Tetravalent half-arc-transitive graphs of order 2 pq

Yan-Quan Feng • Jin Ho Kwak • Xiuyun Wang • Jin-Xin Zhou

Received: 2 September 2009 / Accepted: 28 September 2010 / Published online: 21 October 2010
© Springer Science+Business Media, LLC 2010

Abstract

A graph is half-arc-transitive if its automorphism group acts transitively on its vertex set, edge set, but not arc set. Let p and q be primes. It is known that no tetravalent half-arc-transitive graphs of order $2 p^{2}$ exist and a tetravalent half-arctransitive graph of order $4 p$ must be non-Cayley; such a non-Cayley graph exists if and only if $p-1$ is divisible by 8 and it is unique for a given order. Based on the constructions of tetravalent half-arc-transitive graphs given by Marušič (J. Comb. Theory B 73:41-76, 1998), in this paper the connected tetravalent half-arc-transitive graphs of order $2 p q$ are classified for distinct odd primes p and q.

Keywords Cayley graph • Vertex-transitive graph • Half-arc-transitive graph

1 Introduction

All graphs considered in this paper are finite, connected, undirected and simple, but with an implicit orientation of the edges when appropriate. Given a graph X, denote by $V(X), E(X), A(X)$ and $\operatorname{Aut}(X)$ the vertex set, edge set, arc set and automorphism group of X, respectively. A graph X is said to be vertex-transitive, edge-transitive and

[^0]arc-transitive if $\operatorname{Aut}(X)$ acts transitively on $V(X), E(X)$ and $A(X)$, respectively. The graph X is said to be half-arc-transitive provided that it is vertex- and edge- but not arc-transitive. More generally, by a half-arc-transitive action of a subgroup G of $\operatorname{Aut}(X)$ on X we shall mean a vertex- and edge-, but not arc-transitive action of G on X. In this case we say that the graph X is G-half-arc-transitive.

In 1947, Tutte [31] initiated an investigation of half-arc-transitive graphs by showing that a vertex- and edge-transitive graph with odd valency must be arc-transitive. A few years later, in order to answer Tutte's question of the existence of half-arctransitive graphs of even valency, Bouwer [5] gave a construction of $2 k$-valent half-arc-transitive graph for every $k \geq 2$. Following these two classical articles, half-arc-transitive graphs have been extensively studied from different perspectives over decades by many authors. See, for example, [2, 9, 15, 16, 18, 32, 33].

One of the standard problems in the study of half-arc-transitive graphs is to classify such graphs of certain orders. Let p be a prime. It is well-known that there are no half-arc-transitive graphs of order p or p^{2} [6], and by Cheng and Oxley [7], there are no half-arc-transitive graphs of order $2 p$. Alspach and Xu [2] classified the half-arctransitive graphs of order $3 p$ and Wang [33] classified the half-arc-transitive graphs of order a product of two distinct primes. Despite all of these efforts, however, further classifications of half-arc-transitive graphs with general valencies seem to be very difficult. For example, the classification of half-arc-transitive graphs of order $4 p$ has been considered for many years, but it still has not been achieved.

In view of the fact that 4 is the smallest admissible valency for a half-arc-transitive graph, special attention has rightly been given to the study of tetravalent half-arctransitive graphs. In particular, constructing and classifying the tetravalent half-arctransitive graphs is currently an active topic in algebraic graph theory (for example, see $[1,8,10-13,17-28]$ and $[30,34,35,37,38])$. For tetravalent half-arc-transitive graphs of given orders, in 1992 Xu [37] classified the tetravalent half-arc-transitive graphs of order p^{3} for each prime p, and recently, it was extended to the case of p^{4} by Feng et al. [11]. Also, Feng el al. [13] classified the tetravalent half-arc-transitive graphs of order $4 p$, and such a graph exists if and only if $p-1$ is divisible by 8 . It follows from [34] that no half-arc-transitive graphs of order $2 p^{2}$ exist for each prime p. In this paper we classify connected tetravalent half-arc-transitive graphs of order $2 p q$ for odd primes $q<p$. There are two infinite families of connected tetravalent half-arc-transitive graphs of order $2 p q$ with one family Cayley and the other non-Cayley; the family of Cayley ones exists if and only if $(p, q) \neq(7,3)$ and $p \equiv 1(\bmod q)$, and the family of non-Cayley ones exists if and only if $p \equiv$ $1(\bmod 4 q)$. For each family there are exactly $\frac{1}{2}(q-1)$ non-isomorphic connected tetravalent half-arc-transitive graphs for a given order.

2 Preliminary results

We start by some notational conventions used throughout this paper. Let X be a graph. For $u, v \in V(X)$, denote by $\{u, v\}$ the edge incident to u and v in X. Let B be a subset of $V(X)$. The subgraph of X induced by B will be denoted by $X[B]$. Let n be a non-negative integer. By C_{n} and K_{n}, we denote the cycle and the complete graph
of order n, respectively. Let $D_{2 n}$ represent the dihedral group of order $2 n$, and \mathbb{Z}_{n} the cyclic group of order n as well as the ring of integers modulo n. Denote by \mathbb{Z}_{n}^{*} the multiplicative group of the ring \mathbb{Z}_{n} consisting of integers coprime to n.

Let X be a tetravalent G-half-arc-transitive graph for a subgroup G of $\operatorname{Aut}(X)$. Then under the natural G-action on $V(X) \times V(X)$, the arc set $A(X)$ is partitioned into two G-orbits, say A_{1} and A_{2}, which are paired with each other, that is, $A_{2}=\left\{(v, u) \mid(u, v) \in A_{1}\right\}$. Each of two corresponding oriented graphs $\left(V(X), A_{1}\right)$ and $\left(V(X), A_{2}\right)$ has out-valency and in-valency which are equal to 2 , and admits G as a vertex- and arc-transitive group of automorphisms. Moreover, each of them has X as its underlying graph. Let $D_{G}(X)$ be one of these two oriented graphs, fixed from now on. For an arc (u, v) in $D_{G}(X)$, we say that u and v are the tail and the head of the $\operatorname{arc}(u, v)$, respectively. An even length cycle C in X is called a G-alternating cycle if the vertices of C are alternatively the tail or the head in $D_{G}(X)$ of their two incident edges in C. It was shown in [21, Proposition 2.4(i)] that, first, all G-alternating cycles in X have the same length-half of this length is called the G-radius of X-and second, that any two adjacent G-alternating cycles in X intersect in the same number of vertices, called the G-attachment number of X. The intersection of two adjacent G-alternating cycles is called a G-attachment set. We say that X is tightly G-attached if its G-attachment number coincides with G-radius. If X is half-arc-transitive, the terms $\operatorname{Aut}(X)$-alternating cycle, $\operatorname{Aut}(X)$-radius, and $\operatorname{Aut}(X)$-attachment number are referred to as an alternating cycle of X, radius of X and attachment number of X, respectively. Similarly, if X is tightly $\operatorname{Aut}(X)$-attached, we say that X is tightly attached. Tightly attached tetravalent graphs with odd radius and even radius have been completely classified by Marušič [21] and Šparl [30], respectively. For the purpose of this paper, we introduce a result due to Marušič.

