Tetravalent half-arc-transitive graphs of order 2pq

Yan-Quan Feng · Jin Ho Kwak · Xiuyun Wang · Jin-Xin Zhou

Received: 2 September 2009 / Accepted: 28 September 2010 / Published online: 21 October 2010 © Springer Science+Business Media, LLC 2010

Abstract A graph is *half-arc-transitive* if its automorphism group acts transitively on its vertex set, edge set, but not arc set. Let p and q be primes. It is known that no tetravalent half-arc-transitive graphs of order $2p^2$ exist and a tetravalent half-arctransitive graph of order 4p must be non-Cayley; such a non-Cayley graph exists if and only if p - 1 is divisible by 8 and it is unique for a given order. Based on the constructions of tetravalent half-arc-transitive graphs given by Marušič (J. Comb. Theory B 73:41–76, 1998), in this paper the connected tetravalent half-arc-transitive graphs of order 2pq are classified for distinct odd primes p and q.

Keywords Cayley graph · Vertex-transitive graph · Half-arc-transitive graph

1 Introduction

All graphs considered in this paper are finite, connected, undirected and simple, but with an implicit orientation of the edges when appropriate. Given a graph X, denote by V(X), E(X), A(X) and Aut(X) the vertex set, edge set, arc set and automorphism group of X, respectively. A graph X is said to be *vertex-transitive*, *edge-transitive* and

Y.-Q. Feng (🖂) · X. Wang · J.-X. Zhou

Mathematics, Beijing Jiaotong University, Beijing 100044, P.R. China e-mail: yqfeng@bjtu.edu.cn

X. Wang e-mail: 06118308@bjtu.edu.cn

J.-X. Zhou e-mail: jxzhou@bjtu.edu.cn

J.H. Kwak Mathematics, Pohang University of Science and Technology, Pohang 790-784, Korea e-mail: jinkwak@postech.ac.kr *arc-transitive* if Aut(X) acts transitively on V(X), E(X) and A(X), respectively. The graph X is said to be *half-arc-transitive* provided that it is vertex- and edge- but not arc-transitive. More generally, by a *half-arc-transitive* action of a subgroup G of Aut(X) on X we shall mean a vertex- and edge-, but not arc-transitive action of G on X. In this case we say that the graph X is *G-half-arc-transitive*.

In 1947, Tutte [31] initiated an investigation of half-arc-transitive graphs by showing that a vertex- and edge-transitive graph with odd valency must be arc-transitive. A few years later, in order to answer Tutte's question of the existence of half-arctransitive graphs of even valency, Bouwer [5] gave a construction of 2k-valent halfarc-transitive graph for every $k \ge 2$. Following these two classical articles, halfarc-transitive graphs have been extensively studied from different perspectives over decades by many authors. See, for example, [2, 9, 15, 16, 18, 32, 33].

One of the standard problems in the study of half-arc-transitive graphs is to classify such graphs of certain orders. Let p be a prime. It is well-known that there are no half-arc-transitive graphs of order p or p^2 [6], and by Cheng and Oxley [7], there are no half-arc-transitive graphs of order 2p. Alspach and Xu [2] classified the half-arctransitive graphs of order 3p and Wang [33] classified the half-arc-transitive graphs of order a product of two distinct primes. Despite all of these efforts, however, further classifications of half-arc-transitive graphs with general valencies seem to be very difficult. For example, the classification of half-arc-transitive graphs of order 4p has been considered for many years, but it still has not been achieved.

In view of the fact that 4 is the smallest admissible valency for a half-arc-transitive graph, special attention has rightly been given to the study of tetravalent half-arctransitive graphs. In particular, constructing and classifying the tetravalent half-arctransitive graphs is currently an active topic in algebraic graph theory (for example, see [1, 8, 10–13, 17–28] and [30, 34, 35, 37, 38]). For tetravalent half-arc-transitive graphs of given orders, in 1992 Xu [37] classified the tetravalent half-arc-transitive graphs of order p^3 for each prime p, and recently, it was extended to the case of p^4 by Feng et al. [11]. Also, Feng et al. [13] classified the tetravalent half-arc-transitive graphs of order 4p, and such a graph exists if and only if p - 1 is divisible by 8. It follows from [34] that no half-arc-transitive graphs of order $2p^2$ exist for each prime p. In this paper we classify connected tetravalent half-arc-transitive graphs of order 2pq for odd primes q < p. There are two infinite families of connected tetravalent half-arc-transitive graphs of order 2pq with one family Cayley and the other non-Cayley; the family of Cayley ones exists if and only if $(p,q) \neq (7,3)$ and $p \equiv 1 \pmod{q}$, and the family of non-Cayley ones exists if and only if $p \equiv$ 1 (mod 4q). For each family there are exactly $\frac{1}{2}(q-1)$ non-isomorphic connected tetravalent half-arc-transitive graphs for a given order.

2 Preliminary results

We start by some notational conventions used throughout this paper. Let X be a graph. For $u, v \in V(X)$, denote by $\{u, v\}$ the edge incident to u and v in X. Let B be a subset of V(X). The subgraph of X induced by B will be denoted by X[B]. Let n be a non-negative integer. By C_n and K_n , we denote the cycle and the complete graph of order *n*, respectively. Let D_{2n} represent the dihedral group of order 2n, and \mathbb{Z}_n the cyclic group of order *n* as well as the ring of integers modulo *n*. Denote by \mathbb{Z}_n^* the multiplicative group of the ring \mathbb{Z}_n consisting of integers coprime to *n*.

