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Abstract We produce a family of reductions for Schubert intersection problems
whose applicability is checked by calculating a linear combination of the dimensions
involved. These reductions do not alter the Littlewood–Richardson coefficient, and
this fact is connected to known multiplicative properties of these coefficients.
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1 Introduction

Given integers n > r ≥ 1, we denote by G(r,C
n) the Grassmannian manifold con-

sisting of all r-dimensional subspaces in C
n. For every flag

E = {{0} = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En = C
n
}
,

where Ej is a subspace of dimension j , G(r,Cn) can be written as a union of
Schubert varieties described as follows. For each set I = {i1 < i2 < · · · < ir} ⊂
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{1,2, . . . , n} one defines the Schubert variety

S(E , I ) = {
M ∈ G

(
r,C

n
) : dim(M ∩ Eix ) ≥ x, x = 1,2, . . . , r

}
.

Schubert calculus allows one to find the number of points in the intersection of
several Schubert varieties S(E�, I�), � = 1,2, . . . , s, when the flags (E�)

s
�=1 are in

generic position. We will be mostly concerned with the case s = 3 where the classical
Littlewood–Richardson rule applies (cf. [6]). Thus, given sets I, J,K ⊂ {1,2, . . . , n}
of cardinality r such that

r∑

�=1

(i� + j� + k� − 3�) = 2r(n − r), (1.1)

the Littlewood–Richardson rule (which will be reviewed below) provides a non-
negative integer cIJK with the property that the set

S = S(E , I ) ∩ S(F , J ) ∩ S(G,K)

contains cIJK elements for generic flags E , F , G . For non-generic flags, this inter-
section is still certain to be nonempty if cIJK > 0.

Thompson and Therianos [9] pointed out that under certain circumstances one can
reduce the problem of finding elements in the set S to a problem where n is replaced
by a smaller number. In order to explain their reductions, it will be convenient to
set I = {i1 < i2 < · · · < ir }, define i0 = 0, and similarly j0 = k0 = 0. Assume that
the indices x, y, z ∈ {0,1,2, . . . , r} are such that x + y + z = r and ix + jy + kz =
n − p < n. In this case, the spaces Eix ,Fjy ,Gkz are generically independent, and for
any space M ∈ S we have

r = dim(M) ≥ dim(M ∩ Eix ) + dim(M ∩ Fjy ) + dim(M ∩ Gkz ) ≥ x + y + z = r.

Therefore M is contained in Eix + Fjy + Gkz . Replace now C
n by the space X =

Eix +Fjy +Gkz and the spaces Ei ,Fj ,Gk by their intersections with X. Observe that
generically

dim(Ei ∩ X) =
{

i if i ≤ ix ,
ix if ix < i ≤ ix + p,
i − p if ix + p < i ≤ n,

and these spaces will form (after the repeating spaces of dimension ix are deleted)
a flag E ′ in X. Flags F ′ and G′ are defined similarly. Finding the spaces in S amounts
to finding the spaces in

S′ = S(E ′, I ′) ∩ S(F ′, J ′) ∩ S(G′,K ′) ⊂ G(r,X),

where

i′� =
{

i� if 1 ≤ � ≤ x,
i� − p if x < � ≤ r ,
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with similar definitions for J ′ and K ′. (The sequence (i′�)r�=1 is still strictly increasing
because the condition ix + jy + kz = n − p actually implies that ix+1 > ix + p pro-
vided that cIJK > 0.) The question arises naturally whether cI ′J ′K ′ �= 0 if cIJK �= 0,
so that the reduced problem is still guaranteed to have a solution. That this is in-
deed the case was shown by Collins and Dykema [3] who proved that in fact
cI ′J ′K ′ = cIJK .

The purpose of this paper is to identify a much larger family of reductions asso-
ciated with various inequalities satisfied by I, J,K . This family is sufficient for the
complete solution of the intersection problem when cIJK = 1. The simplest of these
new reductions is as follows. Assume that cIJK > 0, x, y, z ∈ {1,2, . . . , r} satisfy
x + y + z = 2r , and

ix + jy + kz = 2n − p < 2n.

In this case the space

X = (Eix ∩ Fjy ) + (Eix ∩ Gkz ) + (Fjy ∩ Gkz )

has generically codimension 2p and it contains all the spaces in S. The reduced prob-
lem in G(r,X) corresponds with the sets I ′, J ′,K ′ defined by

i′� =
{

i� − p if 1 ≤ � ≤ ix ,
i� − 2p if ix < � ≤ r ,

with analogous definitions for j ′
�, k

′
�. As in the result of [3] just mentioned, we have

cI ′J ′K ′ = cIJK . The general reduction we propose can be described as follows. We
are given r-tuples a = (a�)

r
�=1, b = (b�)

r
�=1, c = (c�)

r
�=1 of non-negative integers

such that

r∑

�=1

(�a� + �b� + �c�) = ωr

for some positive integer ω; a, b, c are subject to other conditions which will be
discussed later. Assume that the sets I, J,K ⊂ {1,2, . . . , n} have cardinality r ,
cIJK > 0, and consider the sum

r∑

�=1

(a�i� + b�j� + c�k�) = ωn − p, (1.2)

where p is some integer. The reduction corresponding to a, b, c can be applied when
p > 0. Namely, if p > 0, we necessarily have ωp ≤ n. Moreover, there exist

(1) a space X ⊂ Cn with dim X = n − ωp,
(2) flags E ′, F ′, G′ in X,
(3) sets I ′, J ′,K ′ ⊂ {1,2, . . . , n − ωp} of cardinality r such that cI ′J ′K ′ = cIJK and

S(E ′, I ′) ∩ S(F ′, J ′) ∩ S(G′,K ′) ⊂ S(E , I ) ∩ S(F , J ) ∩ S(G,K).
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In addition, the space X can be constructed (when the flags E , F , G are in ‘general po-
sition’) explicitly from E , F , G by applying a finite number of sums and intersections.
The sequences a, b, c which appear here are themselves related to the Littlewood–
Richardson rule.

The two reductions discussed above are such that the only nonzero components of
a, b, c are ax = by = cz = 1, and ω = 1 or ω = 2.

Our proofs deepen some of the results in [1]. Even though we review the rele-
vant results of [1], familiarity with that paper would be helpful in reading this one.
The paper benefited from a careful reading by the referees who helped improve the
exposition, and suggested that this work is connected to earlier results about the fac-
torization of Littlewood–Richardson coefficients [5, 7]. The results in Sect. 7 arose
from this suggestion. The second part of Theorem 3.1 also answers a natural question
raised by one of the referees.