Let $m \geq 3$ be an integer, $n \geq 3$ an odd integer and let $r \in \mathbb{Z}_{n}^{*}$ satisfy $r^{m}= \pm 1$. The graph $X(r ; m, n)$ is defined to have vertex set $V=\left\{u_{i}^{j} \mid i \in \mathbb{Z}_{m}, j \in \mathbb{Z}_{n}\right\}$ and edge set $E=\left\{\left\{u_{i}^{j}, u_{i+1}^{j \pm r^{i}}\right\} \mid i \in \mathbb{Z}_{m}, j \in \mathbb{Z}_{n}\right\}$.

Proposition 2.1 [21, Theorem 3.4] A connected tetravalent graph X is a tightly attached half-arc-transitive graph of odd radius n if and only if $X \cong X(r ; m, n)$, where $m \geq 3$, and $r \in \mathbb{Z}_{n}^{*}$ satisfying $r^{m}= \pm 1$, and moreover none of the following conditions is fulfilled:
(1) $r^{2}= \pm 1$;
(2) $(r ; m, n)=(2 ; 3,7)$;
(3) $(r ; m, n)=(r ; 6,7 k)$, where $k \geq 1$ is odd, $(7, k)=1, r^{6}=1$, and there exists a unique solution $q \in\left\{r,-r, r^{-1},-r^{-1}\right\}$ of the equation $x^{2}+x-2=0$ such that $7(q-1)=0$ and $q \equiv 5(\bmod 7)$.

The following proposition is due to Marušič and Praeger [25].

Proposition 2.2 [25, Lemma 3.5] Let X be a connected tetravalent G-half-arctransitive graph for some $G \leq \operatorname{Aut}(X)$, and let A be a G-attachment set of X. If $|A| \geq 3$, then the vertex-stabilizer of $v \in V(X)$ in G is of order 2 .

Given a finite group G, an inverse closed subset $S \subseteq G \backslash\{1\}$ is called a Cayley subset of G. The Cayley graph $\operatorname{Cay}(G, S)$ on G with respect to a Cayley subset S is defined to have vertex set G and edge set $\{\{g, s g\} \mid g \in G, s \in S\}$. The automorphism group $\operatorname{Aut}(X)$ of X contains the right regular representation $R(G)$ of G, the acting group of G by right multiplication, as a subgroup. Thus, Cayley graphs are vertextransitive. In general, we have the following result.

Proposition 2.3 [4, Lemma 16.3] A graph X is isomorphic to a Cayley graph on G if and only if its automorphism group $\operatorname{Aut}(X)$ has a subgroup isomorphic to G, acting regularly on vertices.

Let S be a Cayley subset of a finite group G. We call S a CI-subset, if for any Cayley subset T of $G, \operatorname{Cay}(G, S) \cong \operatorname{Cay}(G, T)$ implies that there is $\alpha \in \operatorname{Aut}(G)$ such that $S^{\alpha}=T$. The following result is a well-known criterion for CI-subset due to Babai [3].

Proposition 2.4 Let $X=\operatorname{Cay}(G, S)$ be a Cayley graph on a finite group G with respect to S. Then S is a CI-subset of G if and only iffor any $\sigma \in S_{G}$ with $\sigma^{-1} R(G) \sigma \leq$ $\operatorname{Aut}(X)$, there exists an $\alpha \in \operatorname{Aut}(X)$ such that $\sigma^{-1} R(G) \sigma=\alpha^{-1} R(G) \alpha$, where S_{G} denotes the symmetric group on G.

Now we state two simple observations about half-arc-transitive graphs.
Proposition 2.5 [35, Proposition 2.6] Let X be a connected half-arc-transitive graph of valency $2 n$. Let $A=\operatorname{Aut}(X)$ and let A_{u} be the stabilizer of $u \in V(X)$ in A. Then each prime divisor of $\left|A_{u}\right|$ is a divisor of $n!$.

Proposition 2.6 [13, Propositions 2.1 and 2.2] Let $X=\operatorname{Cay}(G, S)$ be half-arctransitive. Then S contains no involutions, and there is no $\alpha \in \operatorname{Aut}(G, S)$ such that $s^{\alpha}=s^{-1}$ for some $s \in S$.

Finally, we give two group-theoretic propositions. Let H be a subgroup of a finite group G. Denote by $C_{G}(H)$ the centralizer of H in G and by $N_{G}(H)$ the normalizer of H in G. Then $C_{G}(H)$ is normal in $N_{G}(H)$.

Proposition 2.7 [29, Theorem 1.6.3] The quotient group $N_{G}(H) / C_{G}(H)$ is isomorphic to a subgroup of the automorphism group $\operatorname{Aut}(H)$ of H.

As a result of the well-known classification of finite simple groups, we have the following proposition.

Proposition 2.8 [14, pp. 12-14] A non-abelian simple group whose order has at most three prime divisors is isomorphic to one of the following groups:

$$
A_{5}, A_{6}, \operatorname{PSL}(2,7), \operatorname{PSL}(2,8), \operatorname{PSL}(2,17), \operatorname{PSL}(3,3), \operatorname{PSU}(3,3), \operatorname{PSU}(4,2),
$$

whose orders are $2^{2} \cdot 3 \cdot 5,2^{3} \cdot 3^{2} \cdot 5,2^{3} \cdot 3 \cdot 7,2^{3} \cdot 3^{2} \cdot 7,2^{4} \cdot 3^{2} \cdot 17,2^{4} \cdot 3^{3} \cdot 13$, $2^{5} \cdot 3^{3} \cdot 7,2^{6} \cdot 3^{4} \cdot 5$, respectively.

3 Constructions

In this section, we introduce two infinite families of tetravalent half-arc-transitive graphs of order $2 p q$, where $p>q$ are odd primes.

Construction of a Cayley model Let p, q be odd primes such that $(p, q) \neq(7,3)$ and $q \mid(p-1)$. It is well-known that there is a unique non-abelian group of order $p q$, which is the Frobenius group $F_{p q}=\left\langle a, b \mid a^{p}=b^{q}=1, b^{-1} a b=a^{r}\right\rangle$, where r is an element of order q in \mathbb{Z}_{p}^{*}. Let $G=\langle a, b, c| a^{p}=b^{q}=c^{2}=1, b^{-1} a b=a^{r}, a c=$ $c a, c b=b c\rangle \cong F_{p q} \times \mathbb{Z}_{2}$. Then G is independent of the choice of r and a non-abelian group of order $2 p q$. For $k \in \mathbb{Z}_{q}^{*}$, define

$$
\mathcal{C}_{2 p q}^{k}:=\operatorname{Cay}\left(G,\left\{c b^{k}, c b^{-k}, c b^{k} a,\left(c b^{k} a\right)^{-1}\right\}\right) .
$$

Lemma 3.1 Let p, q and r be given as above. Then for each $k \in \mathbb{Z}_{q}^{*}, \mathcal{C}_{2 p q}^{k} \cong$ $X\left(r^{k} ; 2 q, p\right)$. Thus, $\mathcal{C}_{2 p q}^{k}$ is a connected tetravalent half-arc-transitive graph of order $2 p q$, and there are exactly $\frac{1}{2}(q-1)$ non-isomorphic such graphs, that are $\mathcal{C}_{2 p q}^{k}$ for $k=1,2, \ldots, \frac{1}{2}(q-1)$.