Let X be a tetravalent G-half-arc-transitive graph for a subgroup G of Aut(X). Then under the natural G-action on $V(X) \times V(X)$, the arc set A(X) is partitioned into two G-orbits, say A_1 and A_2 , which are paired with each other, that is, $A_2 = \{(v, u) \mid (u, v) \in A_1\}$. Each of two corresponding oriented graphs $(V(X), A_1)$ and $(V(X), A_2)$ has out-valency and in-valency which are equal to 2, and admits G as a vertex- and arc-transitive group of automorphisms. Moreover, each of them has X as its underlying graph. Let $D_G(X)$ be one of these two oriented graphs, fixed from now on. For an arc (u, v) in $D_G(X)$, we say that u and v are the tail and the head of the arc (u, v), respectively. An even length cycle C in X is called a G-alternating cycle if the vertices of C are alternatively the tail or the head in $D_G(X)$ of their two incident edges in C. It was shown in [21, Proposition 2.4(i)] that, first, all G-alternating cycles in X have the same length—half of this length is called the *G*-radius of X—and second, that any two adjacent G-alternating cycles in X intersect in the same number of vertices, called the *G*-attachment number of X. The intersection of two adjacent G-alternating cycles is called a G-attachment set. We say that X is tightly G-attached if its G-attachment number coincides with G-radius. If X is half-arc-transitive, the terms Aut(X)-alternating cycle, Aut(X)-radius, and Aut(X)-attachment number are referred to as an alternating cycle of X, radius of X and attachment number of X, respectively. Similarly, if X is tightly Aut(X)-attached, we say that X is tightly at*tached*. Tightly attached tetravalent graphs with odd radius and even radius have been completely classified by Marušič [21] and Šparl [30], respectively. For the purpose of this paper, we introduce a result due to Marušič.

Let $m \ge 3$ be an integer, $n \ge 3$ an odd integer and let $r \in \mathbb{Z}_n^*$ satisfy $r^m = \pm 1$. The graph X(r; m, n) is defined to have vertex set $V = \{u_i^j \mid i \in \mathbb{Z}_m, j \in \mathbb{Z}_n\}$ and edge set $E = \{\{u_i^j, u_{i+1}^{j\pm r^i}\} \mid i \in \mathbb{Z}_m, j \in \mathbb{Z}_n\}$.

Proposition 2.1 [21, Theorem 3.4] A connected tetravalent graph X is a tightly attached half-arc-transitive graph of odd radius n if and only if $X \cong X(r; m, n)$, where $m \ge 3$, and $r \in \mathbb{Z}_n^*$ satisfying $r^m = \pm 1$, and moreover none of the following conditions is fulfilled:

- (1) $r^2 = \pm 1;$
- (2) (r; m, n) = (2; 3, 7);
- (3) (r; m, n) = (r; 6, 7k), where $k \ge 1$ is odd, (7, k) = 1, $r^6 = 1$, and there exists a unique solution $q \in \{r, -r, r^{-1}, -r^{-1}\}$ of the equation $x^2 + x 2 = 0$ such that 7(q-1) = 0 and $q \equiv 5 \pmod{7}$.

The following proposition is due to Marušič and Praeger [25].

Proposition 2.2 [25, Lemma 3.5] Let X be a connected tetravalent G-half-arctransitive graph for some $G \leq Aut(X)$, and let A be a G-attachment set of X. If $|A| \geq 3$, then the vertex-stabilizer of $v \in V(X)$ in G is of order 2. Given a finite group *G*, an inverse closed subset $S \subseteq G \setminus \{1\}$ is called a *Cayley* subset of *G*. The *Cayley graph* Cay(*G*, *S*) on *G* with respect to a Cayley subset *S* is defined to have vertex set *G* and edge set $\{\{g, sg\} | g \in G, s \in S\}$. The automorphism group Aut(*X*) of *X* contains the right regular representation R(G) of *G*, the acting group of *G* by right multiplication, as a subgroup. Thus, Cayley graphs are vertex-transitive. In general, we have the following result.

Proposition 2.3 [4, Lemma 16.3] A graph X is isomorphic to a Cayley graph on G if and only if its automorphism group Aut(X) has a subgroup isomorphic to G, acting regularly on vertices.

Let *S* be a Cayley subset of a finite group *G*. We call *S* a *CI*-subset, if for any Cayley subset *T* of *G*, $Cay(G, S) \cong Cay(G, T)$ implies that there is $\alpha \in Aut(G)$ such that $S^{\alpha} = T$. The following result is a well-known criterion for CI-subset due to Babai [3].

Proposition 2.4 Let X = Cay(G, S) be a Cayley graph on a finite group G with respect to S. Then S is a CI-subset of G if and only if for any $\sigma \in S_G$ with $\sigma^{-1}R(G)\sigma \leq \text{Aut}(X)$, there exists an $\alpha \in \text{Aut}(X)$ such that $\sigma^{-1}R(G)\sigma = \alpha^{-1}R(G)\alpha$, where S_G denotes the symmetric group on G.

Now we state two simple observations about half-arc-transitive graphs.

Proposition 2.5 [35, Proposition 2.6] Let X be a connected half-arc-transitive graph of valency 2n. Let A = Aut(X) and let A_u be the stabilizer of $u \in V(X)$ in A. Then each prime divisor of $|A_u|$ is a divisor of n!.

Proposition 2.6 [13, Propositions 2.1 and 2.2] Let X = Cay(G, S) be half-arctransitive. Then S contains no involutions, and there is no $\alpha \in \text{Aut}(G, S)$ such that $s^{\alpha} = s^{-1}$ for some $s \in S$.

Finally, we give two group-theoretic propositions. Let H be a subgroup of a finite group G. Denote by $C_G(H)$ the centralizer of H in G and by $N_G(H)$ the normalizer of H in G. Then $C_G(H)$ is normal in $N_G(H)$.

Proposition 2.7 [29, Theorem 1.6.3] *The quotient group* $N_G(H)/C_G(H)$ *is isomorphic to a subgroup of the automorphism group* Aut(H) *of* H.

As a result of the well-known classification of finite simple groups, we have the following proposition.

Proposition 2.8 [14, pp. 12–14] *A non-abelian simple group whose order has at most three prime divisors is isomorphic to one of the following groups:*

A₅, A₆, PSL(2, 7), PSL(2, 8), PSL(2, 17), PSL(3, 3), PSU(3, 3), PSU(4, 2),

whose orders are $2^2 \cdot 3 \cdot 5$, $2^3 \cdot 3^2 \cdot 5$, $2^3 \cdot 3 \cdot 7$, $2^3 \cdot 3^2 \cdot 7$, $2^4 \cdot 3^2 \cdot 17$, $2^4 \cdot 3^3 \cdot 13$, $2^5 \cdot 3^3 \cdot 7$, $2^6 \cdot 3^4 \cdot 5$, respectively.

3 Constructions

In this section, we introduce two infinite families of tetravalent half-arc-transitive graphs of order 2pq, where p > q are odd primes.