The remainder of the paper is organized as follows. In Sect. 2 we describe the
formulation of the Littlewood–Richardson rule in terms of measures. This is essen-
tially the puzzle formulation of [8], and was also used in [1]. We also introduce the
linear combinations of dimensions which serve as witnesses for the possibility of
reductions. In Sect. 3 we discuss a special class of measures, the tree measures. It
was implicit in the results of [1] that rigid extremal measures have an underlying tree
structure, and this is made explicit here. Section 4 reviews the construction of a puzzle
from a measure, and uses the results of Sect. 3 to deduce the identity cI ′J ′K ′ = cIJK .
In Sect. 5 we prove the essential technical result needed to show in Sect. 6 that the
analogues of the reductions of [9] can indeed be performed. In Sect. 7 we relate our
results to previous work [5, 7] on the factorization of Littlewood–Richardson coef-
ficients. In particular, after applying an appropriate duality, Corollary 4.3 is seen as
a consequence of factorization results. It seems practically impossible to describe
all rigid tree measures in a uniform manner, and an exhaustive application of our
reductions does require knowledge of these tree measures. We provide in Sect. 8 a
description of a fairly large class of such measures.

2 The Littlewood–Richardson rule

We now give the description of the Littlewood–Richardson rule in terms of measures.
This is equivalent with the puzzle description of [8]. Choose unit vectors w1,w2,w3
in the plane such that w1 + w2 + w3 = 0.

The points iw1 + jw2 with integer i, j will be called lattice points, and a segment
joining two nearest lattice points will be called a small edge. We consider positive
measures m which are supported by the union of the small edges, whose restriction
to each small edge is a multiple of arclength measure, and which satisfy the balance
condition (called zero tension in [8])

m(AB) − m(AB ′) = m(AC) − m(AC′) = m(AD) − m(AD′) (2.1)
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whenever A is a lattice point and the neighboring lattice points B,C′,D,B ′,C,D′
are in cyclic order around A.

If e is a small edge, the value m(e) is equal to the density of m relative to arclength
measure on that edge.

Fix now an integer r ≥ 1, and denote by 	r the (closed) triangle with vertices
0, rw1, and rw1 + rw2 = −rw3. We will use the notation Aj = jw1,Bj = rw1 +
jw2, and Cj = (r − j)w3 for the lattice points on the boundary of 	r . We also set

Xj = Aj + w3, Yj = Bj + w1, Zj = Cj + w2

for j = 0,1,2, . . . , r + 1. The following picture represents 	5 and the points just
defined; the labels are placed on the left.

Given a measure m, a branch point is a lattice point incident to at least three edges
in the support of m. We only consider measures with at least one branch point. This
excludes measures whose support consists of one or more parallel lines. We denote by
Mr the collection of all measures m satisfying the balance condition above, whose
branch points are contained in 	r , and such that

m(AjXj+1) = m(BjYj+1) = m(CjZj+1) = 0, j = 0,1, . . . , r.

The numbers αj = m(AjXj ), βj = m(BjYj ) and γj = m(CjZj ) are called the exit
densities of m. The weight ω(m) of a measure m ∈ Mr is defined as

ω(m) =
r∑

j=0

αj =
r∑

j=0

βj =
r∑

j=0

γj ;

the equality of the three sums follows from the balance condition.
In an analogous fashion, we denote by M∗

r the collection of all measures m satis-
fying the balance condition (2.1), whose branch points are contained in 	r , and such
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that

m(AjXj ) = m(BjYj ) = m(CjZj ) = 0, j = 0,1, . . . , r.

The exit densities of such a measure are αr−j = m(AjXj+1), βr−j = m(BjYj+1),
and γr−j = m(CjZj+1) for j = 0,1, . . . , r , and the weight ω(m) is defined as in the
case of Mr .

Assume that m ∈ Mr assigns integer densities to all small edges. We can then
define an integer

n = r + ω(m),

and sets I, J,K ⊂ {1,2, . . . , n} of cardinality r by setting I = {i1, i2, . . . , ir}, where

i� = � +
�−1∑

j=0

αj , � = 1,2, . . . , r, (2.2)

with similar formulas for J and K . These are precisely the triples of sets (I, J,K)

which satisfy the Littlewood–Richardson rule. Given sets or r elements I, J,K ⊂
{1,2, . . . , n}, the Littlewood–Richardson coefficient cIJK equals the number of mea-
sures m ∈ Mr with integer densities which satisfy ω(m) = n − r and (2.2) and its
analogues for J and K . (See [8], or [2, Appendix] for a direct proof of this fact.) We
also write cm = cIJK when I, J,K are obtained from m. When cm = 1, we say that
m is rigid. In other words, m is rigid if there is no other measure with the same exit
densities. Note that knowledge of n and of the sets I, J,K determines entirely the
numbers αj ,βj , γj . Thus the Littlewood–Richardson rule states, in particular, that
cIJK > 0 if and only if these numbers are actual exit densities of some measure.

One of the advantages of this formulation of the Littlewood–Richardson rule is
that it displays an underlying convexity structure. Thus, the set Mr is a convex poly-
hedral cone, and therefore each measure 0 �= m ∈ Mr can be written as a sum of
extremal measures. Recall that m �= 0 is extremal if every measure m′ ≤ m is a mul-
tiple of m. This decomposition into extremal summands is unique (except for the
order of the terms) if m is a rigid measure (see [1, Corollary 3.6]). In the proof of
Theorem 3.1, we will describe briefly the result of [1] showing how the extremal
summands of a rigid measure are obtained.

The results of [8] imply that, given a measure m ∈ Mr with exit densities
αj ,βj , γj , there exist Hermitian r × r matrices X,Y,Z such that X + Y + Z =
2ω(m)1r , and the eigenvalues of X,Y,Z are, respectively, the numbers

�−1∑

j=0

αj ,

�−1∑

j=0

βj ,

�−1∑

j=0

γj , � = 1,2, . . . , r;

here 1r denotes the r × r identity matrix. The sum of the traces of X,Y,Z must then
be 2rω(m), and this can be written in the equivalent form

r∑

�=0

�(α� + β� + γ�) = rω(m).
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As seen in the Introduction, the possibility of reductions for the Schubert inter-
section problem defined by the sets I, J,K ⊂ {1,2, . . . , n} is tested by calculating
an appropriate sum of the indices in these sets. We are now ready to discuss these
sums in full generality. Assume therefore that r is fixed, I, J,K ⊂ {1,2, . . . , n} and
I ′, J ′,K ′ ⊂ {1,2, . . . , n′} are sets of cardinality r such that cIJK > 0 and cI ′J ′K ′ > 0.
Let us set ω = n − r and ω′ = n′ − r . Choose measures m,m′ ∈ Mr such that
ω(m) = ω, ω(m′) = ω′, and I, J,K (resp. I ′, J ′,K ′) are derived from m (resp. m′)
via (2.2). We denote by α�,β�, γ� (resp. α′

�, β
′
�, γ

′
�) the exit densities of m (resp. m′).