Proof For each $k \in \mathbb{Z}_{q}^{*}$, set $T_{k}=\left\{c b^{k}, c b^{-k}, c b^{k} a,\left(c b^{k} a\right)^{-1}\right\}$. Recall that $X\left(r^{k}\right.$; $2 q, p)$ has vertex set $V=\left\{u_{i}^{j} \mid i \in \mathbb{Z}_{2 q}, j \in \mathbb{Z}_{p}\right\}$ and edge set $E=\left\{\left\{u_{i}^{j}, u_{i+1}^{j \pm r^{k i}}\right\} \mid\right.$ $\left.i \in \mathbb{Z}_{2 q}, j \in \mathbb{Z}_{p}\right\}$. It is easy to see that $a^{s} b^{t}=b^{t} a^{s r^{t}}$ for all integers s and t. Also, one may easily check that the map $\phi: u_{i}^{j} \mapsto\left(c b^{k}\right)^{i} a^{j}\left(i \in \mathbb{Z}_{2 q}, j \in \mathbb{Z}_{p}\right)$ is an isomorphism from $X\left(r^{k} ; 2 q, p\right)$ to $\operatorname{Cay}(G, T)$, where $T=\left\{c b^{k} a^{-1},\left(c b^{k} a^{-1}\right)^{-1}\right.$, $\left.c b^{k} a,\left(c b^{k} a\right)^{-1}\right\}$.

For any $\ell \in \mathbb{Z}_{q}^{*}$, the map $a \mapsto a^{\ell}, b \mapsto b, c \mapsto c$ induces an automorphism of G. This implies that $\operatorname{Aut}(G)$ is 2-transitive on the set $\left\{b^{i} a^{j} \mid j \in \mathbb{Z}_{p}\right\}$ for a given $i \in \mathbb{Z}_{q}^{*}$ because the Sylow q-subgroups of G are conjugate. It follows that G has an automorphism φ such that $\left(b^{k} a\right)^{\varphi}=b^{k} a$ and $\left(b^{k} a^{-1}\right)^{\varphi}=b^{k}$. Since the automorphism $\operatorname{group} \operatorname{Aut}(G)$ of G fixes $c(G$ has the center $\langle c\rangle)$, one has $T^{\varphi}=T_{k}$, and hence φ is an isomorphism from $\operatorname{Cay}(G, T)$ to $\mathcal{C}_{2 p q}^{k}$. Consequently, $\mathcal{C}_{2 p q}^{k} \cong X\left(r^{k} ; 2 q, p\right)$. By hypothesis, we have $p \geq 11$ and $q \geq 3$, and since T_{k} generates $G, \mathcal{C}_{2 p q}^{k}$ is a connected tetravalent tightly attached half-arc-transitive graph of order $2 p q$ by Proposition 2.1.

Let $k \in \mathbb{Z}_{q}^{*}$. Note that $a^{-1} b^{k}=b^{k} a^{-r^{k}}$. The automorphism of G induced by $a \mapsto$ $a^{-r^{k}}, b \mapsto b$ and $c \mapsto c$, maps T_{k} to $\left\{c b^{q-k},\left(c b^{q-k}\right)^{-1}, c b^{q-k} a,\left(c b^{q-k} a\right)^{-1}\right\}$. This implies that $\mathcal{C}_{2 p q}^{k} \cong \mathcal{C}_{2 p q}^{q-k}$. To complete the proof, it suffices to show that $\mathcal{C}_{2 p q}^{k}, 1 \leq$ $k \leq \frac{1}{2}(q-1)$, are pair-wise non-isomorphic.

Set $A=\operatorname{Aut}\left(\mathcal{C}_{2 p q}^{k}\right)$. By Proposition 2.2, $|A|=4 p q$ and $A_{u} \cong \mathbb{Z}_{2}$ for $u \in V\left(\mathcal{C}_{2 p q}^{k}\right)$. It follows that $R(G) \unlhd A$. Note that $G=\langle a, b\rangle \times\langle c\rangle$. Then the subgroup H of $R(G)$ of order $p q$ is also the unique subgroup of A of order $p q$, and $R(c) \in C_{A}(H)$, the centralizer of H in A. Clearly, $C_{A}(H)$ is a 2-group. Suppose $C_{A}(H)$ has order 4. Then $C_{A}(H)$ is a Sylow 4-subgroup of A. This implies that $A_{u} \leq C_{A}(H)$ and hence
$A_{u} \leq C_{A}(R(G))$, which forces that $A_{u}=1$, a contradiction. Thus, $C_{A}(H)=\langle R(c)\rangle$ and $R(G)=H \times C_{A}(H)$. Take $\sigma \in S_{G}$ such that $\sigma^{-1} R(G) \sigma \leq A$. Then $R(G)^{\sigma}=$ $H^{\sigma} \times C_{A}\left(H^{\sigma}\right)$. By the uniqueness of H in A, one has $R(G)^{\sigma}=R(G)$, and by Proposition $2.4, T_{k}$ is a CI-subset of G.

Let $1 \leq k_{1}, k_{2} \leq \frac{1}{2}(q-1)$ with $k_{1} \neq k_{2}$. Suppose that $\mathcal{C}_{2 p q}^{k_{1}} \cong \mathcal{C}_{2 p q}^{k_{2}}$. Since $T_{k_{i}}=$ $\left\{c b^{k_{i}},\left(c b^{k_{i}}\right)^{-1}, c a b^{k_{i}},\left(c a b^{k_{i}}\right)^{-1}\right\}(i=1,2)$ are CI-subsets of $G, \mathcal{C}_{2 p q}^{k_{1}} \cong \mathcal{C}_{2 p q}^{k_{2}}$ implies that there is a $\beta \in \operatorname{Aut}(G)$ such that $T_{k_{1}}^{\beta}=T_{k_{2}}$. Note that β must map c to c and b to $a^{m} b$ for some $m \in \mathbb{Z}_{p}$. Thus, $\left(c b^{k_{1}}\right)^{\beta}=c a^{\ell} b^{k_{1}} \in T_{k_{2}}$ for some $\ell \in \mathbb{Z}_{p}$. This means that $c a^{\ell} b^{k_{1}}=c b^{k_{2}},\left(c b^{k_{2}}\right)^{-1}, c a b^{k_{2}}$ or $\left(c a b^{k_{2}}\right)^{-1}$, each of which is impossible because $1 \leq k_{1}, k_{2} \leq \frac{1}{2}(q-1)$. Thus, $\mathcal{C}_{2 p q}^{k_{1}} \nexists \mathcal{C}_{2 p q}^{k_{2}}$.