Construction of a Cayley model Let p, q be odd primes such that $(p, q) \neq (7, 3)$ and $q \mid (p-1)$. It is well-known that there is a unique non-abelian group of order pq, which is the Frobenius group $F_{pq} = \langle a, b \mid a^p = b^q = 1, b^{-1}ab = a^r \rangle$, where r is an element of order q in \mathbb{Z}_p^* . Let $G = \langle a, b, c \mid a^p = b^q = c^2 = 1, b^{-1}ab = a^r, ac = ca, cb = bc \rangle \cong F_{pq} \times \mathbb{Z}_2$. Then G is independent of the choice of r and a non-abelian group of order 2pq. For $k \in \mathbb{Z}_q^*$, define

$$\mathcal{C}_{2pq}^{k} := \operatorname{Cay}(G, \{cb^{k}, cb^{-k}, cb^{k}a, (cb^{k}a)^{-1}\}).$$

Lemma 3.1 Let p, q and r be given as above. Then for each $k \in \mathbb{Z}_q^*$, $C_{2pq}^k \cong X(r^k; 2q, p)$. Thus, C_{2pq}^k is a connected tetravalent half-arc-transitive graph of order 2pq, and there are exactly $\frac{1}{2}(q-1)$ non-isomorphic such graphs, that are C_{2pq}^k for $k = 1, 2, \ldots, \frac{1}{2}(q-1)$.

Proof For each $k \in \mathbb{Z}_q^*$, set $T_k = \{cb^k, cb^{-k}, cb^ka, (cb^ka)^{-1}\}$. Recall that $X(r^k; 2q, p)$ has vertex set $V = \{u_i^j | i \in \mathbb{Z}_{2q}, j \in \mathbb{Z}_p\}$ and edge set $E = \{\{u_i^j, u_{i+1}^{j\pm r^{ki}}\}|$ $i \in \mathbb{Z}_{2q}, j \in \mathbb{Z}_p\}$. It is easy to see that $a^sb^t = b^ta^{sr^t}$ for all integers *s* and *t*. Also, one may easily check that the map $\phi : u_i^j \mapsto (cb^k)^i a^j$ $(i \in \mathbb{Z}_{2q}, j \in \mathbb{Z}_p)$ is an isomorphism from $X(r^k; 2q, p)$ to Cay(G, T), where $T = \{cb^ka^{-1}, (cb^ka^{-1})^{-1}, cb^ka, (cb^ka)^{-1}\}$.

For any $\ell \in \mathbb{Z}_q^*$, the map $a \mapsto a^\ell$, $b \mapsto b$, $c \mapsto c$ induces an automorphism of G. This implies that Aut(G) is 2-transitive on the set $\{b^i a^j \mid j \in \mathbb{Z}_p\}$ for a given $i \in \mathbb{Z}_q^*$ because the Sylow q-subgroups of G are conjugate. It follows that G has an automorphism φ such that $(b^k a)^{\varphi} = b^k a$ and $(b^k a^{-1})^{\varphi} = b^k$. Since the automorphism group Aut(G) of G fixes c (G has the center $\langle c \rangle$), one has $T^{\varphi} = T_k$, and hence φ is an isomorphism from Cay(G, T) to \mathcal{C}_{2pq}^k . Consequently, $\mathcal{C}_{2pq}^k \cong X(r^k; 2q, p)$. By hypothesis, we have $p \ge 11$ and $q \ge 3$, and since T_k generates G, \mathcal{C}_{2pq}^k is a connected tetravalent tightly attached half-arc-transitive graph of order 2pq by Proposition 2.1.

Let $k \in \mathbb{Z}_q^*$. Note that $a^{-1}b^k = b^k a^{-r^k}$. The automorphism of *G* induced by $a \mapsto a^{-r^k}$, $b \mapsto b$ and $c \mapsto c$, maps T_k to $\{cb^{q-k}, (cb^{q-k})^{-1}, cb^{q-k}a, (cb^{q-k}a)^{-1}\}$. This implies that $\mathcal{C}_{2pq}^k \cong \mathcal{C}_{2pq}^{q-k}$. To complete the proof, it suffices to show that \mathcal{C}_{2pq}^k , $1 \le k \le \frac{1}{2}(q-1)$, are pair-wise non-isomorphic.

Set $A = \operatorname{Aut}(\mathcal{C}_{2pq}^k)$. By Proposition 2.2, |A| = 4pq and $A_u \cong \mathbb{Z}_2$ for $u \in V(\mathcal{C}_{2pq}^k)$. It follows that $R(G) \trianglelefteq A$. Note that $G = \langle a, b \rangle \times \langle c \rangle$. Then the subgroup H of R(G) of order pq is also the unique subgroup of A of order pq, and $R(c) \in C_A(H)$, the centralizer of H in A. Clearly, $C_A(H)$ is a 2-group. Suppose $C_A(H)$ has order 4. Then $C_A(H)$ is a Sylow 4-subgroup of A. This implies that $A_u \leq C_A(H)$ and hence $A_u \leq C_A(R(G))$, which forces that $A_u = 1$, a contradiction. Thus, $C_A(H) = \langle R(c) \rangle$ and $R(G) = H \times C_A(H)$. Take $\sigma \in S_G$ such that $\sigma^{-1}R(G)\sigma \leq A$. Then $R(G)^{\sigma} = H^{\sigma} \times C_A(H^{\sigma})$. By the uniqueness of H in A, one has $R(G)^{\sigma} = R(G)$, and by Proposition 2.4, T_k is a CI-subset of G.

Let $1 \le k_1, k_2 \le \frac{1}{2}(q-1)$ with $k_1 \ne k_2$. Suppose that $C_{2pq}^{k_1} \cong C_{2pq}^{k_2}$. Since $T_{k_i} = \{cb^{k_i}, (cb^{k_i})^{-1}, cab^{k_i}, (cab^{k_i})^{-1}\}$ (i = 1, 2) are CI-subsets of G, $C_{2pq}^{k_1} \cong C_{2pq}^{k_2}$ implies that there is a $\beta \in \text{Aut}(G)$ such that $T_{k_1}^{\beta} = T_{k_2}$. Note that β must map c to c and b to $a^m b$ for some $m \in \mathbb{Z}_p$. Thus, $(cb^{k_1})^{\beta} = ca^{\ell}b^{k_1} \in T_{k_2}$ for some $\ell \in \mathbb{Z}_p$. This means that $ca^{\ell}b^{k_1} = cb^{k_2}, (cb^{k_2})^{-1}, cab^{k_2}$ or $(cab^{k_2})^{-1}$, each of which is impossible because $1 \le k_1, k_2 \le \frac{1}{2}(q-1)$. Thus, $C_{2pq}^{k_1} \ncong C_{2pq}^{k_2}$.