The sum we are interested in is

Σm′(m) =
r∑

�=1

(α′
�i� + β ′

�j� + γ ′
�k�) − ω′n.

Observe that Σm′(m) depends only on the exit densities of m and m′, and therefore it
can be calculated directly from the sets I, J,K and I ′, J ′,K ′.

The general reduction will proceed as follows. Assume that we want to solve the
Schubert problem associated to a measure m ∈ Mr . We calculate the sum Σm′(m)

for a certain kind of measure m′ (a rigid tree measure in the terminology introduced
below). If this sum is equal to −p < 0, then pm′ ≤ m and one can effectively reduce
the intersection problem to solving first an intersection problem for a stretched ver-
sion of m′, followed by the intersection problem for m − pm′, for which we have
cm−pm′ = cm; see Theorem 6.2. The problem corresponding to the stretched version
of m′ can be solved algorithmically, as seen in [1].

Since n = ω(m) + r , we can rewrite

Σm′(m) =
∑

�<�′
(α�α

′
�′ + β�β

′
�′ + γ�γ

′
�′) − ω(m)ω(m′)

+
[

r∑

�=0

�(α′
� + β ′

� + γ ′
�) − rω(m′)

]

.

We have seen earlier that the sum inside the brackets is equal to zero, and thus

Σm′(m) =
∑

�<�′
(α�α

′
�′ + β�β

′
�′ + γ�γ

′
�′) − ω(m)ω(m′). (2.3)

This formula has several advantages: it does not depend explicitly on r , and by in-
cluding the branch points of m and m′ in a triangle of a different size we do not alter
the sum. More precisely, if we enlarge the triangle containing the branch points of the
measures, the value of r changes, but the nonzero values α�, α′

� remain the same, and
they appear in the same order, leaving the sum Σm′(m) unchanged. The arguments in
the remainder of the paper are easier to visualize when all the branch points are con-
tained in the interior of 	r , and the reader is free to make this additional assumption
at any point. Another change which does not affect the value of Σm′(m) is homothety.
Denote by S and S′ the supports of m and m′, and let q be a positive integer. It is then
possible to define measures μ and μ′ supported by qS and qS′, respectively, and such
that the density of each segment of the form qe equals the original density of e. It
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is obvious that Σμ′(μ) = Σm′(m). Taking, for instance, q = 2, each small edge in
the support of m turns into two collinear small edges in the support of μ. It is thus
possible to assume that for every small edge e in the support of m there is a second,
collinear, edge e′ which meets e in a vertex V which is not a branch point. This is a
formal way to perform an operation which is referred to as ‘breaking an edge in half’
later on.

The fact that ω(m)ω(m′) = ∑r
�,�′=1 α�α

′
�′ implies easily that

Σm′(m) + Σm(m′) = ω(m)ω(m′) −
r∑

�=1

(α�α
′
� + β�β

′
� + γ�γ

′
�).

In particular, when m = m′ we have

Σm(m) = 1

2

[

ω(m)2 −
r∑

�=1

(
α2

� + β2
� + γ 2

�

)
]

,

a formula requiring fewer multiplications.

3 Trees and measures

Some measures m ∈ Mr have an underlying tree structure which we describe next.
We start with a special class of trees. We consider labeled trees such that

(1) each edge is assigned a label from the set {1,2,3} called the type of that edge,
(2) each vertex has order 2 or 3,
(3) the two edges adjacent to a vertex of order 2 have the same label,
(4) the three edges adjacent to a vertex of order 3 have distinct labels, and
(5) there are only finitely many vertices of order 3.

These conditions imply that the tree is infinite, but it has a finite number of ends.
These are sequences of vertices of the form V0V1 · · · such that V0 has order 3, Vj has
order 2 for j ≥ 1, and VjVj+1 is an edge for each j ≥ 0. We will impose one more
condition on our trees.

(6) The shortest path joining two different ends contains an odd number of vertices
of order 3.

All the trees we use will satisfy these four properties, and therefore we will not intro-
duce a special name for this particular species.

An immersion of a tree T ⊂ R
2 is simply a continuous map ϕ : T → R

2 which

(i) maps each edge of type j ∈ {1,2,3} homeomorphically onto a small edge par-
allel to wj ,

(ii) if V A and V B are the two edges meeting at a vertex of order 2, then 2ϕ(V ) =
ϕ(A) + ϕ(B), and
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(iii) if V A,V B,V C are the three edges meeting at a vertex of order 3, then 3ϕ(V ) =
ϕ(A) + ϕ(B) + ϕ(C).

Condition (iii) actually follows from (i). If we endow T with a metric such that each
edge is isometric to the segment [0,1], and require that immersions are isometric on
each edge, then T has a unique immersion up to translations and symmetries with
respect to lattice points. It is easy to see that each of the trees we consider can be
embedded into R2 in such a way that each edge is identified with a straight line
segment of unit length. In the following illustrations we always embed trees that way,
and consider only immersions which preserve the orientation of the edges around
each vertex of order 3. With this convention, the types of all edges are determined by
the type of one edge.

Immersions are generally not one-to-one.
Assume now that T is metrized as above, and endow it with arclength measure.

Given an immersion ϕ of T which is isometric on each edge, we consider the push-
forward mϕ of this measure. Thus mϕ assigns to each small edge a density equal to
the number of its preimages in T . The resulting measure clearly satisfies the balance
condition (2.1) at all vertices. Condition (6) implies that we can arrange ϕ so that
mϕ ∈ Mr provided that r is sufficiently large (so that 	r contains ϕ(V ) whenever
V is a vertex of order 3 of T ). A measure m ∈ Mr will be called a tree measure if
m = mϕ for some immersion ϕ of a tree. The following illustration shows a tree, and
the range of one of its immersions. The arrows indicates ends of the tree, and the
asterisk indicates where one of these ends is mapped by the immersion.

In the second illustration, some edges of the immersion have multiplicity two (i.e.,
they have two preimages under the corresponding immersion). They are represented
by thicker lines.
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Here is one more figure illustrating the fact that a tree measure need not be extremal.

In this case, the measure mϕ has two summands with unit densities; the support of
one of them is pictured below.

If m ∈ Mr is a tree measure, it is fairly easy to see that the number of ends of the
corresponding tree T is 3ω(m). We will write ω(T ) = ω(m). For the trees above, the
value of ω(T ) is 3 or 4.

In the following result we rely on the concepts introduced in [1], particularly the
concept of an evil path used in the proof of the second statement. For the conve-
nience of the reader, we recall that a sequence A0A1 · · ·An of lattice vertices is
called an evil path (relative to a measure m) if each segment Aj−1Aj is a small
edge in the support of m, and Aj−1AjAj+1 is an evil turn for 1 ≤ j < n. For
the paths considered in the proof, only two kinds of evil turn are needed. The
first is no turn at all, that is, Aj−1,Aj and Aj+1 are collinear and Aj−1 �= Aj+1.
The second is such that �Aj−1AjAj+1 = 120◦ and the small edge AjX such that
�Aj−1AJ X = �XAjAj+1 = 120◦ is also in the support of m.