Construction of a non-Cayley model Let p, q be odd primes such that $4 q \mid(p-1)$, and let r be an element of order $4 q$ in \mathbb{Z}_{p}^{*}. Let $K=\{k \mid k$ is an odd integer and $1 \leq$ $k \leq q-1\}$. For any $k \in K$, define

$$
\mathcal{N C}_{2 p q}^{r^{k}}:=X\left(r^{k} ; 2 q, p\right)
$$

Lemma 3.2 Let p, q, r and K be given as above. Then $\mathcal{N C}_{2 p q}^{r^{k}}, k \in K$, are pair-wise non-isomorphic connected tetravalent tightly attached half-arc-transitive non-Cayley graphs of order $2 p q$.

Proof Since r is assumed to have order $4 q$ in $\mathbb{Z}_{p}^{*}, r^{k}$ has order $4 q$ in \mathbb{Z}_{p}^{*} for any $k \in K$. It follows that $\left(r^{k}\right)^{2 q}=-1$ and $\left(r^{k}\right)^{2} \neq \pm 1$ in \mathbb{Z}_{p}^{*}. By Proposition 2.1, $\mathcal{N} \mathcal{C}_{2 p q}^{k}$ is a connected tetravalent tightly attached half-arc-transitive graph of order $2 p q$. Let $\rho: u_{i}^{j} \mapsto u_{i}^{j+1}\left(i \in \mathbb{Z}_{2 q}, j \in \mathbb{Z}_{p}\right)$ and $\sigma: u_{i}^{j} \mapsto u_{i+1}^{r^{k} j}\left(i \in \mathbb{Z}_{2 q}, j \in \mathbb{Z}_{p}\right)$ be defined as permutations on $V\left(\mathcal{N C}_{2 p q}^{r^{k}}\right)$. It is easy to see that ρ, σ are automorphisms of $\mathcal{N C} \mathcal{C}_{2 p q}{ }^{k}$, and that $\sigma^{-1} \rho \sigma=\rho^{r^{k}}$. Moreover, $\langle\rho, \sigma\rangle \cong \mathbb{Z}_{p} \rtimes \mathbb{Z}_{4 q}$ is half-arc-transitive on $\mathcal{N C}_{2 p q}^{r^{k}}$. Set $A=\operatorname{Aut}\left(\mathcal{N C} C_{2 p q}^{k}\right)$. By Proposition 2.2, $|A|=4 p q$ and hence $A=\langle\rho, \sigma\rangle$. Clearly, every Sylow 2 -subgroup of A is cyclic. If $\mathcal{N C}_{2 p q}{ }^{k}$ is a Cayley graph, then A has a subgroup, say G, acting regularly on $V\left(\mathcal{N C} C_{2 q}{ }^{k}\right)$. Then necessarily $|G|=2 p q$ and $G \unlhd A$. Moreover, $A=G A_{v}$ for some $v \in V\left(\mathcal{N C} \mathcal{C}_{2 p q}^{k}\right)$. Since $A_{v} \cong \mathbb{Z}_{2}, A$ has a Sylow 2-subgroup P such that $A_{v} \leq P$. Then $P=P \cap A=(P \cap G) \times A_{v} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, contrary to the fact that every Sylow 2 -subgroup of A is cyclic. Thus, $\mathcal{N C} C_{2 p q}^{r^{k}}$ is a non-Cayley graph.

To complete the proof, it suffices to show that $\mathcal{N C}_{2 p q}^{r^{k}}(k \in K)$ are pair-wise nonisomorphic. Suppose on the contrary that $\mathcal{N C}_{2 p q}^{r^{m}} \cong \mathcal{N} \mathcal{C}_{2 p q}^{r^{n}}$, where $m, n \in K$ are distinct. Then $|m-n|, 2 q+m-n, m+n$ and $2 q+m+n$ are integers between 1 and $4 q-1$. Since r is an element of order $4 q$ in \mathbb{Z}_{p}^{*}, we have $r^{m-n} \neq 1, r^{2 q+m-n} \neq 1$, $r^{m+n} \neq 1$ and $r^{2 q+m+n} \neq 1$ in \mathbb{Z}_{p}^{*}.

Let $V_{i}=\left\{v_{i}^{j} \mid j \in \mathbb{Z}_{p}\right\}$ for each $i \in \mathbb{Z}_{2 q}$. Then $V\left(\mathcal{N C} \mathcal{C}_{2 p q}^{m}\right)=V\left(\mathcal{N C} r_{2 p q}^{r^{n}}\right)=$ $\bigcup_{i \in \mathbb{Z}_{2 q}} V_{i}$. Note that $\mathcal{N C} C_{2 p q}^{r^{n}}$ has an automorphism which fixes v_{0}^{0} and interchanges
v_{1}^{1} and v_{1}^{-1}, and $v_{2 q-1}^{r^{-n}}$ and $v_{2 q-1}^{-r^{-n}}$. Thus, $\mathcal{N C} \mathcal{C}_{2 p q}^{r^{m}} \cong \mathcal{N C} \mathcal{C}_{2 p q}^{r^{n}}$ implies that there is an isomorphism α from $\mathcal{N C} \mathcal{C}_{2 p q}^{r^{m}}$ to $\mathcal{N C} \mathcal{C}_{2 p q}^{r^{n}}$ such that $\left(v_{0}^{0}\right)^{\alpha}=v_{0}^{0}$ and either $\left(v_{1}^{1}\right)^{\alpha}=v_{1}^{1}$ or $\left(v_{1}^{1}\right)^{\alpha}=v_{2 q-1}^{r^{-n}}$. Note that $V_{i}\left(i \in \mathbb{Z}_{2 q}\right)$ are orbits of the unique normal Sylow p subgroup of $\operatorname{Aut}\left(\mathcal{N C} \mathcal{C}_{2 p q}^{r^{m}}\right)$ and $\operatorname{Aut}\left(\mathcal{N C} \mathcal{C}_{2 p q}^{r^{n}}\right)$, respectively. This implies that α maps each V_{i} to some V_{j}. Thus, $V_{0}^{\alpha}=V_{0}$ and $V_{1}^{\alpha}=V_{1}$ or $V_{2 q-1}$.