Construction of a non-Cayley model Let p, q be odd primes such that 4q | (p - 1), and let r be an element of order 4q in \mathbb{Z}_p^* . Let $K = \{k | k \text{ is an odd integer and } 1 \le k \le q - 1\}$. For any $k \in K$, define

$$\mathcal{NC}_{2pq}^{r^k} := X(r^k; 2q, p).$$

Lemma 3.2 Let p, q, r and K be given as above. Then $\mathcal{NC}_{2pq}^{r^k}$, $k \in K$, are pair-wise non-isomorphic connected tetravalent tightly attached half-arc-transitive non-Cayley graphs of order 2pq.

Proof Since *r* is assumed to have order 4q in \mathbb{Z}_p^* , r^k has order 4q in \mathbb{Z}_p^* for any $k \in K$. It follows that $(r^k)^{2q} = -1$ and $(r^k)^2 \neq \pm 1$ in \mathbb{Z}_p^* . By Proposition 2.1, $\mathcal{NC}_{2pq}^{r^k}$ is a connected tetravalent tightly attached half-arc-transitive graph of order 2pq. Let $\rho : u_i^j \mapsto u_i^{j+1}$ $(i \in \mathbb{Z}_{2q}, j \in \mathbb{Z}_p)$ and $\sigma : u_i^j \mapsto u_{i+1}^{r^k j}$ $(i \in \mathbb{Z}_{2q}, j \in \mathbb{Z}_p)$ be defined as permutations on $V(\mathcal{NC}_{2pq}^{r^k})$. It is easy to see that ρ , σ are automorphisms of $\mathcal{NC}_{2pq}^{r^k}$, and that $\sigma^{-1}\rho\sigma = \rho^{r^k}$. Moreover, $\langle \rho, \sigma \rangle \cong \mathbb{Z}_p \rtimes \mathbb{Z}_{4q}$ is half-arc-transitive on $\mathcal{NC}_{2pq}^{r^k}$. Set $A = \operatorname{Aut}(\mathcal{NC}_{2pq}^{r^k})$. By Proposition 2.2, |A| = 4pq and hence $A = \langle \rho, \sigma \rangle$. Clearly, every Sylow 2-subgroup of A is cyclic. If $\mathcal{NC}_{2pq}^{r^k}$ is a Cayley graph, then A has a subgroup, say G, acting regularly on $V(\mathcal{NC}_{2pq}^{r^k})$. Since $A_v \cong \mathbb{Z}_2$, A has a Sylow 2-subgroup P such that $A_v \leq P$. Then $P = P \cap A = (P \cap G) \times A_v \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, contrary to the fact that every Sylow 2-subgroup of A is cyclic. Thus, $\mathcal{NC}_{2pq}^{r^k}$ is a non-Cayley graph.

To complete the proof, it suffices to show that $\mathcal{NC}_{2pq}^{r^k}$ $(k \in K)$ are pair-wise nonisomorphic. Suppose on the contrary that $\mathcal{NC}_{2pq}^{r^m} \cong \mathcal{NC}_{2pq}^{r^n}$, where $m, n \in K$ are distinct. Then |m-n|, 2q + m - n, m + n and 2q + m + n are integers between 1 and 4q - 1. Since r is an element of order 4q in \mathbb{Z}_p^* , we have $r^{m-n} \neq 1$, $r^{2q+m-n} \neq 1$, $r^{m+n} \neq 1$ and $r^{2q+m+n} \neq 1$ in \mathbb{Z}_p^* .

Let $V_i = \{v_i^j | j \in \mathbb{Z}_p\}$ for each $i \in \mathbb{Z}_{2q}$. Then $V(\mathcal{NC}_{2pq}^{r^m}) = V(\mathcal{NC}_{2pq}^{r^n}) = \bigcup_{i \in \mathbb{Z}_{2q}} V_i$. Note that $\mathcal{NC}_{2pq}^{r^n}$ has an automorphism which fixes v_0^0 and interchanges

 v_1^1 and v_1^{-1} , and $v_{2q-1}^{r^{-n}}$ and $v_{2q-1}^{-r^{-n}}$. Thus, $\mathcal{NC}_{2pq}^{r^m} \cong \mathcal{NC}_{2pq}^{r^n}$ implies that there is an isomorphism α from $\mathcal{NC}_{2pq}^{r^m}$ to $\mathcal{NC}_{2pq}^{r^n}$ such that $(v_0^0)^{\alpha} = v_0^0$ and either $(v_1^1)^{\alpha} = v_1^1$ or $(v_1^1)^{\alpha} = v_{2q-1}^{r^{-n}}$. Note that V_i $(i \in \mathbb{Z}_{2q})$ are orbits of the unique normal Sylow *p*-subgroup of Aut $(\mathcal{NC}_{2pq}^{r^m})$ and Aut $(\mathcal{NC}_{2pq}^{r^n})$, respectively. This implies that α maps each V_i to some V_j . Thus, $V_0^{\alpha} = V_0$ and $V_1^{\alpha} = V_1$ or V_{2q-1} .

