πε for each (c, d) ∈ T 2, ε ∈ {0,1}, where τ is as de-
fined in (2).

Lemma 8.3 Let � = �(f,α) (not necessarily connected) and let τ̄ be as in Defini-
tion 8.2. Then τ̄ induces an isomorphism from � to �(f,α2). Moreover 〈τ̄ 〉 ∼= Cf .

Proof We have τ , as defined in (2), in Aut(T ). We denote by μ the element
of Aut(G) defined by (c, d)μ = (cτ , dτ ) for all (c, d) ∈ T 2 and by πμ = π .
Then, since μ centralises (a, a) and (b, b), we have that μ ∈ NAutG(L). Thus we
can use Lemma 2.2(f), with μ̄ : Lx 	→ Lxμ. More precisely for (c, d) ∈ T 2, ε ∈
{0,1}, we have (L(c, d)πε)μ̄ = L(c, d)μ(πε)μ = L(cτ , dτ )πε . Hence μ̄ = τ̄ is a
permutation of V � and induces an isomorphism from � = Cos(G,L,LgαL) to
Cos(G,L,Lg

μ
α L) by Lemma 2.2(f). Note that g

μ
α = ((t1,α,0,1, t1,α+1,0,1)π)μ (see

(5)), and so g
μ
α = ((t1,α,0,1)

τ , (t1,α+1,0,1)
τ )π = (t1,α2,0,1, t1,α2+1,0,1)π = gα2 . There-

fore, Cos(G,L,Lg
μ
α L) = �(f,α2).

For i ≥ 1, the permutation τ̄ i of V � maps the coset L(c, d)πε onto L(cτ i
, dτ i

)πε .
Thus τ̄ has the same order as τ , and so 〈τ̄ 〉 ∼= Cf . �

We now determine NSym(V �)(A).

Lemma 8.4 Let � = �(f,α) and A be as in Proposition 8.1. Then NSym(V �)(A) =
A � 〈τ̄ 〉 ∼= A.Cf , where τ̄ is as defined in Definition 8.2.

Proof Set N := NSym(V �)(A) and N0 := 〈A, τ̄ 〉. We use the notation of Construc-
tion 6.1. By Lemma 8.3, τ̄ ∈ Sym(V �). Moreover, it follows from the definitions of
τ̄ and σ that τ̄−1(c, d)τ̄ = (cτ , dτ ) for each (c, d) ∈ T 2, and [τ̄ , σ ] = [τ̄ , π] = 1.
Thus N0 = A � 〈τ̄ 〉 ≤ N with N0/A ∼= 〈τ̄ 〉 ∼= Cf .

Since T 2 is a characteristic subgroup of A, each element of N induces an au-
tomorphism of T 2, and we have a homomorphism ϕ : N → Aut(T 2) with kernel
K = CN(T 2) ≤ CSym(V �)(T

2) = C, say. Now K (and hence C) contains Z(A) =
〈σ 〉 ∼= C2, which interchanges the two orbits of T 2 in V �, and so the subgroup C+
of C stabilising each of the T 2-orbits setwise has index 2 in C. The two T 2-orbits are
the sets �1 and �2 of L-cosets in T 2 and T 2gα respectively, and L is the stabiliser
in T 2 of the vertex L of �1 and also the stabiliser in T 2 of the vertex Lπ of �2.
For i = 1,2, let Si,Li denote the permutation groups on �i induced by T 2 and L,
respectively. Then by Lemma 5.1(d), NSi

(Li) = Li and by [6, Theorem 4.2A(i)],
CSym(�i)(Si) ∼= NSi

(Li)/Li = 1. Thus C+ = 1 and K = C = 〈σ 〉, of order 2.
Now ϕ(N) contains the inner automorphism group ϕ(T 2) of T 2, and the quotient

ϕ(N)/ϕ(T 2) is contained in the outer automorphism group of T 2, which is isomor-
phic to 〈τ 〉wr〈π〉. Further, ϕ(N)/ϕ(T 2) normalises ϕ(A)/ϕ(T 2), which corresponds
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to the subgroup 〈π〉 of 〈τ 〉wr〈π〉, and so the subgroup of 〈τ 〉wr〈π〉 corresponding
to ϕ(N)/ϕ(T 2) lies in the normaliser of 〈π〉 in 〈τ 〉wr〈π〉, namely 〈(τ, τ )〉 × 〈π〉 ∼=
Cf × C2. On the other hand, ϕ(N)/ϕ(T 2) contains ϕ(N0)/ϕ(T 2) ∼= 〈τ̄ 〉 × 〈π〉. Thus
equality holds, and we conclude that N = N0. �

We are now able to determine a lower bound on the number of non-isomorphic
connected graphs �(f,α) for each f . They are obviously not isomorphic for different
values of f , so in particular, it follows that there are infinitely many such graphs, as
the lower bound is increasing with f .