Let $V_{1}^{\alpha}=V_{1}$. Then $\left(v_{1}^{1}\right)^{\alpha}=v_{1}^{1}$ and $V_{\ell}^{\alpha}=V_{\ell}$ for any $\ell \in \mathbb{Z}_{2 q}$. Since the subgraphs induced by $V_{0} \cup V_{1}$ in $\mathcal{N C} \mathcal{C}_{2 p q}^{r^{m}}$ and also in $\mathcal{N C _ { 2 p q } { } ^ { n }}$ are cycles of length $2 p$, it is easy to see that $\left(v_{0}^{\ell}\right)^{\alpha}=v_{0}^{\ell}$ and $\left(v_{1}^{\ell}\right)^{\alpha}=v_{1}^{\ell}$ for any $\ell \in \mathbb{Z}_{p}$. Similarly, since the subgraphs induced by $V_{1} \cup V_{2}$ in $\mathcal{N C} \mathcal{C}_{2 p q}^{r^{m}}$ and in $\mathcal{N C} \mathcal{C}_{2 p q}^{n}$ are cycles of length $2 p$, one has $\left(v_{2}^{r^{m}}\right)^{\alpha}=v_{2}^{r^{n}}$ or $v_{2}^{-r^{n}}$ because $\left(v_{1}^{0}\right)^{\alpha}=v_{1}^{0}$. If $\left(v_{2}^{r^{m}}\right)^{\alpha}=v_{2}^{r^{n}}$ then $\left(v_{1}^{2 r^{m}}\right)^{\alpha}=v_{1}^{2 r^{n}}$. Note that $\left(v_{1}^{2 r^{m}}\right)^{\alpha}=v_{1}^{2 r^{m}}$. Thus, $2 r^{m}=2 r^{n}$ in \mathbb{Z}_{p}^{*}, that is $r^{m-n}=1$ in \mathbb{Z}_{p}^{*}, a contradiction. Similarly, if $\left(v_{2}^{r^{m}}\right)^{\alpha}=v_{2}^{-r^{n}}$ then $\left(v_{1}^{2 r^{m}}\right)^{\alpha}=v_{1}^{-2 r^{n}}$. Thus, $2 r^{m}=-2 r^{n}$ in \mathbb{Z}_{p}^{*}, that is $r^{2 q+m-n}=1$ in \mathbb{Z}_{p}^{*}, also a contradiction.

Now let $V_{1}^{\alpha}=V_{2 q-1}$. Then $\left(v_{1}^{1}\right)^{\alpha}=v_{2 q-1}^{r-n}$ and $V_{\ell}^{\alpha}=V_{2 q-\ell}$ for any $\ell \in \mathbb{Z}_{2 q}$. Since the subgraphs induced by $V_{0} \cup V_{2 q-1}$ in $\mathcal{N C} \mathcal{C}_{2 p q}^{m}$ and in $\mathcal{N C} \mathcal{C}_{2 p q}^{r^{n}}$ are cycles of length $2 p$, one has $\left(v_{0}^{j}\right)^{\alpha}=v_{0}^{j r^{-n}}$ and $\left(v_{1}^{j}\right)^{\alpha}=v_{2 q-1}^{j r^{-n}}$ for any $j \in \mathbb{Z}_{p}$. In particular, $\left(v_{1}^{0}\right)^{\alpha}=v_{2 q-1}^{0}$ and $\left(v_{1}^{2 r^{m}}\right)^{\alpha}=v_{2 q-1}^{2 r^{m-n}}$. It follows that $\left(v_{2}^{r^{m}}\right)^{\alpha}=v_{2 q-2}^{r^{-2 n}}$ or $v_{2 q-2}^{-r^{-2 n}}$. If $\left(v_{2}^{r^{m}}\right)^{\alpha}=v_{2 q-2}^{r^{-2 n}}$ then $\left(v_{1}^{2 r^{m}}\right)^{\alpha}=v_{2 q-1}^{2 r^{-2 n}}$; thus $v_{2 q-1}^{2 r^{m-n}}=v_{2 q-1}^{2 r^{-2 n}}$, implying $r^{m+n}=1$ in \mathbb{Z}_{p}^{*}, a contradiction. One may assume that $\left(v_{2}^{r^{m}}\right)^{\alpha}=v_{2 q-2}^{-r^{-2 n}}$ and hence $\left(v_{1}^{2 r^{m}}\right)^{\alpha}=v_{2 q-1}^{-2 r^{-2 n}}$; thus $v_{2 q-1}^{2 r^{m-n}}=v_{2 q-1}^{-2 r^{-2 n}}$, implying $r^{2 q+m+n}=1$ in \mathbb{Z}_{p}^{*}, a contradiction. It follows that all cases are impossible.

4 A classification

Now, we classify the tetravalent half-arc-transitive graphs of order $2 p q$ for $q<p$ odd primes. We first introduce two concepts which will be used later. Let X and Y be two graphs. The lexicographic product $X[Y]$ is defined as the graph with vertex set $V(X[Y])=V(X) \times V(Y)$ such that for any two vertices $u=\left(x_{1}, y_{1}\right)$ and $v=\left(x_{2}, y_{2}\right)$ in $V(X[Y]), u$ is adjacent to v in $X[Y]$ whenever either $\left\{x_{1}, x_{2}\right\} \in E(X)$ or $x_{1}=x_{2}$ and $\left\{y_{1}, y_{2}\right\} \in E(Y)$. It is easy so see that if X and Y are symmetric graphs then so is $X[Y]$. Let N be a normal subgroup of $\operatorname{Aut}(X)$. The quotient graph X_{N} of X relative to N is defined as the graph whose vertices are the orbits of N in $V(X)$ and two orbits are adjacent if there is an edge in X between vertices lying in these two orbits.

The following theorem is the main result of this paper.
Theorem 4.1 Let $q<p$ be odd primes and let X be a connected tetravalent graph of order $2 p q$. Then, X is half-arc-transitive if and only if either $(p, q) \neq(7,3)$, $q \mid(p-1)$ and $X \cong \mathcal{C}_{2 p q}^{\ell}$ for $1 \leq \ell \leq \frac{1}{2}(q-1)$ or $4 q \mid(p-1)$ and $X \cong \mathcal{N C}_{2 p q}^{r^{k}}$ where r is an element of order $4 q$ in \mathbb{Z}_{p}^{*} and k is an odd integer satisfying $1 \leq k \leq q-1$.

Furthermore, the number of non-isomorphic connected tetravalent half-arctransitive graphs of order $2 p q$ is equal to

$$
\begin{cases}0 & \text { if } q \nmid(p-1) \text { or }(p, q)=(7,3), \\ q-1 & \text { if } q \mid(p-1) \text { and } 4 \mid(p-1), \\ \frac{1}{2}(q-1) & \text { if } q \mid(p-1), 4 \nmid(p-1) \text { and }(p, q) \neq(7,3) .\end{cases}
$$

Proof By Lemmas 3.1 and 3.2, we only need to show the necessity of the first part. Let X be a connected tetravalent half-arc-transitive graph of order $2 p q$. By Wilson and Potoňik [36], no tetravalent half-arc-transitive graphs of order 30 or 42 exist. In what follows, assume that $(p, q) \neq(5,3)$ or $(7,3)$. Let $A=\operatorname{Aut}(X)$ and $u \in V(X)$. By Proposition 2.5, the stabilizer A_{u} of u in A is a 2-group. Thus, $|A|=2^{\ell+1} p q$ for some positive integer ℓ. In particular, $4 p q \| A \mid$. Let B be a normal subgroup of A. First we prove three claims.

Claim 1: $B \nsubseteq \mathbb{Z}_{p q}$.