Let $V_1^{\alpha} = V_1$. Then $(v_1^1)^{\alpha} = v_1^1$ and $V_{\ell}^{\alpha} = V_{\ell}$ for any $\ell \in \mathbb{Z}_{2q}$. Since the subgraphs induced by $V_0 \cup V_1$ in \mathcal{NC}_{2pq}^{rm} and also in \mathcal{NC}_{2pq}^{rn} are cycles of length 2p, it is easy to see that $(v_0^{\ell})^{\alpha} = v_0^{\ell}$ and $(v_1^{\ell})^{\alpha} = v_1^{\ell}$ for any $\ell \in \mathbb{Z}_p$. Similarly, since the subgraphs induced by $V_1 \cup V_2$ in \mathcal{NC}_{2pq}^{rm} and in \mathcal{NC}_{2pq}^{rn} are cycles of length 2p, one has $(v_2^{rm})^{\alpha} = v_2^{r^n}$ or $v_2^{-r^n}$ because $(v_1^0)^{\alpha} = v_1^0$. If $(v_2^{rm})^{\alpha} = v_2^{r^n}$ then $(v_1^{2r^m})^{\alpha} = v_1^{2r^n}$. Note that $(v_1^{2r^m})^{\alpha} = v_2^{2r^m}$. Thus, $2r^m = 2r^n$ in \mathbb{Z}_p^* , that is $r^{m-n} = 1$ in \mathbb{Z}_p^* , a contradiction. Similarly, if $(v_2^{rm})^{\alpha} = v_2^{-r^n}$ then $(v_1^{2r^m})^{\alpha} = v_1^{-2r^n}$. Thus, $2r^m = -2r^n$ in \mathbb{Z}_p^* , that is $r^{2q+m-n} = 1$ in \mathbb{Z}_p^* , also a contradiction.

Now let $V_1^{\alpha} = V_{2q-1}$. Then $(v_1^1)^{\alpha} = v_{2q-1}^{r^{-n}}$ and $V_{\ell}^{\alpha} = V_{2q-\ell}$ for any $\ell \in \mathbb{Z}_{2q}$. Since the subgraphs induced by $V_0 \cup V_{2q-1}$ in \mathcal{NC}_{2pq}^{rm} and in $\mathcal{NC}_{2pq}^{r^n}$ are cycles of length 2p, one has $(v_0^j)^{\alpha} = v_0^{jr^{-n}}$ and $(v_1^j)^{\alpha} = v_{2q-1}^{jr^{-n}}$ for any $j \in \mathbb{Z}_p$. In particular, $(v_1^0)^{\alpha} = v_{2q-1}^0$ and $(v_1^{2r^m})^{\alpha} = v_{2q-1}^{2r^{m-n}}$. It follows that $(v_2^{r^m})^{\alpha} = v_{2q-2}^{r^{-2n}}$ or $v_{2q-2}^{-r^{-2n}}$. If $(v_2^{r^m})^{\alpha} = v_{2q-2}^{2r^{-2n}}$ then $(v_1^{2r^m})^{\alpha} = v_{2q-1}^{2r^{-2n}}$; thus $v_{2q-1}^{2r^{-2n}} = v_{2q-2}^{2r^{-2n}}$, implying $r^{m+n} = 1$ in \mathbb{Z}_p^* , a contradiction. One may assume that $(v_2^{r^m})^{\alpha} = v_{2q-2}^{-r^{-2n}}$ and hence $(v_1^{2r^m})^{\alpha} = v_{2q-1}^{2r^{-2n}}$; thus $v_{2q-1}^{2r^{-2n}} = 1$ in \mathbb{Z}_p^* , a contradiction. It follows that all cases are impossible.

4 A classification

Now, we classify the tetravalent half-arc-transitive graphs of order 2pq for q < p odd primes. We first introduce two concepts which will be used later. Let *X* and *Y* be two graphs. The *lexicographic product X*[*Y*] is defined as the graph with vertex set $V(X[Y]) = V(X) \times V(Y)$ such that for any two vertices $u = (x_1, y_1)$ and $v = (x_2, y_2)$ in V(X[Y]), *u* is adjacent to *v* in *X*[*Y*] whenever either $\{x_1, x_2\} \in E(X)$ or $x_1 = x_2$ and $\{y_1, y_2\} \in E(Y)$. It is easy so see that if *X* and *Y* are symmetric graphs then so is *X*[*Y*]. Let *N* be a normal subgroup of Aut(*X*). The *quotient graph X_N* of *X* relative to *N* is defined as the graph whose vertices are the orbits of *N* in *V*(*X*) and two orbits are adjacent if there is an edge in *X* between vertices lying in these two orbits.

The following theorem is the main result of this paper.

Theorem 4.1 Let q < p be odd primes and let X be a connected tetravalent graph of order 2pq. Then, X is half-arc-transitive if and only if either $(p,q) \neq (7,3)$, $q \mid (p-1)$ and $X \cong C_{2pq}^{\ell}$ for $1 \le \ell \le \frac{1}{2}(q-1)$ or $4q \mid (p-1)$ and $X \cong \mathcal{N}C_{2pq}^{r^k}$ where r is an element of order 4q in \mathbb{Z}_p^* and k is an odd integer satisfying $1 \le k \le q-1$. Furthermore, the number of non-isomorphic connected tetravalent half-arctransitive graphs of order 2 pq is equal to

$$\begin{cases} 0 & \text{if } q \nmid (p-1) \text{ or } (p,q) = (7,3), \\ q-1 & \text{if } q \mid (p-1) \text{ and } 4 \mid (p-1), \\ \frac{1}{2}(q-1) & \text{if } q \mid (p-1), 4 \nmid (p-1) \text{ and } (p,q) \neq (7,3). \end{cases}$$

Proof By Lemmas 3.1 and 3.2, we only need to show the necessity of the first part. Let *X* be a connected tetravalent half-arc-transitive graph of order 2pq. By Wilson and Potoňik [36], no tetravalent half-arc-transitive graphs of order 30 or 42 exist. In what follows, assume that $(p, q) \neq (5, 3)$ or (7, 3). Let $A = \operatorname{Aut}(X)$ and $u \in V(X)$. By Proposition 2.5, the stabilizer A_u of u in A is a 2-group. Thus, $|A| = 2^{\ell+1}pq$ for some positive integer ℓ . In particular, 4pq ||A|. Let B be a normal subgroup of A. First we prove three claims.

Claim 1: $B \cong \mathbb{Z}_{pq}$.