The second statement of this result settles a basic question about tree measures.
The concept of a root edge is explained in the proof.

Theorem 3.1 Assume that m ∈ Mr is a rigid extremal measure. Then there exists a
tree measure m′ ∈ Mr such that m = cm′ for some constant c > 0. Conversely, every
rigid tree measure is extremal and it assigns unit density to its root edges.

Proof Assume, more generally, that m ∈ Mr is a rigid measure. Given two adjacent
small edges AB,BC in the support of m, we write AB →m BC if either

(a) A,B,C are collinear and one of the edges BX such that �XBC = 60◦ satisfies
m(BX) = 0, or

(b) �ABC = 120◦, and the edge BX opposite AB satisfies m(BX) = 0.

Given an edge e = AB , there exist at most two edges f adjacent to B such that
e →m f . More generally, if e, f are two small edges, we write e ⇒m f if either
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e = f , or

e = e1 →m e2 →m · · · →m ek = f

for some chain γ = {e1, e2, . . . , ek}, ej = Xj−1Xj , of small edges. This relation is
called descendance, and it was proved in [1] that each edge in the support of m is the
descendant of a minimal (or root) edge contained in 	r . Moreover, the descendants
of a root edge form the support of an extremal measure. Here minimality is defined
up to the equivalence relation e ⇔m f if e ⇒m f and f ⇒m e. A chain γ as above
is called a descendance path from e to f .

Assume now that m is extremal and e is a root edge for m contained in 	r . Divid-
ing m by c = m(e), we may assume that m(e) = 1. If f is any edge in the support of
m, m(f ) equals the number of descendance paths from e to f (cf. [1]). Note that m

may have several (often, infinitely many) root edges f ; they are characterized by the
equality m(f ) = 1.

The construction of the required tree T is somewhat analogous to the construc-
tion of a universal covering space. Abstractly, the vertices of T are sequences
X0X1 · · ·Xn such that either n = 0 and X0 is an endpoint of e, or n ≥ 1 and
γ = {X0X1,X1X2, . . . ,Xn−1Xn} is a descendance path from e. The vertices X0,X1
are identified with X1X0,X0X1, respectively, if X0 and X1 are the endpoints of e.
Two vertices of the form X0X1 · · ·Xn, X0X1 · · ·XnXn+1 are joined by an edge. There
is a map ϕ : T → R

2 which sends a vertex X0X1 · · ·Xn to Xn. We assign now a label
j to each edge e of T so that ϕ(e) is parallel to wj . It is clear that this labeling sat-
isfies the requirements in the above definition. It should be clear now that m = mϕ ,
thus proving the first part of the statement.

Consider now an immersion ϕ of a tree T with the property that mϕ is rigid.
Assume A0A1 · · ·An is a simple path in T , that is, each Aj is a vertex of T , Aj−1Aj

is an edge of T for j ≥ 1, and Aj+1 �= Aj−1 for 1 ≤ j ≤ n − 1. The immersion
ϕ maps this path onto an evil path in the support of mϕ [1]. Since mϕ is rigid, its
support contains no evil loops, and therefore we cannot have ϕ(An−1) = ϕ(A0) and
ϕ(An) = ϕ(A1). Also observe that every descendance path is the image under ϕ of a
simple path in T . (This last fact is the appropriate version of the path lifting property
of the universal cover.)

Consider next a path A0A1 · · ·An in T with the property that n ≥ 3, ϕ(A0A1)

and ϕ(An−1An) are root edges of mϕ , but ϕ(Aj−1Aj) is not a root edge for any
j = 2,3, . . . , n − 1. When n ≥ 3 we must have ϕ(A1A2) �→mϕ ϕ(A0A1), and we
conclude that the two small edges adjacent to ϕ(A1), and forming 60◦ angles with
ϕ(A0A1), are in the support of mϕ . A similar argument about ϕ(An−1An) shows that

ϕ(A1)ϕ(A2) · · ·ϕ(An−1)ϕ(An)ϕ(An−1) · · ·ϕ(A2)ϕ(A1)

is an evil loop in the support of mϕ , contrary to the assumption that mϕ is rigid. When
n = 2, ϕ(A0A1) �→ ϕ(A1A2), and ϕ(A1A2) �→ ϕ(A0A1) we conclude that all the six
edges adjacent to ϕ(A1) are in the support of mϕ , also contrary to rigidity.

The preceding argument proves the following fact. If AB and CD are two edges
of T such that ϕ(AB) and ϕ(CD) are root edges of mϕ , then ϕ(XY) is also a root
edges of mϕ for every XY on the shortest path joining AB and CD. Moreover, all
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these root edges are equivalent relative to descendance. Now, every root edge of mϕ is
the image of some edge in T , and any two edges in T are joined by a simple path. We
conclude that all the root edges of mϕ are equivalent, and therefore mϕ is extremal.

It remains to show that mϕ assigns unit mass to its root edges. Assume to the con-
trary that there exist two distinct edges in T which are mapped to the same root edge
of mϕ . Thus we can find a simple path A0A1 · · ·An in T such that each edge Aj−1Aj

is mapped to a root edge, and ϕ(A0A1) = ϕ(An−1An). We choose such a path with
minimum n, so that all the other edges ϕ(Aj−1Aj) are distinct. The preceding obser-
vations about evil loops imply that ϕ(A0) = ϕ(An) and ϕ(A1) = ϕ(An−1). The edges
ϕ(A1A2) and ϕ(An−2An−1) meet at ϕ(An−1), and they cannot form a 60◦ degree an-
gle because ϕ(An−1An) is a root edge. It follows that they form a 120◦ angle, and
therefore the loop ϕ(A1)ϕ(A2) · · ·ϕ(An−1) is evil, a contradiction. �

Let ϕ be the immersion of T described in the preceding proof, and let e be an edge
of T such that ϕ(e) is a root edge for the measure m. We can orient all other edges
of T away from e. It was shown in [1] that the map ϕ has the following additional
property: if g and h are two edges such that ϕ(g) = ϕ(h), then ϕ induces the same
orientation on this common image. In other words, the edges in the support of m,
other than ϕ(e), can be consistently oriented in the direction of a descendance path
from ϕ(e). The following lemma is also proved in [1] (see the discussion following
Theorem 3.5 in [1]).

Lemma 3.2 Let m be a rigid extremal measure, and orient the edges in its support
away from a fixed root edge. Each lattice point meets at most four edges in the support
of m, and the possible positions of these edges, including their orientations, are as
follows

up to rotations.