Suppose to the contrary that $B \cong \mathbb{Z}_{p q}$. Clearly, B acts semiregularly on $V(X)$ with two orbits, say Δ and Δ^{\prime}. Let us write $\Delta=\{\Delta(b) \mid b \in B\}$ and $\Delta^{\prime}=\left\{\Delta^{\prime}(b) \mid b \in B\right\}$. One may assume that the actions of B on Δ and Δ^{\prime} are just by right multiplication, that is, $\Delta(b)^{g}=\Delta(b g)$ and $\Delta^{\prime}(b)^{g}=\Delta^{\prime}(b g)$ for any $b, g \in B$. By half-arctransitivity of X, the blocks Δ and Δ^{\prime} have no edge, implying that X is bipartite. Let the neighbors of $\Delta(1)$ be $\Delta^{\prime}\left(b_{1}\right), \Delta^{\prime}\left(b_{2}\right), \Delta^{\prime}\left(b_{3}\right)$ and $\Delta^{\prime}\left(b_{4}\right)$, where b_{1}, b_{2}, b_{3}, $b_{4} \in B$. Note that B is abelian. For any $b \in B$, the neighbors of $\Delta(b)$ are $\Delta^{\prime}\left(b b_{1}\right)$, $\Delta^{\prime}\left(b b_{2}\right), \Delta^{\prime}\left(b b_{3}\right)$ and $\Delta^{\prime}\left(b b_{4}\right)$, and furthermore, the neighbors of $\Delta^{\prime}(b)$ are $\Delta\left(b b_{1}^{-1}\right)$, $\Delta\left(b b_{2}^{-1}\right), \Delta\left(b b_{3}^{-1}\right)$ and $\Delta\left(b b_{4}^{-1}\right)$. The map α defined by $\Delta(b) \mapsto \Delta^{\prime}\left(b^{-1}\right), \Delta^{\prime}(b) \mapsto$ $\Delta\left(b^{-1}\right)$ for any $b \in B$, is an automorphism of X of order 2 . For any $b^{\prime}, b \in B$, one has $\Delta\left(b^{\prime}\right)^{\alpha b \alpha}=\Delta\left(b^{\prime} b^{-1}\right)=\Delta\left(b^{\prime}\right)^{b^{-1}}$ and $\Delta^{\prime}\left(b^{\prime}\right)^{\alpha b \alpha}=\Delta^{\prime}\left(b^{\prime} b^{-1}\right)=\Delta^{\prime}\left(b^{\prime}\right)^{b^{-1}}$, implying that $b^{\alpha}=b^{-1}$. Set $G=\langle B, \alpha\rangle$. Since $B \cong \mathbb{Z}_{p q}$, one has $G \cong D_{2 p q}$ and hence G acts regularly on $V(X)$. It follows that X is a Cayley graph on G, say $X=\operatorname{Cay}(G, S)$. Since X is connected, S generates G. This forces S to contain an involution, contrary to Proposition 2.6.

Claim 2: If B is a 2-subgroup, then $B \cong \mathbb{Z}_{2}$.
Consider the quotient graph X_{B} of X relative to B, and let K be the kernel of A acting on $V\left(X_{B}\right)$. Then each orbit of B in $V(X)$ has length 2 and $\left|V\left(X_{B}\right)\right|=$ $p q>2$. By half-arc-transitivity of X, the subgraph of X induced by each orbit of B has no edges. It follows that X_{B} has valency 2 or 4 . If X_{B} has valency 2 , then X is isomorphic to $C_{n}\left[2 K_{1}\right]$ which is symmetric, a contradiction. Thus, X_{B} has valency 4 , and consequently, $K_{u}=1$. Therefore, $K=B K_{u}=B \cong \mathbb{Z}_{2}$.

Claim 3: A is solvable with a normal Sylow p-subgroup.

Suppose that A is non-solvable. Then A has a non-abelian simple composite factor T_{1} / T_{2} whose order divides $2^{n+1} p q$. Since $p>q$ are odd primes, by Proposition 2.8, $T_{1} / T_{2} \cong A_{5}$ or $\operatorname{PSL}(2,7)$, forcing $(p, q)=(5,3)$ or $(7,3)$, a contradiction. Thus, A is solvable.

Let T be a minimal normal subgroup of A. By solvability of A, T must be an elementary abelian group, and by Claim $2, T \cong \mathbb{Z}_{2}, \mathbb{Z}_{p}$ or \mathbb{Z}_{q}. If $T \cong \mathbb{Z}_{2}$ then, by Claim 2 again, T is a maximal normal 2 -subgroup of A. Let L / T be a minimal normal subgroup of A / T. Then $L / T \cong \mathbb{Z}_{p}$ or \mathbb{Z}_{q}. Thus, L has normal Sylow p - and q-subgroups, which are characteristic in L. By normality of L in A, A has a normal subgroup of order p or q. Thus, A always has a normal subgroup of order p or q, say N.

Suppose that $|N|=q$. Set $C=C_{A}(N)$. Clearly, $N \leq C$ and by Proposition 2.7, $A / C \leq \operatorname{Aut}(N) \cong \mathbb{Z}_{q-1}$. Since $p>q$, one has $p||C|$ and hence $N \neq C$. Let M / N be a minimal normal subgroup of A / N contained in C / N. Then $M \unlhd A$ and M / N is an elementary abelian r-group for $r=2$ or p. Furthermore, $M=N \times R$, where R is a Sylow r-subgroup of M. Clearly, R is characteristic in M and so normal in A. If $r=p$ then $M \cong \mathbb{Z}_{p q}$, contrary to Claim 1 . Thus, $r=2$. By Claim $2, R \cong \mathbb{Z}_{2}$, and hence $M \cong \mathbb{Z}_{2 q}$. Then $M \leq C_{A}(M)$ and again by Proposition 2.7, $A / C_{A}(M) \leq$ $\operatorname{Aut}(M) \cong \mathbb{Z}_{q-1}$. Also, since $p>q$, one has $p\left|\left|C_{A}(M)\right|\right.$, and consequently, $M \neq$ $C_{A}(M)$. Let H / M be a minimal normal subgroup of A / M contained in $C_{A}(M) / M$. Then $H \unlhd A$ and H / M is an elementary abelian 2- or p-group. For the former case, the Sylow 2 -subgroup of H would be a normal subgroup of A of order at least 4, contrary to Claim 2. For the latter case, $H \cong \mathbb{Z}_{2 p q}$. In this case, the subgroup of H of order $p q$ is a normal cyclic subgroup of A, contrary to Claim 1 . Thus, $|N|=p$, and hence N is a normal Sylow p-subgroup of A, as claimed.

Now we are ready to complete the proof. Let P be the Sylow p-subgroup of A. Then $P \cong \mathbb{Z}_{p}$ and by Claim 3, $P \unlhd A$. Consider the quotient graph X_{P}, and let K be the kernel of A acting on $V\left(X_{P}\right)$. Then X_{P} has order $2 q$. Since X is half-arctransitive, the subgraph of X induced by each orbit of P has no edges, and further, X_{P} has valency 4 or 2.