Proposition 8.5 Let f ≥ 3.

(a) Let �(f,α) and �(f,β) be connected graphs. Then �(f,α) ∼= �(f,β) if and
only if β ∈ {α2i |0 ≤ i < f } ∪ {α2i + 1|0 ≤ i < f }.

(b) The number of pairwise non-isomorphic connected graphs � obtained from Con-
struction 6.1 is greater than 2f −2/f if f is odd and greater than (2f −2 −
2f/2−1)/f if f is even.

Proof Let � = �(f,α) and �(f,β) be connected graphs produced by Construc-
tion 6.1. By Corollary 7.5, α and β are generators, and if f is even then α2(f/2) �= α+1
and β2(f/2) �= β + 1.

Suppose that ψ is an isomorphism from �(f,α) to �(f,β). Since V � =
V �(f,β), the isomorphism ψ is an element of Sym(V �) and since, by Propo-
sition 8.1, Aut(�(f,α)) = Aut(�(f,β)) = A, it follows that ψ is an element of
NSym(V �)(A). By Lemma 8.4, NSym(V �)(A) = A � 〈τ̄ 〉. Thus �(f,β) is the image

of �(f,α) under τ̄ i for some i such that 0 ≤ i < f . We have �(f,β) = �(f,α)τ̄
i =

�(f,α2i
) by Lemma 8.3. Therefore, by Proposition 7.1, β = α2i

or α2i + 1, and so
β ∈ {α2i |0 ≤ i < f } ∪ {α2i + 1|0 ≤ i < f }.

Suppose now that β ∈ {α2i |0 ≤ i < f }∪{α2i +1|0 ≤ i < f }. Then, by Proposition
7.1, �(f,β) = �(f,α2i

) for some 0 ≤ i < f , which, by Lemma 8.3, is equal to
�(f,α)τ̄

i
, where τ̄ i is a graph isomorphism. Hence �(f,α) ∼= �(f,β) and part (a)

holds.
Let α be a generator such that, if f is even, α2(f/2) �= α + 1 . We claim that the

set {α2i |0 ≤ i < f } ∪ {α2i + 1|0 ≤ i < f } has size 2f . Notice first that all elements
x of this set are generators and do not satisfy the equation x2(f/2) �= x + 1. Suppose
α2i = α2j

for some i, j such that 0 ≤ i < j < f , then α2i = (α2i
)2j−i

, contradicting
Lemma 4.3(b) for the generator α2i

. Hence {α2i |0 ≤ i < f } and {α2i + 1|0 ≤ i < f }
both have size f . Now suppose α2i = α2j + 1 for some i, j such that 0 ≤ i < j < f

(we can assume i < j without loss of generality, because otherwise we just add 1 to
both sides of the equation). Thus α2i = (α2i

)2j−i + 1. Applying Lemma 4.3(a) to the
generator α2i

, we get that f is even, j − i = f/2 and α2i = (α2i
)2f/2 + 1. However,

since α2i
does not satisfy the equation x2(f/2) �= x + 1, this is a contradiction. Thus

the claim is proved.
Suppose first f is odd. Then �(f,α) is connected if and only if α is a generator, by

Corollary 7.5. By Lemma 4.4, the number of generators of GF(2f ) is strictly greater
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than 2f −1. By the claim and part (a), exactly 2f of those generators yield isomorphic
graphs, thus the number of pairwise non-isomorphic connected graphs is greater than
2f −2/f .