In order to study the sums Σm′(m), we will also need some maps which are closely
related to immersions, but are discontinuous. Assume that T is a tree, and ϕ is an
immersion of T such that the induced measure is in Mr for some r . Denote by T◦
the set of points in T which are not vertices. A function ψ : T◦ → R

2 will be called a
fractured immersion if

(1) the range of ψ is contained in the small edges of the triangular lattice determined
by w1,w2,w3,

(2) there is an immersion ϕ of T such that ψ(t) − ϕ(t) is constant on the interior of
every edge, and

(3) ψ extends continuously to all except finitely many vertices of T .

Let ψ be a fractured immersion of a tree T . We will associate to each vertex V of
T an integer δψ(V ) which measures how badly fractured ψ is at V . If ψ extends
continuously to the point V we set δψ(V ) = 0. Assume next that the order of V is 2
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and the two edges AV,V B are mapped to A′V ′,V ′′B ′, respectively, with V ′ �= V ′′.
We will set δψ(V ) = q if the point V ′′ lies q lattice units to the left of the line joining
A′ and V ′, where this line is oriented so that A′V ′ points toward V ′. Note that V ′′
could be to the right of this line, in which case q < 0, and V ′′ (as well as B ′) could
be on this line, in which case q = 0. Finally, let V be a vertex of order 3, assume that
the three edges AV,BV,CV are mapped to A′V ′,B ′V ′′,C′V ′′′, and note that these
three segments still form 120◦ angles. If the lines containing these three segments
are concurrent, we set δψ(V ) = 0. Otherwise, these three lines form an equilateral
triangle 	 with side length q . Orient the sides of this triangle so that the segments
A′V ′,B ′V ′′,C′V ′′′ point toward V ′,V ′′,V ′′′, respectively. If the boundary of 	 is
oriented clockwise, set δψ(V ) = −q , and in the contrary case set δψ(V ) = q . The
following figures shows three cases in which the values of δψ(V ) are 0,−2 and 1.
The dotted lines represent small edges.

The orientations indicated above are used exclusively for the calculation of the num-
bers δψ(V ). In the proofs below we will need to orient all the edges of a tree T (not
just the ones adjacent to V ), and this will generally be the orientation away from a
fixed vertex or edge.

In the following statement, the segment A0X0 is deemed to exit 	r at the point
A0, rather than Cr , while CrZr is deemed to exit at Cr . Of course, this issue does not
arise when the corners of 	r are not exit points, and this can be achieved by enlarging
the triangle.

Theorem 3.3 Let ψ be a fractured immersion of a tree T such that all the limits of
ψ at discontinuity points are contained in 	r . For each end E of T , denote by �(E)

the rank of the exit point of ψ(E) from 	r . In other words, �(E) = � if the closure of
ψ(E) intersects ∂	r in A�,B�, or C�. Then we have

∑

all ends E of T

�(E) = rω(T ) +
∑

all vertices V of T

δψ(V ).

Proof We proceed by induction on the number of vertices where ψ does not extend
continuously. When this number is equal to zero, g is an immersion, and the sum in
the left hand side is nothing but

∑

�

�(α� + β� + γ�) = rω(m),

where α�,β�, γ� are the exit densities of the corresponding measure m. This is pre-
cisely the desired identity because ω(m) = ω(T ). Assume then that the theorem has
been proved for all fractured immersions with fewer discontinuity points than ψ , and
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there exists at least one vertex V where ψ does not extend continuously. Consider
first the case when V is of order 2, and the vertices AV,V B are mapped by ψ to
A′V ′,V ′′B ′, which we will assume to be horizontal for definiteness. By transposing
the points A,B , we can also assume that A′ is to the left of V ′ and B ′ is to the right
of V ′′. There is then a point A� such that the segment A�V

′′ is horizontal; denote by
a its length. Similarly, there is a point Ck such that the segment V ′Ck is horizontal.
The definition of δ implies that

� + k + δψ(V ) = r. (3.1)

We now form two trees in the following way. Cut the tree T at the point V , and add
to the part containing AV an end V V1V2 · · · , thus forming a tree T ′. Analogously,
add to the part containing BV a path V W1W2 · · ·Wa , where W1,W2, . . . ,Wa−1 have
order 2, and two ends meeting at Wa , thus forming a tree T ′′. The map ψ gives rise to
two fractured immersions ψ ′ and ψ ′′ of T ′ and T ′′ as follows: ψ ′(V V1V2 · · ·) is the
half line starting with A′V ′, ψ ′′(V W1W2 · · ·Wa) = V ′′A�, and the two ends meeting
at Wa are mapped onto the two half lines starting at A� and pointing left. It is clear
that ψ ′ and ψ ′′ have fewer vertices of discontinuity than ψ , and therefore the desired
formula is true for ψ ′and ψ ′′. It is clear that

∑

vertices W of T

δψ(W) =
∑

vertices V ′ of T ′
δψ ′(V ′) +

∑

vertices V ′′ of T ′′
δψ ′′(V ′′) + δψ(V ),

while
∑

all ends E′ of T ′
�(E′) +

∑

all ends E′′ of T ′′
�(E′′) =

∑

all ends E of T

�(E) + � + k.

The desired equality follows then from (3.1) because ω(T ′) + ω(T ′′) = ω(T ) + 1.
The solid arrows in the following illustration are the oriented segments A′V ′ and
B ′V ′′, while the dashed lines indicate where the additional edges in T ′ and T ′′ are
mapped. Their exit points from 	r are A�, B0 and Ck .

Consider next the case that V is of order three, and the three edges AV,BV,CV

of T are mapped to A′V ′,B ′V ′′,C′V ′′′. Assume that A,B,C are arranged clockwise
around V . A cyclic permutation allows us to assume that A′V ′ is horizontal, and we
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must consider the two cases where A′ is to the left or to the right of V ′. These two
situations are illustrated below.

Assume first that A′ is on the left. The half lines A′V ′, B ′V ′′, C′V ′′′ exit 	r at
points Ck,B�,Ap , respectively. As in the preceding proof, we cut T at the point
V , and form three trees T ′, T ′′, T ′′′ by attaching to the part of T which contains
A,B,C, respectively, an end attached at V . The map ψ gives rise to three fractured
immersions ψ ′,ψ ′′,ψ ′′′ of these trees. For instance, ψ ′ maps the additional end at
V to the half line starting with V ′Ck . Moreover, the new fractured immersions have
fewer discontinuity points than ψ , and therefore the inductive hypothesis applies to
them. As in the preceding case, we have ω(T ′) + ω(T ′′) + ω(T ′′′) = ω(T ) + 1, and

k + � + p + δψ(V ) = r.