Suppose that X_{P} has valency 4. Then $K_{u}=1$ and $P=K$. This implies that X_{P} is A / P-half-arc-transitive and hence A / P is non-abelian. Let $C=C_{A}(P)$. Then $P \leq$ C and by Proposition 2.7, $A / C \leq \operatorname{Aut}(P) \cong \mathbb{Z}_{p-1}$. Thus, $P \neq C$. Take a minimal normal subgroup, say M / P, of A / P contained in C / P. Then $M \unlhd A$ and M / P is an elementary abelian r-subgroup with $r=q$ or 2 . If $r=q$, then $M \cong \mathbb{Z}_{p q}$, contrary to Claim 1. Thus, $r=2$, and by Claim 2, one has $M=P \times R$ with $R \cong \mathbb{Z}_{2}$, that is $M \cong$ $\mathbb{Z}_{2 p}$. Again by Proposition 2.7, $A / C_{A}(M) \leq \operatorname{Aut}(M) \cong \mathbb{Z}_{p-1}$. Clearly, $M \leq C_{A}(M)$. If $M=C_{A}(M)$, then $(A / P) /(M / P) \cong A / M$ is cyclic. Since $M / P \cong \mathbb{Z}_{2}$ is normal in $A / P, M / P$ is contained in the center of A / P. It follows that A / P is abelian, a contradiction. Thus, $M \neq C_{A}(M)$. Take a minimal normal subgroup, say H / M, of A / M in $C_{A}(M)$. Then $H \unlhd A$ and by Claim $2, H / M \cong \mathbb{Z}_{q}$. It follows that $H \cong \mathbb{Z}_{2 p q}$ and the subgroup of H of order $p q$ is a normal cyclic subgroup of A, contrary to Claim 1.

As the remaining case, let X_{P} have valency 2 , namely, $X_{P} \cong C_{2 q}$. Suppose $K_{u}=1$. Then $P=K$, and so $A / P \leq \operatorname{Aut}\left(X_{P}\right) \cong D_{4 q}$. Recall that $4 p q \| A \mid$, one has $A / P=\operatorname{Aut}\left(X_{P}\right) \cong D_{4 q}$. Then $Q P / P \unlhd A / P$, where Q is a Sylow q-subgroup
of A. Since $A / C_{A}(P) \leq \operatorname{Aut}(P) \cong \mathbb{Z}_{p-1}$, one has $P \neq C_{A}(P)$. If $q\left|\left|C_{A}(P)\right|\right.$, then $P Q \cong \mathbb{Z}_{p q}$, contrary to Claim 1. Thus, $q \nmid\left|C_{A}(P)\right|$ and $C_{A}(P) / P$ is a 2-group. It follows that $C_{A}(P)=P \times R$, where $R \cong \mathbb{Z}_{2}$ by Claim 2. Then $C_{A}(P) / P$ is contained in the center of A / P, and since $(A / P) /\left(C_{A}(P) / P\right) \cong A / C_{A}(P)$ is cyclic, A / P is abelian, contrary to the fact that $A / P \cong D_{4 q}$. Consequently, $K_{u} \neq 1$. Let $V\left(X_{P}\right)=\left\{B_{i} \mid i \in \mathbb{Z}_{2 q}\right\}$ such that $B_{i} \sim B_{i+1}$. Then $X\left[B_{i} \cup B_{i+1}\right] \cong C_{2 p}$ for each $i \in \mathbb{Z}_{2 q}$. Let $D_{A}(X)$ be one of the two oriented graphs associated with the action of A on X. Since P is transitive on each B_{i} and $K_{u} \neq 1$, all edges in $X\left[B_{i} \cup B_{i+1}\right]$ have the same direction either from B_{i} to B_{i+1} or from B_{i+1} to B_{i} in the oriented graph $D_{A}(X)$. This implies that for each $i \in \mathbb{Z}_{2 q}, X\left[B_{i} \cup B_{i+1}\right]$ is an alternating cycle of X with radius p. Clearly, $X\left[B_{i} \cup B_{i+1}\right]$ and $X\left[B_{i+1} \cup B_{i+2}\right]$ intersect in p vertices. It follows that the attachment number of X is also p. Thus, X is a tetravalent tightly attached half-arc-transitive graph of odd radius p. By Proposition 2.1, $X \cong X(r ; 2 q, p)$, where $r \in \mathbb{Z}_{p}^{*}$ such that $r^{2 q}= \pm 1$, and $r^{2} \neq \pm 1$ and $(2 q, p) \neq(6,7)$. In particular, $(p, q) \neq(7,3)$. Recall that $X(r ; 2 q, p)$ has vertex set $V=\left\{u_{i}^{j} \mid i \in \mathbb{Z}_{2 q}, j \in \mathbb{Z}_{p}\right\}$ and edge set $E=\left\{\left\{u_{i}^{j}, u_{i+1}^{j \pm r^{i}}\right\} \mid i \in \mathbb{Z}_{2 q}, j \in \mathbb{Z}_{p}\right\}$.

Let $r^{2 q}=1$. Then r is an element of \mathbb{Z}_{p}^{*} of order q or $2 q$ because $r^{2} \neq 1$. If r has order $2 q$, then r^{q+1} has order q, and it is easy to see that $X(r ; 2 q, p)=$ $X\left(r^{q+1} ; 2 q, p\right)$. Thus, we can always assume that r is of order q. By Lemma 3.1, X is isomorphic to one of $\mathcal{C}_{2 p q}^{\ell}$ for some $1 \leq \ell \leq \frac{1}{2}(q-1)$.

Let $r^{2 q}=-1$. Then r is an element of \mathbb{Z}_{p}^{*} of order $4 q$. There are exactly $2(q-1)$ elements of order $4 q$ in \mathbb{Z}_{p}^{*}, that is r^{k}, where $k \in \mathbb{Z}_{4 q}^{*}$. The graph $X\left(r^{k} ; 2 q, p\right)$ has edge set $\left\{\left\{u_{i}^{j}, u_{i+1}^{j \pm r^{k i}}\right\} \mid i \in \mathbb{Z}_{2 q}, j \in \mathbb{Z}_{p}\right\}$, and vertex set $\left\{u_{i}^{j} \mid i \in \mathbb{Z}_{2 q}, j \in \mathbb{Z}_{p}\right\}$ for each $k \in \mathbb{Z}_{4 q}^{*}$. It is easy to see that $X\left(r^{k} ; 2 q, p\right)=X\left(r^{k+2 q} ; 2 q, p\right)$. Note that $\left(r^{k}\right)^{i}=\left(r^{2 q-k}\right)^{2 q-i}$ or $-\left(r^{2 q-k}\right)^{2 q-i}$ for each $i \in \mathbb{Z}_{p}$. One may easily show that the permutation $u_{i}^{j} \mapsto u_{2 q-i+1}^{j},\left(j \in \mathbb{Z}_{p}\right.$ and $\left.i \in \mathbb{Z}_{2 q}\right)$ on $\left\{u_{i}^{j} \mid i \in \mathbb{Z}_{2 q}, j \in \mathbb{Z}_{p}\right\}$ is a graph isomorphism from $X\left(r^{k} ; 2 q, p\right)$ to $X\left(r^{2 q-k} ; 2 q, p\right)$. It follows that $X \cong X\left(r^{k} ; 2 q, p\right)$ for some odd integer k satisfying $1 \leq k \leq q-1$. Thus, $X \cong \mathcal{N C}_{2 p q}^{r^{k}}$ for some odd integer k between 1 and $q-1$.