Finally, assume f is even. Then �(f,α) is connected if and only if α is a generator
and α2(f/2) �= α + 1, by Corollary 7.5. By Lemma 4.5, the number of such elements is
greater than 2f/2(2f/2−1 − 1). By the claim and part (a), exactly 2f of those genera-
tors yield isomorphic graphs, thus the number of pairwise non-isomorphic connected
graphs is greater than 2f/2−1(2f/2−1 − 1)/f = (2f −2 − 2f/2−1)/f . �

We illustrate this result by considering the case f = 3 where we obtain the first
connected examples. Take GF(8) = {a + bj + cj2|a, b, c ∈ GF(2), j3 = j + 1}. For
f = 3, our construction yields four graphs with different edge-sets, namely �(3,0),
�(3, j), �(3, j2) and �(3, j4), by Proposition 7.1.

Corollary 8.6 Up to isomorphism, Construction 6.1 for f = 3 yields two graphs,
one of which is connected. More precisely,

(a) �(3,0) ∼= 14112K3,3, and
(b) �(3, j) ∼= �(3, j2) ∼= �(3, j4) is connected.

Proof Consider first α = 0. By Lemma 7.3, �(3,0) ∼= m�(1,0), where m =
|PSL(2,28) : PSL(2,2)|2 = 842. Part (a) now follows from Proposition 7.2. Now
assume α = j . By Proposition 7.4, �(3, j) is connected, and by Proposition 8.5(a),
�(3, j) ∼= �(3, j2) ∼= �(3, j4). �

For f = 4 also, our construction yields just one connected graph and three dis-
connected ones, up to isomorphism. Take GF(16) = {a + bk + ck2 + dk3|a, b, c, d ∈
GF(2), k4 = k + 1}.

Corollary 8.7 Up to isomorphism, Construction 6.1 for f = 4 yields four graphs,
one of which is connected. More precisely,

(a) �(4,0) = 924800K3,3,
(b) For α ∈ {k5, k10}, �(f,α) ∼= 277440 D, where D is the Desargues graph,
(c) For α ∈ {k, k2, k4, k8}, �(4, α) ∼= �(4, k) has 4080 connected components, and
(d) For α a generator not in {k, k2, k4, k8}, �(4, α) ∼= �(4, k3) is connected.

Proof Consider first α = 0. By Lemma 7.3, �(4,0) ∼= m�(1,0), where m =
|PSL(2,16) : PSL(2,2)|2 = 6802. Part (a) now follows from Proposition 7.2.

The element k5 generates GF(4) = {0,1, k5, k10}, and so by Lemma 7.3,
�(4, k5) ∼= m�(2, k5), where m = |PSL(2,16) : PSL(2,4)|2 = 682. Now �(2, k5)

is �(2, i) from Corollary 7.6, and so �(4, k5) ∼= 682.60 D = 277440 D. Now k10 =
k5 + 1, and so by Proposition 7.1, �(4, k5) = �(4, k10). Thus part (b) holds.

Now assume α = k. By Proposition 8.5(a), �(4, k) ∼= �(4, k2) ∼= �(4, k4) ∼=
�(4, k8). Since α is a generator and α2(f/2) = α4 = α + 1, by Proposition 7.4, �(4, k)

has |T | = 4080 connected components. Thus part (c) holds.
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Finally, assume α = k3. Then, by Proposition 8.5(a), �(f,β) ∼= �(f, k3) if
and only if β ∈ {α2i |0 ≤ i < f } ∪ {α2i + 1|0 ≤ i < f } = {k3, k6, k12, k9} ∪
{k14, k13, k11, k7}, that is, if β is any generator not in {k, k2, k4, k8}. Moreover, by
Proposition 7.4, �(4, k3) is connected since α4 �= α + 1. Thus part (d) holds. �

For f = 5, the bound of Proposition 8.5 tells us that there are at least 2 non-
isomorphic connected graphs obtained by Construction 6.1. Actually, there are 30
generators, exactly 2f = 10 of them yielding isomorphic graphs, and so there are 3
pairwise non-isomorphic connected graphs for f = 5.

9 Symmetry properties for connected �(f,α)

In this section, we study the symmetry properties described in Tables 1 and 2 pos-
sessed by connected graphs �(f,α). This includes a formal proof of Theorems 1.1
and 1.2. We start by defining the following five groups of automorphisms.

Definition 9.1 We consider the following five subgroups of A, whose inclusions are
given in Fig. 1.

1. A = G × 〈σ 〉;
2. A+ = T 2

� 〈σπ〉;
3. G = T 2

� 〈π〉;
4. M = T 2 × 〈σ 〉;
5. G+ = M+ = T 2.