Suppose to the contrary that $B \cong \mathbb{Z}_{pq}$. Clearly, *B* acts semiregularly on V(X) with two orbits, say Δ and Δ' . Let us write $\Delta = \{\Delta(b) | b \in B\}$ and $\Delta' = \{\Delta'(b) | b \in B\}$. One may assume that the actions of *B* on Δ and Δ' are just by right multiplication, that is, $\Delta(b)^g = \Delta(bg)$ and $\Delta'(b)^g = \Delta'(bg)$ for any $b, g \in B$. By half-arctransitivity of *X*, the blocks Δ and Δ' have no edge, implying that *X* is bipartite. Let the neighbors of $\Delta(1)$ be $\Delta'(b_1)$, $\Delta'(b_2)$, $\Delta'(b_3)$ and $\Delta'(b_4)$, where b_1, b_2, b_3 , $b_4 \in B$. Note that *B* is abelian. For any $b \in B$, the neighbors of $\Delta(b)$ are $\Delta'(bb_1)$, $\Delta'(bb_2)$, $\Delta'(bb_3)$ and $\Delta'(bb_4)$, and furthermore, the neighbors of $\Delta'(b)$ are $\Delta(bb_1^{-1})$, $\Delta(bb_2^{-1})$, $\Delta(bb_3^{-1})$ and $\Delta(bb_4^{-1})$. The map α defined by $\Delta(b) \mapsto \Delta'(b^{-1})$, $\Delta'(b) \mapsto$ $\Delta(b^{-1})$ for any $b \in B$, is an automorphism of *X* of order 2. For any $b', b \in B$, one has $\Delta(b')^{\alpha b \alpha} = \Delta(b'b^{-1}) = \Delta(b')^{b^{-1}}$ and $\Delta'(b')^{\alpha b \alpha} = \Delta'(b'b^{-1}) = \Delta'(b')^{b^{-1}}$, implying that $b^{\alpha} = b^{-1}$. Set $G = \langle B, \alpha \rangle$. Since $B \cong \mathbb{Z}_{pq}$, one has $G \cong D_{2pq}$ and hence *G* acts regularly on V(X). It follows that *X* is a Cayley graph on *G*, say X = Cay(G, S). Since *X* is connected, *S* generates *G*. This forces *S* to contain an involution, contrary to Proposition 2.6.

Claim 2: If *B* is a 2-subgroup, then $B \cong \mathbb{Z}_2$.

Consider the quotient graph X_B of X relative to B, and let K be the kernel of A acting on $V(X_B)$. Then each orbit of B in V(X) has length 2 and $|V(X_B)| = pq > 2$. By half-arc-transitivity of X, the subgraph of X induced by each orbit of B has no edges. It follows that X_B has valency 2 or 4. If X_B has valency 2, then X is isomorphic to $C_n[2K_1]$ which is symmetric, a contradiction. Thus, X_B has valency 4, and consequently, $K_u = 1$. Therefore, $K = BK_u = B \cong \mathbb{Z}_2$.

Claim 3: *A* is solvable with a normal Sylow *p*-subgroup.

Suppose that *A* is non-solvable. Then *A* has a non-abelian simple composite factor T_1/T_2 whose order divides $2^{n+1}pq$. Since p > q are odd primes, by Proposition 2.8, $T_1/T_2 \cong A_5$ or PSL(2, 7), forcing (p, q) = (5, 3) or (7, 3), a contradiction. Thus, *A* is solvable.

Let *T* be a minimal normal subgroup of *A*. By solvability of *A*, *T* must be an elementary abelian group, and by Claim 2, $T \cong \mathbb{Z}_2$, \mathbb{Z}_p or \mathbb{Z}_q . If $T \cong \mathbb{Z}_2$ then, by Claim 2 again, *T* is a maximal normal 2-subgroup of *A*. Let L/T be a minimal normal subgroup of A/T. Then $L/T \cong \mathbb{Z}_p$ or \mathbb{Z}_q . Thus, *L* has normal Sylow *p*- and *q*-subgroups, which are characteristic in *L*. By normality of *L* in *A*, *A* has a normal subgroup of order *p* or *q*. Thus, *A* always has a normal subgroup of order *p* or *q*, say *N*.

Suppose that |N| = q. Set $C = C_A(N)$. Clearly, $N \le C$ and by Proposition 2.7, $A/C \le \operatorname{Aut}(N) \cong \mathbb{Z}_{q-1}$. Since p > q, one has $p \mid \mid C \mid$ and hence $N \ne C$. Let M/N be a minimal normal subgroup of A/N contained in C/N. Then $M \le A$ and M/N is an elementary abelian *r*-group for r = 2 or *p*. Furthermore, $M = N \times R$, where *R* is a Sylow *r*-subgroup of *M*. Clearly, *R* is characteristic in *M* and so normal in *A*. If r = p then $M \cong \mathbb{Z}_{pq}$, contrary to Claim 1. Thus, r = 2. By Claim 2, $R \cong \mathbb{Z}_2$, and hence $M \cong \mathbb{Z}_{2q}$. Then $M \le C_A(M)$ and again by Proposition 2.7, $A/C_A(M) \le \operatorname{Aut}(M) \cong \mathbb{Z}_{q-1}$. Also, since p > q, one has $p \mid |C_A(M)|$, and consequently, $M \ne C_A(M)$. Let H/M be a minimal normal subgroup of A/M contained in $C_A(M)/M$. Then $H \le A$ and H/M is an elementary abelian 2- or *p*-group. For the former case, the Sylow 2-subgroup of *H* would be a normal subgroup of *A* of order at least 4, contrary to Claim 2. For the latter case, $H \cong \mathbb{Z}_{2pq}$. In this case, the subgroup of *H* of order *pq* is a normal cyclic subgroup of *A*, as claimed.

Now we are ready to complete the proof. Let *P* be the Sylow *p*-subgroup of *A*. Then $P \cong \mathbb{Z}_p$ and by Claim 3, $P \trianglelefteq A$. Consider the quotient graph X_P , and let *K* be the kernel of *A* acting on $V(X_P)$. Then X_P has order 2*q*. Since *X* is half-arc-transitive, the subgraph of *X* induced by each orbit of *P* has no edges, and further, X_P has valency 4 or 2.