The desired formula follows now easily. Finally, consider the case in which A′ is
to the right of V ′. In this case, the half lines A′V ′,B ′V ′′,C′V ′′′ exit 	r at points
A�,Bk,Cp , respectively, and the trees T ′, T ′′, T ′′′ must be constructed by attaching at
V a few edges followed by two ends. In this case we have ω(T ′)+ω(T ′′)+ω(T ′′′) =
ω(T )+2 and the reader can verify easily that k+�+p+δψ(V ) = 2r . The conclusion
follows as before. �

4 Inflations and fractured immersions

We recall from [8] (see also [1]) that every measure ν ∈ Mr has an associated puzzle
obtained by inflating ν. The inflation of ν is defined as follows. Cut the plane along
the edges in the support of ν to obtain a collection of puzzle pieces, and translate these
pieces away from each other in the following way: the parallelogram formed by the
two translates of a side AB of a white puzzle piece has two sides of length equal to the
density of ν on AB and 60◦ clockwise from AB . This parallelogram will be referred
to as the inflation of AB . The balance condition (2.1) implies that the original puzzle
pieces and these parallelograms fit together, and leave a space corresponding to each
branch point in the support of ν. Here is an illustration of the process with r = 3;
the thinner lines in the support of the measure have density one, and the thicker ones
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density 2. The original pieces of the triangle 	r are white, the added parallelogram
pieces are dark gray, and the branch points become light gray pieces. Each light gray
piece has as many sides as there are branches at the original branch point.

The dotted lines indicating the boundary of 	r have been translated so that they now
outline a triangle with sides r + ω(ν), which we may assume is precisely 	r+ω(ν).
The decomposition of this triangle into white, dark gray, and light gray pieces is the
puzzle associated to ν. The white regions in the puzzle are called ‘zero regions’, the
light gray ones ‘one regions’, and the dark gray parallelograms ‘0–1 regions’ in [8].
Observe that knowledge of the dark gray parallelograms in a puzzle determines the
colors of the remaining pieces. Indeed, the white sides of such a parallelogram, that
is, the sides bordering white puzzle pieces, are 60◦ counterclockwise from its light
gray sides. The figure symmetric to a puzzle relative to a vertical line is also a puzzle
provided that the white and light gray colors are interchanged.

The puzzle of a measure ν ∈ Mr can be used to define a dual measure ν∗ ∈ M∗
ω(ν).

This measure is obtained as follows. Replace each dark gray parallelogram in the
puzzle of ν by a line segment parallel to its light gray sides, and assign this segment
density equal to the white side of the same parallelogram. Now move the light gray
pieces together in such a way that they cover 	ω(ν) and the new segments form the
boundary of the light gray pieces. Then these segments and their densities define
the part of the measure ν∗ supported in 	ω(ν); the part of the measure outside this
triangle, that is, the exit densities, is determined by the balance condition. The process
of passing from a puzzle to the dual measure is called ∗-deflation. It is easy to see that
the exit densities of ν∗ are entirely determined by the exit densities of ν. Moreover
the processes of inflation and ∗-deflation can be reversed, leading to the conclusion
that cν∗ = cν . This duality plays an essential role in Sect. 7. The following figure
illustrates the dual of the measure pictured above.
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It is useful to observe that the measure μ∗ can be obtained directly from μ, without
passing through the puzzle. Start with a segment AB ⊂ 	r in the support of μ with
no branch points of μ in its interior. Assume that AB has length � and μ has density
δ on AB . Replace AB with a segment A′B ′ which is 60◦ clockwise from AB , the
length of A′B ′ is δ, and assign it density �. Arrange then these segments in such a
way that the sides AB,BC, . . . of a white puzzle piece correspond to edges with a
common endpoint. Then the union of these new segments is the support of μ∗ in
	ω(μ) (or, more precisely, a translate of this support), and the new densities are the
ones assigned by μ∗. When viewed as a planar graph, the support of μ∗ is dual to
that of μ. More precisely, the support of μ∗ in 	ω(μ) can be obtained as follows,
up to an orientation preserving homeomorphism. Place one point in each connected
component of 	r \ supp(μ), and in addition, for every side AB of such a component
in ∂	r ∩ supp(μ), place a point on the outside of 	r , close to AB . Now join two
such points if they are in components of R

2 \ supp(μ) sharing a side. The length
of this segment XY should equal the density of the edge AB separating the two
corresponding regions (where the points X and Y were placed), while its density in
m∗ is equal to the length of AB . The following figure helps illustrate this duality.

We recall one further concept introduced in [1]. Two measures m and m̃ are said to
be homologous if there is a bijection between the white piece edges determined by the
support of m and those determined by the support of m̃ such that corresponding edges
are parallel, and incident edges correspond to incident edges (the intersection point
being the one dictated by the correspondence of the edges). The preceding discussion
makes it clear that the duals of homologous measures are also homologous. More-
over, if m and m̃ assign the same density to homologous edges, then ω(m) = ω(m̃)

and the measures m∗ and m̃∗ have precisely the same support.
In this section, the main use of inflations is to produce fractured immersions from

a given immersion of a tree T . Assume indeed that T is a tree, ϕ is an immersion
of T such that the corresponding measure m′ = mϕ is in Mr , and let ν ∈ Mr be
another measure. Assume that each edge of T has been given an orientation, and
that all the edges belonging to an end of T have been oriented outward (i.e., toward
the infinite part of that end). For each edge e in T such that ϕ(e) is in the support
of ν, we attach ϕ(e) to the white puzzle piece on the right of ϕ(e) when ϕ(e) is
given the orientation induced by the orientation of e. For edges e with ν(e) = 0,
ϕ(e) is contained in a white puzzle piece, and it moves along with that piece. If we
denote now by ψ(e) the translate of ϕ(e) in the puzzle construction, we obviously
obtain a fractured immersion. The following figure illustrates the process as applied
to a measure m′ = mϕ whose support is pictured below, and ν is the measure whose
inflation was depicted in the preceding figure. We have oriented all the edges away
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from the branch point inside 	3, and completed the outline of 	6.

Note that all the fractures of ψ are contained in 	r+ω(ν), and therefore the formula
in Theorem 3.3 applies. Let αj,βj , γj be the exit densities of ν, and let α′

j , β
′
j , γ

′
j be

the exit densities of m′. Then it is easy to see that

∑

all ends E of T

�(E) =
r∑

�=0

[

α′
�

(
� +

∑

k<�

αk

)
+ β ′

�

(
� +

∑

k<�

βk

)
+ γ ′

�

(
� +

∑

k<�

γk

)]

= rω(m′) +
∑

k<�

(α′
�αk + β ′

�βk + γ ′
�γk).

Indeed, this follows from the fact that an end E such that ϕ(E) exits at A� is translated
to ψ(E) which exits at A�+α0+···+α�−1 .