Note that σπ stabilises the bipartite halves of �(f,α) setwise and T 2
� 〈σπ〉 is

maximal in A, hence it is A+. By Proposition 6.3, G+ = T 2. Since T 2 is maximal in
M, it follows that M+ = T 2.

We have the following results on s-arc transitivity.

Proposition 9.2 Let f ≥ 3, �(f,α) be a connected graph as described in Construc-
tion 6.1, and let G,M,A,G+,A+ be as in Definition 9.1. Then the following facts
hold.

1. � has girth at least 10.
2. � is (A,3)-arc transitive but not (A,4)-arc transitive.
3. � is locally (A+,3)-arc transitive but not locally (A+,4)-arc transitive.
4. � is (G,2)-arc transitive but not (G,3)-arc transitive.
5. � is (M,2)-arc transitive but not (M,3)-arc transitive.

Fig. 1 Lattice A

� | �

A+ G M

� | �

G+
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6. � is locally (G+,2)-arc transitive but not locally (G+,3)-arc transitive.

Proof See Proposition 8.1 for Fact 2. Since A+
L = AL has order 3.22, we have that

� is locally (A+,3)-arc transitive but not locally (A+,4)-arc transitive and Fact 3
holds.

By [3, Theorem 2.1], all the 3-arc transitive finite graphs of girth up to 9 with
valency 3 are known. The largest one has 570 vertices. By Theorem 6.3, |V �| ≥
26(26 − 1)2/3 = 84672. Thus � has girth at least 10 and Fact 1 holds.

Let X ∈ {G,G+,M}. The stabiliser of the vertex “L” in X is precisely L, acting
as S3 on its three neighbours. Therefore, the stabiliser of a vertex is 2-transitive on its
neighbours, and so � is locally (X,2)-arc transitive (see for instance Lemma 3.2 of
[8]). Since G and M are transitive on V �, � is also (G,2)-arc transitive and (M,2)-
arc transitive. Since girth(�) > 6, the number of 3-arcs starting in L is exactly 12,
and so XL, which has order 6, cannot be transitive on the 3-arcs starting in L. Hence
Facts 4, 5 and 6 hold. �

The lower bound of 10 on the girth is an underestimate, but is sufficient for our
purposes. For example, a computation using MAGMA [2] shows that, for f = 3, the
unique connected graph �(f, j) (see Corollary 8.6) has girth 16 and for f = 4, the
girth of the unique connected graph �(3, k3) (see Corollary 8.7) is 30.

Question 9.3 Is the girth of the connected graphs obtained from Construction 6.1
unbounded?

Let � be a graph of girth g. If s ≤ [g−1
2 ], then � is (locally) (G, s)-distance tran-

sitive if and only if � is (locally) (G, s)-arc transitive [4, Lemma 7.2]. Since �(f,α)

has girth at least 10 we have the following corollary to Proposition 9.2.

Corollary 9.4 Let s ≤ 4, � = �(f,α) and X ≤ Aut(�). Then � is (locally) (X, s)-
distance transitive if and only if � is (locally) (X, s)-arc transitive

The following proposition determines, for each of the automorphism groups X ∈
{A,G,M}, whether X is biquasiprimitive on vertices and whether X+ is quasiprim-
itive on each bipartite half. Recall that M+ = G+.

Proposition 9.5 Let f ≥ 3, � = �(f,α) be a connected graph described in Con-
struction 6.1, and let G,M,A,G+,A+ be as in Definition 9.1. Then G is bi-
quasiprimitive on V �, while M and A are not biquasiprimitive on V �, and A+ is
quasiprimitive on each bipartite half, while G+ is not.

Proof We recall that σ centralises G. Since π (respectively, σπ ) interchanges the
two direct factors of G+, T 2 is a minimal normal subgroup of G and of A+, and
indeed is the unique minimal normal subgroup. Since T 2 has two orbits on vertices,
G is biquasiprimitive on V �. Also A+ is faithful and quasiprimitive on each of its
orbits.

Let N = 1 × T , then N is normal in G+ and in M . Notice that |N | = |T | =
2f (22f − 1) is less than the number of vertices in each bipartite half. Hence N
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is intransitive on each bipartite half and so �N is nondegenerate. More precisely,
|V �N | = 2f (22f − 1)/3 with half the vertices in each bipartite half. Thus G+ is not
quasiprimitive on each bipartite half.