Suppose that X_P has valency 4. Then $K_u = 1$ and P = K. This implies that X_P is A/P-half-arc-transitive and hence A/P is non-abelian. Let $C = C_A(P)$. Then $P \leq C$ and by Proposition 2.7, $A/C \leq \operatorname{Aut}(P) \cong \mathbb{Z}_{p-1}$. Thus, $P \neq C$. Take a minimal normal subgroup, say M/P, of A/P contained in C/P. Then $M \subseteq A$ and M/P is an elementary abelian r-subgroup with r = q or 2. If r = q, then $M \cong \mathbb{Z}_{pq}$, contrary to Claim 1. Thus, r = 2, and by Claim 2, one has $M = P \times R$ with $R \cong \mathbb{Z}_2$, that is $M \cong \mathbb{Z}_{2p}$. Again by Proposition 2.7, $A/C_A(M) \leq \operatorname{Aut}(M) \cong \mathbb{Z}_{p-1}$. Clearly, $M \leq C_A(M)$. If $M = C_A(M)$, then $(A/P)/(M/P) \cong A/M$ is cyclic. Since $M/P \cong \mathbb{Z}_2$ is normal in A/P, M/P is contained in the center of A/P. It follows that A/P is abelian, a contradiction. Thus, $M \neq C_A(M)$. Take a minimal normal subgroup, say H/M, of A/M in $C_A(M)$. Then $H \subseteq A$ and by Claim 2, $H/M \cong \mathbb{Z}_q$. It follows that $H \cong \mathbb{Z}_{2pq}$ and the subgroup of H of order pq is a normal cyclic subgroup of A, contrary to Claim 1.

As the remaining case, let X_P have valency 2, namely, $X_P \cong C_{2q}$. Suppose $K_u = 1$. Then P = K, and so $A/P \le \operatorname{Aut}(X_P) \cong D_{4q}$. Recall that 4pq ||A|, one has $A/P = \operatorname{Aut}(X_P) \cong D_{4q}$. Then $QP/P \le A/P$, where Q is a Sylow q-subgroup

of *A*. Since $A/C_A(P) \leq \operatorname{Aut}(P) \cong \mathbb{Z}_{p-1}$, one has $P \neq C_A(P)$. If $q \mid |C_A(P)|$, then $PQ \cong \mathbb{Z}_{pq}$, contrary to Claim 1. Thus, $q \nmid |C_A(P)|$ and $C_A(P)/P$ is a 2-group. It follows that $C_A(P) = P \times R$, where $R \cong \mathbb{Z}_2$ by Claim 2. Then $C_A(P)/P$ is contained in the center of A/P, and since $(A/P)/(C_A(P)/P) \cong A/C_A(P)$ is cyclic, A/P is abelian, contrary to the fact that $A/P \cong D_{4q}$. Consequently, $K_u \neq 1$. Let $V(X_P) = \{B_i \mid i \in \mathbb{Z}_{2q}\}$ such that $B_i \sim B_{i+1}$. Then $X[B_i \cup B_{i+1}] \cong C_{2p}$ for each $i \in \mathbb{Z}_{2q}$. Let $D_A(X)$ be one of the two oriented graphs associated with the action of A on X. Since P is transitive on each B_i and $K_u \neq 1$, all edges in $X[B_i \cup B_{i+1}]$ have the same direction either from B_i to B_{i+1} or from B_{i+1} to B_i in the oriented graph $D_A(X)$. This implies that for each $i \in \mathbb{Z}_{2q}$, $X[B_i \cup B_{i+1}]$ is an alternating cycle of X with radius p. Clearly, $X[B_i \cup B_{i+1}]$ and $X[B_{i+1} \cup B_{i+2}]$ intersect in p vertices. It follows that the attachment number of X is also p. Thus, X is a tetravalent tightly attached half-arc-transitive graph of odd radius p. By Proposition 2.1, $X \cong X(r; 2q, p)$, where $r \in \mathbb{Z}_p^*$ such that $r^{2q} = \pm 1$, and $r^2 \neq \pm 1$ and $(2q, p) \neq (6, 7)$. In particular, $(p, q) \neq (7, 3)$. Recall that X(r; 2q, p) has vertex set $V = \{u_i^j \mid i \in \mathbb{Z}_{2q}, j \in \mathbb{Z}_p\}$ and edge set $E = \{\{u_i^j, u_{i+1}^{j+1}\} \mid i \in \mathbb{Z}_{2q}, j \in \mathbb{Z}_p\}$.

Let $r^{2q} = 1$. Then *r* is an element of \mathbb{Z}_p^* of order *q* or 2q because $r^2 \neq 1$. If *r* has order 2q, then r^{q+1} has order *q*, and it is easy to see that $X(r; 2q, p) = X(r^{q+1}; 2q, p)$. Thus, we can always assume that *r* is of order *q*. By Lemma 3.1, *X* is isomorphic to one of \mathcal{C}_{2pq}^{ℓ} for some $1 \leq \ell \leq \frac{1}{2}(q-1)$.

Let $r^{2q} = -1$. Then r is an element of \mathbb{Z}_p^* of order 4q. There are exactly 2(q-1)elements of order 4q in \mathbb{Z}_p^* , that is r^k , where $k \in \mathbb{Z}_{4q}^*$. The graph $X(r^k; 2q, p)$ has edge set $\{\{u_i^j, u_{i+1}^{j\pm r^{ki}}\} \mid i \in \mathbb{Z}_{2q}, j \in \mathbb{Z}_p\}$, and vertex set $\{u_i^j \mid i \in \mathbb{Z}_{2q}, j \in \mathbb{Z}_p\}$ for each $k \in \mathbb{Z}_{4q}^*$. It is easy to see that $X(r^k; 2q, p) = X(r^{k+2q}; 2q, p)$. Note that $(r^k)^i = (r^{2q-k})^{2q-i}$ or $-(r^{2q-k})^{2q-i}$ for each $i \in \mathbb{Z}_p$. One may easily show that the permutation $u_i^j \mapsto u_{2q-i+1}^j$, $(j \in \mathbb{Z}_p$ and $i \in \mathbb{Z}_{2q})$ on $\{u_i^j \mid i \in \mathbb{Z}_{2q}, j \in \mathbb{Z}_p\}$ is a graph isomorphism from $X(r^k; 2q, p)$ to $X(r^{2q-k}; 2q, p)$. It follows that $X \cong X(r^k; 2q, p)$ for some odd integer k satisfying $1 \le k \le q-1$. Thus, $X \cong \mathcal{NC}_{2pq}^{r^k}$ for some odd integer k between 1 and q-1.

Acknowledgements This work was supported by the National Natural Science Foundation of China (10871021, 10901015, 10911140266), Korea Research Foundation Grant (International joint research program: F01-2009-000-10007-0), and the Doctorate Foundation of Beijing Jiaotong University (141109522).