Lemma 4.1 With the notation above, we have

Σm′(ν) =
∑

all vertices V of T

δψ(V ).

Proof Theorem 3.3 yields

∑

all ends E of T

�(E) = (
r + ω(ν)

)
ω(m′) +

∑

all vertices V of T

δψ(V ).

Combining this with the identity preceding the statement, we obtain

∑

all vertices V of T

δψ(V ) =
∑

k<�

(α′
�αk + β ′

�βk + γ ′
�γk) − ω(m′)ω(ν),

and this is precisely the formula (2.3) for Σm′(ν). �

Theorem 4.2 Assume that ν,m′ ∈ Mr , and m′ is a tree measure.

(1) If the support of m′ is not contained in the support of ν, then Σm′(ν) ≥ 0.
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(2) If m′ is not rigid, we also have Σm′(m′) ≥ 0.
(3) If m′ is rigid, we have Σm′(m′) = −1.

Proof Let ϕ be an immersion of a tree T such that m′ = mϕ . To prove (1), fix an
edge e0 such that ϕ(e0) is not contained in the support of ν, and orient all the other
edges of T away from e0. Construct a fractured immersion ψ using the above con-
struction associated with the inflation of ν. It is easy to verify that in this case we
have δψ(V ) ≥ 0 for every vertex V of T . Indeed, δψ(V ) can be calculated explicitly
in terms of the values of ν on one of the edges adjacent to ϕ(V ). To see this, assume
first that V is of order two, AV and V B are the two adjacent edges, and they are
mapped by ϕ to A′V ′ and V ′B ′. These two edges are shown below, with the arrows
indicating their orientation, and the dotted extensions are drawn to indicate the value
of δψ(V ).

Clearly, we have δψ(V ) = ν(V ′X), with X as in the figure, i.e. on the right side
of A′V ′, and �XV ′B ′ = 60◦. If V has order three, let AV,BV,CV be the three
adjacent edges, with AV oriented toward V . Assume that ϕ(AV ) = A′V ′, and X is
symmetric to A′ relative to V ′. We have again δψ(V ) = ν(V ′X).

Assertion (1) follows now from Lemma 4.1. (In both illustrations we assumed that
ν assigns nonzero densities to all six edges adjacent to V ′. More precisely, these
densities were taken to be 1,7,4,3,5 and 6 in clockwise order.)

Assume next that m′ is not rigid, and choose a different measure ν with the same
exit densities. Then ν can be written as a sum of distinct extreme measures, say
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ν = ∑
j mj . If the support of mj contains the support of m′, then mj is a positive

multiple of m′ by extremality. Thus there is at most one j such that the support of mj

contains the support of m′. Assume for definiteness that m1 = κm′, where 0 ≤ κ < 1.
Then part (1) of the theorem implies that Σm′(mj ) ≥ 0 for j �= 1, hence

Σm′(m′) = Σm′(ν) =
∑

j

Σm′(mj ) ≥ Σm′(m1) = κΣm′(m′),

and therefore Σm′(m′) ≥ 0, as claimed.
Finally, assume that m′ is rigid, and recall from Theorem 3.1 that m′ assigns unit

mass to its root edges. Choose an edge e0 such that ϕ(e0) is a root edge for ν = m′
contained in 	r . Orient the other edges T away from e0, and also give e0 some
orientation, say it is oriented away from one of its endpoints V0. In this case we
have δψ(V0) = −1 and δψ(V ) = 0 for all other vertices. To verify this fact one must
observe that in the pictures above we must have m′(V ′X) = 0 because of the rigidity
of m′. This follows from Lemma 3.2. The only exception is the orientation at the
point V0 which produces a nonzero δψ(V0). To calculate the value of δψ(V0), we will
further assume that V0 is a vertex of order 2 and both edges A0V0,V0B0 adjacent to V0

are mapped by ϕ to root edges of m′. This can be achieved by applying a homothety,
as seen in the Introduction. Assuming, for instance, that ϕ(A0) = A, ϕ(B0) = B and
ϕ(V0) = V , we have m′(AV ) = m′(V B) = 1. If we orient A0V0 and B0V0 away from
V0, the inflation process looks as follows:

The width of the dark gray parallelogram is m′(AV ) = 1, hence δψ(V0) = −1. The
theorem follows. �

Theorem 3.1 shows that the assumption of part (3) of the preceding result is equiv-
alent to the requirement that m′ be rigid, extremal, and assign unit density to its root
edges. The following result also uses this equivalence.

Corollary 4.3 Assume that m,m′ ∈ Mr and m′ is a rigid tree measure. If Σm′(m) =
−p < 0 then pm′ ≤ m and cm−pm′ = cm.

Proof Let s be the largest number such that sm′ ≤ m. Then the support of m − sm′
does not contain the support of m′, and therefore Σm′(m − sm′) ≥ 0 by Theo-
rem 4.2(1). Thus

−p = Σm′(m) = Σm′(m − sm′) + sΣm′(m′) ≥ −s,

so that s ≥ p. If m′′ is any other measure with the same exit densities as m, it follows
that pm′ ≤ m′′ as well, and the exit densities for m−pm′ and m′′ −pm′ are the same.
This yields a bijection m′′ ↔ m′′ − pm′ between measures with the exit densities of
m and measures with the exit densities of m − pm′. �
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A different proof of this corollary is given at the end of Sect. 7.
We show later in detail, following the proof of Theorem 6.2, that Corollary 4.3

extends [3, Proposition 3.10]. In our terminology, that results states that cm−m′ = cm

if m′ is a tree measure with ω(m′) = 1, and Σm′(m) < 0. The original formulation
in [3] is in terms of the sets I, J,K , and the proof proceeds through a very explicit
construction of Littlewood–Richardson tableaux.

We can now give a general method for the construction of rigid measures, thus
providing the converse of [1, Theorem 3.8]. First, we need to review that result. Let
m ∈ Mr be a rigid measure, and let m1,m2 ∈ Mr be two tree measures with support
contained in the support of m. The relation m1 ≺0 m2 was defined in [1] as follows:
there exist four small edges AX,XB,CX and XD such that

(1) AX and XB are collinear edges in the support of m1,
(2) CX and XD are collinear edges in the support of m2, and
(3) XB is 60◦ clockwise from XD.

It was shown in [1] that ‘≺0’ can be extended to an order relation on the set of ex-
tremal rigid measures with support contained in the support of m. As noted earlier,
each extremal rigid measure is a positive multiple of a tree measure. The follow-
ing result allows us to extend ‘≺0’ to the collection of all rigid tree measures; this
extension is no longer contained in an order relation.

Lemma 4.4 Let m be a rigid measure, and let m1,m2 be extremal measures with
support contained in the support of m. We have m1 ≺0 m2 if and only if Σm2(m1) > 0.