Now let N ′ = 〈σ 〉, then N ′ is normal in A and in M . Obviously, N ′ (which has
order 2) is intransitive on each bipartite half and so �N ′ is nondegenerate. More
precisely, |V �N ′ | = |V �|/2. Thus A and M are not biquasiprimitive on V �. �

Remark 9.6 As mentioned in the introduction, if G+ is not quasiprimitive on each
bipartite half, which is the case here, then we can form a G+-normal quotient and
obtain a smaller locally s-arc-transitive graph. For � = �(f,α), we can quotient by
N = 1 × T . Now G+/N ∼= T , so this yields a locally (T ,2)-arc transitive graph �N

such that T has two orbits on vertices and the stabiliser of any vertex is isomorphic
to S3. Moreover, by [8, Theorem 1.1], �(f,α) is a cover of this quotient. Since M nor-
malises N , the group M/N ∼= T ×C2 also acts on �N . This action is vertex-transitive
and hence �N is (M/N,2)-arc transitive. In particular, �N is not semisymmetric.

In general, not all automorphisms of a quotient graph must arise from automor-
phisms of the original graph.

We can now prove our two main theorems.

Proof of Theorem 1.1 By Proposition 8.5(b), the number of non-isomorphic con-
nected graphs �(f,α) increases with f odd and with f even, and so there are an
infinite number of such graphs. By Proposition 9.2(4) the graphs are (G,2)-arc tran-
sitive. Moreover, by Proposition 9.5, G is biquasiprimitive on V � while G+ is not
quasiprimitive on each bipartite half. �

Proof of Theorem 1.2 By Proposition 8.1, G has index 2 in A = Aut(�), and by
Proposition 9.2(2), � is (A,3)-arc-transitive. It follows from Proposition 9.5 that A

is not biquasiprimitive on vertices and A+ is quasiprimitive on each bipartite half. �

Next we verify that G is indeed of the type given in [11, Theorem 1.1(c)(i)] as
claimed in the introduction. First a definition:

Definition 9.7 A permutation group G ≤ Sym(�) is biquasiprimitive of type (c)(i),
as described in Theorem 1.1 of [11], if G is permutationally isomorphic to a group
with the following properties.

(a) |�| = 2m and the even subgroup G+ ≤ Sm × Sm is equal to {(h,hϕ)|h ∈ H },
where H ≤ Sm, ϕ ∈ Aut(H) and ϕ2 is an inner automorphism of H .

(b) H has two intransitive minimal normal subgroups R and S such that S = Rϕ ,
R = Sϕ , and R × S is a transitive subgroup of Sm.

(c) {(h,hϕ)|h ∈ R × S} is the unique minimal normal subgroup of G.

Corollary 9.8 Let f ≥ 3, � = �(f,α) be a connected graph described in Construc-
tion 6.1, and let G also be as in Construction 6.1. Then G ≤ Sym(V �) is of type
(c)(i), as described in Theorem 1.1 of [11].
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Proof By [11, Theorem 1.2 and Proposition 4.1], a biquasiprimitive group acting 2-
arc transitively on a bipartite graph must satisfy the conditions of (a)(i) or (c)(i) of
Theorem 1.1 of [11]. For groups satisfying (a)(i), the even subgroup is quasiprimitive
on each bipartite half. Since the permutation group induced by the action of G+ = T 2

on a bipartite half is not quasiprimitive, by Proposition 9.5, G satisfies the conditions
of (c)(i), and hence is of type (c)(i) as in Definition 9.7. More precisely, we have
m = |V �|/2, H = T 2, ϕ = π , R = 1 × T , S = T × 1, and R × S = T 2 = G+. �

The proof of Proposition 9.5 shows that � is an A-normal double cover of its A-
normal quotient �〈σ 〉. We have {L,Lπ} = L〈σ 〉. A computation using MAGMA [2]
shows that, when f = 3, Lπ is the unique vertex at maximal distance from L. In
other words, � is antipodal with antipodal blocks of size 2.

Question 9.9 Let f ≥ 3 and � = �(f,α) be a connected graph described in Con-
struction 6.1. Is � always antipodal with antipodal blocks of size 2?
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