References

- Alspach, B., Marušič, D., Nowitz, L.: Constructing graphs which are 1/2-transitive. J. Aust. Math. Soc. A 56, 391–402 (1994)
- 2. Alspach, B., Xu, M.Y.: 1/2-transitive graphs of order 3p. J. Algebr. Comb. 1, 275–282 (1992)
- Babai, L.: Isomorphism problem for a class of point-symmetric structures. Acta Math. Acad. Sci. Hung. 29, 329–336 (1977)
- 4. Biggs, N.: Algebraic Graph Theory, 2nd edn. Cambridge University Press, Cambridge (1993)
- Bouwer, I.Z.: Vertex- and edge-transitive but not 1-transitive graphs. Can. Math. Bull. 13, 231–237 (1970)
- Chao, C.Y.: On the classification of symmetric graphs with a prime number of vertices. Trans. Am. Math. Soc. 158, 247–256 (1971)

- 7. Cheng, Y., Oxley, J.: On weakly symmetric graphs of order twice a prime. J. Comb. Theory B 42, 196–211 (1987)
- Conder, M.D.E., Marušič, D.: A tetravalent half-arc-transitive graph with non-abelian vertex stabilizer. J. Comb. Theory B 88, 67–76 (2003)
- Du, S.F., Xu, M.Y.: Vertex-primitive ¹/₂-arc-transitive graphs of smallest order. Commun. Algebra 27, 163–171 (1999)
- Fang, X.G., Li, C.H., Xu, M.Y.: On edge-transitive Cayley graphs of valency 4. Eur. J. Comb. 25, 1107–1116 (2004)
- Feng, Y.-Q., Kwak, J.H., Xu, M.Y., Zhou, J.-X.: Tetravalent half-arc-transitive graphs of order p⁴. Eur. J. Comb. 29, 555–567 (2008)
- Feng, Y.-Q., Kwak, J.H., Zhou, C.X.: Constructing even radius tightly attached half-arc-transitive graphs of valency four. J. Algebr. Comb. 26, 431–451 (2007)
- Feng, Y.-Q., Wang, K.S., Zhou, C.X.: Tetravalent half-transitive graphs of order 4p. Eur. J. Comb. 28, 726–733 (2007)
- 14. Gorenstein, D.: Finite Simple Groups. Plenum, New York (1982)
- 15. Holt, D.F.: A graph which is edge transitive but not arc transitive. J. Graph Theory 5, 201–204 (1981)
- Li, C.H., Lu, Z.P., Marušič, D.: On primitive permutation groups with small suborbits and their orbital graphs. J. Algebra 279, 749–770 (2004)
- Li, C.H., Lu, Z.P., Zhang, H.: Tetravalent edge-transitive Cayley graphs with odd number of vertices. J. Comb. Theory B 96, 164–181 (2006)
- Li, C.H., Sim, H.S.: On half-transitive metacirculent graphs of prime-power order. J. Comb. Theory B 81, 45–57 (2001)
- Malnič, A., Marušič, D.: Constructing 4-valent ¹/₂-transitive graphs with a nonsolvable automorphism group. J. Comb. Theory B 75, 46–55 (1999)
- 20. Malnič, A., Marušič, D.: Constructing $\frac{1}{2}$ -arc-transitive graphs of valency 4 and vertex stabilizer $\mathbb{Z}_2 \times \mathbb{Z}_2$. Discrete Math. **245**, 203–216 (2002)
- Marušič, D.: Half-transitive groups actions on finite graphs of valency 4. J. Comb. Theory B 73, 41–76 (1998)
- Marušič, D., Nedela, R.: Finite graphs of valency 4 and girth 4 admitting half-transitive group actions. J. Aust. Math. Soc. 73, 155–170 (2002)
- Marušič, D., Nedela, R.: Partial line graph operator and half-arc-transitive group actions. Math. Slovaca 51, 241–257 (2001)
- Marušič, D., Nedela, R.: Maps and half-transitive graphs of valency 4. Eur. J. Comb. 19, 345–354 (1998)
- Marušič, D., Praeger, C.E.: Tetravalent graphs admitting half-transitive group action: alternating cycles. J. Comb. Theory B 75, 188–205 (1999)
- Marušič, D., Šparl, P.: On quartic half-arc-transitive metacirculants. J. Algebr. Comb. 28, 365–395 (2008)
- Marušič, D., Waller, A.: Half-transitive graphs of valency 4 with prescribed attachment numbers. J. Graph Theory 34, 89–99 (2000)
- Marušič, D., Xu, M.Y.: A ¹/₂-transitive graph of valency 4 with a nonsolvable group of automorphisms. J. Graph Theory 25, 133–138 (1997)
- 29. Robinson, D.J.: A Course in the Theory of Groups. Springer, New York (1982)
- Šparl, P.: A classification of tightly attached half-arc-transitive graphs of valency 4. J. Comb. Theory B 98, 1076–1108 (2008)
- 31. Tutte, W.: Connectivity in Graphs. University of Toronto Press, Toronto (1966)
- 32. Taylor, D.E., Xu, M.Y.: Vertex-primitive 1/2-transitive graphs. J. Aust. Math. Soc. A 57, 113–124 (1994)
- Wang, R.J.: Half-transitive graphs of order a product of two distinct primes. Commun. Algebra 22, 915–927 (1994)
- Wang, X.Y., Feng, Y.-Q.: There exists no tetravalent half-arc-transitive graph of order 2p². Discrete Math. 310, 1721–1724 (2010)
- Wang, X.Y., Feng, Y.-Q.: Hexavalent half-arc-transitive graphs of order 4p. Eur. J. Comb. 30, 1263– 1270 (2009)
- 36. Wilson, S., Potoňik, P.: A Census of edge-transitive tetravalent graphs: Mini-Census, available at http://jan.ucc.nau.edu/swilson/C4Site/index.html
- 37. Xu, M.Y.: Half-transitive graphs of prime-cube order. J. Algebr. Comb. 1, 275–282 (1992)
- Zhou, C.X., Feng, Y.-Q.: An infinite family of tetravalent half-arc-transitive graphs. Discrete Math. 306, 2205–2211 (2006)