Acknowledgements This work was supported by the National Natural Science Foundation of China (10871021, 10901015, 10911140266), Korea Research Foundation Grant (International joint research program: F01-2009-000-10007-0), and the Doctorate Foundation of Beijing Jiaotong University (141109522).

References

1. Alspach, B., Marušič, D., Nowitz, L.: Constructing graphs which are $1 / 2$-transitive. J. Aust. Math. Soc. A 56, 391-402 (1994)
2. Alspach, B., Xu, M.Y.: 1/2-transitive graphs of order 3p. J. Algebr. Comb. 1, 275-282 (1992)
3. Babai, L.: Isomorphism problem for a class of point-symmetric structures. Acta Math. Acad. Sci. Hung. 29, 329-336 (1977)
4. Biggs, N.: Algebraic Graph Theory, 2nd edn. Cambridge University Press, Cambridge (1993)
5. Bouwer, I.Z.: Vertex- and edge-transitive but not 1-transitive graphs. Can. Math. Bull. 13, 231-237 (1970)
6. Chao, C.Y.: On the classification of symmetric graphs with a prime number of vertices. Trans. Am. Math. Soc. 158, 247-256 (1971)
7. Cheng, Y., Oxley, J.: On weakly symmetric graphs of order twice a prime. J. Comb. Theory B 42, 196-211 (1987)
8. Conder, M.D.E., Marušič, D.: A tetravalent half-arc-transitive graph with non-abelian vertex stabilizer. J. Comb. Theory B 88, 67-76 (2003)
9. Du, S.F., Xu, M.Y.: Vertex-primitive $\frac{1}{2}$-arc-transitive graphs of smallest order. Commun. Algebra 27, 163-171 (1999)
10. Fang, X.G., Li, C.H., Xu, M.Y.: On edge-transitive Cayley graphs of valency 4. Eur. J. Comb. 25, 1107-1116 (2004)
11. Feng, Y.-Q., Kwak, J.H., Xu, M.Y., Zhou, J.-X.: Tetravalent half-arc-transitive graphs of order p^{4}. Eur. J. Comb. 29, 555-567 (2008)
12. Feng, Y.-Q., Kwak, J.H., Zhou, C.X.: Constructing even radius tightly attached half-arc-transitive graphs of valency four. J. Algebr. Comb. 26, 431-451 (2007)
13. Feng, Y.-Q., Wang, K.S., Zhou, C.X.: Tetravalent half-transitive graphs of order $4 p$. Eur. J. Comb. 28, 726-733 (2007)
14. Gorenstein, D.: Finite Simple Groups. Plenum, New York (1982)
15. Holt, D.F.: A graph which is edge transitive but not arc transitive. J. Graph Theory 5, 201-204 (1981)
16. Li, C.H., Lu, Z.P., Marušič, D.: On primitive permutation groups with small suborbits and their orbital graphs. J. Algebra 279, 749-770 (2004)
17. Li, C.H., Lu, Z.P., Zhang, H.: Tetravalent edge-transitive Cayley graphs with odd number of vertices. J. Comb. Theory B 96, 164-181 (2006)
18. Li, C.H., Sim, H.S.: On half-transitive metacirculent graphs of prime-power order. J. Comb. Theory B 81, 45-57 (2001)
19. Malnič, A., Marušič, D.: Constructing 4-valent $\frac{1}{2}$-transitive graphs with a nonsolvable automorphism group. J. Comb. Theory B 75, 46-55 (1999)
20. Malnič, A., Marušič, D.: Constructing $\frac{1}{2}$-arc-transitive graphs of valency 4 and vertex stabilizer $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Discrete Math. 245, 203-216 (2002)
21. Marušič, D.: Half-transitive groups actions on finite graphs of valency 4. J. Comb. Theory B 73, 41-76 (1998)
22. Marušič, D., Nedela, R.: Finite graphs of valency 4 and girth 4 admitting half-transitive group actions. J. Aust. Math. Soc. 73, 155-170 (2002)
23. Marušič, D., Nedela, R.: Partial line graph operator and half-arc-transitive group actions. Math. Slovaca 51, 241-257 (2001)
24. Marušič, D., Nedela, R.: Maps and half-transitive graphs of valency 4. Eur. J. Comb. 19, 345-354 (1998)
25. Marušič, D., Praeger, C.E.: Tetravalent graphs admitting half-transitive group action: alternating cycles. J. Comb. Theory B 75, 188-205 (1999)
26. Marušič, D., Šparl, P.: On quartic half-arc-transitive metacirculants. J. Algebr. Comb. 28, 365-395 (2008)
27. Marušič, D., Waller, A.: Half-transitive graphs of valency 4 with prescribed attachment numbers. J. Graph Theory 34, 89-99 (2000)
28. Marušič, D., Xu, M.Y.: A $\frac{1}{2}$-transitive graph of valency 4 with a nonsolvable group of automorphisms. J. Graph Theory 25, 133-138 (1997)
29. Robinson, D.J.: A Course in the Theory of Groups. Springer, New York (1982)
30. Šparl, P.: A classification of tightly attached half-arc-transitive graphs of valency 4. J. Comb. Theory B 98, 1076-1108 (2008)
31. Tutte, W.: Connectivity in Graphs. University of Toronto Press, Toronto (1966)
32. Taylor, D.E., Xu, M.Y.: Vertex-primitive 1/2-transitive graphs. J. Aust. Math. Soc. A 57, 113-124 (1994)
33. Wang, R.J.: Half-transitive graphs of order a product of two distinct primes. Commun. Algebra 22, 915-927 (1994)
34. Wang, X.Y., Feng, Y.-Q.: There exists no tetravalent half-arc-transitive graph of order $2 p^{2}$. Discrete Math. 310, 1721-1724 (2010)
35. Wang, X.Y., Feng, Y.-Q.: Hexavalent half-arc-transitive graphs of order 4 p. Eur. J. Comb. 30, 12631270 (2009)
36. Wilson, S., Potoňik, P.: A Census of edge-transitive tetravalent graphs: Mini-Census, available at http://jan.ucc.nau.edu/swilson/C4Site/index.html
37. Xu, M.Y.: Half-transitive graphs of prime-cube order. J. Algebr. Comb. 1, 275-282 (1992)
38. Zhou, C.X., Feng, Y.-Q.: An infinite family of tetravalent half-arc-transitive graphs. Discrete Math. 306, 2205-2211 (2006)

[^0]: Y.-Q. Feng (\boxtimes) • X. Wang • J.-X. Zhou

 Mathematics, Beijing Jiaotong University, Beijing 100044, P.R. China
 e-mail: yqfeng@bjtu.edu.cn
 X . Wang
 e-mail: 06118308@bjtu.edu.cn
 J.-X. Zhou
 e-mail: jxzhou@bjtu.edu.cn
 J.H. Kwak

 Mathematics, Pohang University of Science and Technology, Pohang 790-784, Korea
 e-mail: jinkwak@postech.ac.kr