Proof Observe that m1 and m2 are also rigid. Let ϕ be an immersion of some tree T

such that m2 = mϕ ; such an immersion exists by Theorem 3.1. Orient all the edges of
T away from some edge e0 such that ϕ(e0) is a root edge for m2 not contained in the
support of m1. Assume first that m1 ≺0 m2, and the small edges AX,XB,CX,XD

satisfy conditions (1)–(3) above. We may assume that CX = ϕ(e1),XD = ϕ(e2),
where e1 and e2 are adjacent edges, and e1 is oriented toward e2. The proof of Theo-
rem 4.2 implies that Σm2(m1) ≥ m1(XB) > 0.

Conversely, assume that Σm2(m1) > 0. Let e1, e2, e3 be three edges of T adjacent
to a vertex V , and assume that e1 is oriented toward V . These edges are mapped by ϕ

to AjX, j = 1,2,3, and we must have A1X →m XA2 and A1X →m XA3. It follows
that the edge XB opposite A1X satisfies m(XB) = 0, and therefore m1(XB) = 0,
so that this vertex V contributes nothing to Σm2(m1). We conclude that there must
exist some vertex V of order 2 which contributes to Σm2(m1). Let e1, e2 be the two
edges adjacent to V , and assume that e1 is oriented toward V . Then ϕ maps these
two edges to collinear edges CX,XD so that CX →m XD. The fact that V con-
tributes to Σm2(m1) means simply that the edge XB which is 60◦ clockwise from
XD is in the support of m1. We claim that the edge AX opposite XB is also in the
support of m1. Indeed, the fact that CX →m XD implies that the edge XB ′ which is
60◦ counterclockwise from XD is not in the support of m, hence not in the support
of m1. The balance condition for m1 implies that m1(AX) > 0. Thus the vertices
AX,XB,CX,XD witness the fact that m1 ≺0 m2. �
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Corollary 3.6 of [1] allows us to write any rigid measure m ∈ Mr under the form

m =
n∑

j=1

pjmj ,

where pj > 0, and the mj are distinct rigid extremal tree measures. Moreover, The-
orem 3.8 of that paper allows us to arrange the terms of this sum in such a way that
mi ≺0 mj implies that i ≤ j . According to Lemma 4.4, mi ≺0 mj is equivalent to
Σmj

(mi) > 0 for these measures.

Corollary 4.5 Let m ∈ Mr be a rigid measure. There exist extremal, rigid tree
measures m1,m2, . . . ,mn and positive numbers p1,p2, . . . , pn such that m =∑n

j=1 pjmj , and Σmi
(mj ) = 0 for i < j . Conversely, assume that m1,m2, . . . ,mn ∈

Mr are extremal, rigid tree measures such that Σmi
(mj ) = 0 for i < j . For every

p1,p2, . . . , pn > 0, the measure m = ∑n
j=1 pjmj is rigid.

Proof The remarks above show that the first assertion is simply a reformulation of [1,
Theorem 3.8]. For the converse, we proceed by induction, observing that the result is
trivial for n = 1. For the inductive step, the hypothesis implies Σm1(m) = −p1, and
therefore cm = cm−p1m1 by Corollary 4.3. �

5 Mending fractured immersions

We will analyze in more detail the main result of the preceding section. This analy-
sis is a necessary preliminary for the results in Sect. 6. Let us fix a tree T and an
immersion ϕ of T which maps all the triple vertices of T to 	r . Let m′ = mϕ

be the corresponding measure in Mr , and let μ ∈ Mr be another measure. Fix
for the moment an edge e0 in T , and orient all the other edges of T away from
e0. We define for every vertex V of T a number δe0(V ,μ). Assume first that V

has order 2 and the corresponding edges are AV,V B , oriented toward B . Setting
A′ = ϕ(A),V ′ = ϕ(V ),B ′ = ϕ(B), we set

δe0(V ,μ) = μ(V ′X),

where X is on the right side of A′V ′, and �XV ′B ′ = 60◦. On the other hand, if V

has order 3 and the corresponding edges are AV,BV,CV , with AV oriented toward
V , then

δe0(V ,μ) = μ(V ′X),

where A′ = ϕ(A), V ′ = ϕ(V ), and X are collinear. When V is one of the endpoints of
e0, we orient e0 toward that endpoint in this definition. The following figure illustrates
the two cases in the definition of δe0(V ,μ). Some of the dotted edges may have
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positive density, but they do not enter in the definition of δe0 .

Theorem 4.2 can now be given a more precise form.

Theorem 5.1 With μ and m′ as above, we have

Σm′(μ) + μ
(
ϕ(e0)

) =
∑

V

δe0(V ,μ).

Proof The easiest way to see this is to cut e0 in half, and orient the two halves
away from its midpoint Y . Construct a fractured immersion ψ of T as in the proof
of Theorem 4.2. For this immersion we have δψ(V ) = δe0(V ,m) for each V , and
δg(Y ) = −μ(ϕ(e0)). �

In the preceding proof, when ϕ(e0) is not contained in the support of μ, the edge
ϕ(e0) is simply translated along with the white puzzle piece which contains it. For
our next result, it will be important that m′ be a rigid measure and ϕ(e0) be a root
edge for the measure m′ with m′(ϕ(e0)) = 1. With this choice, Lemma 3.2 implies
the equality

δe0(V ,m′) = 0

for every vertex V .
Let T be a tree, and let AV,V B be two edges meeting at a vertex V of order 2.

One can stretch the tree to a tree T ′ replacing V by a path V1V2 · · ·Vk of consecutive
vertices of order 2 and the edges AV and BV are replaced by AV1 and BVk . Anal-
ogously, if AV,BV,CV are three edges meeting at V , we can stretch T by replac-
ing V with a ‘tripod’ formed by edges V1V2 · · ·ViX, W1W2 · · ·WjX, U1U2 · · ·UkX,
where all new vertices except X have order 2, and AV,BV,CV are replaced by
AV1,BW1,CU1. If T ′ is obtained from T by a finite number of such stretch oper-
ations, we will say that T ′ is a stretch of T . If ϕ is an immersion of a stretch T ′ of
T , the restriction of ϕ to the original edges of T determines a fractured immersion ψ

of T with the property that δψ(V ) = 0 for every vertex V of T . Such a fractured im-
mersion of T will be said to be stretchable. If ψ is a stretchable fractured immersion
and it is obtained as the restriction of an immersion ϕ, we will also write mψ for the
measure mϕ . The condition δψ(V ) = 0 for all V is not sufficient for stretchability. For
instance, assume that V has degree 2, AV,V B are the two adjacent edges mapped by
ψ to A′V ′ and V ′′B ′. The condition δψ(V ) = 0 implies that the points A′,B ′,V ′,V ′′
are collinear, but stretchability requires that V ′ and V ′′ should be between A′ and
B ′; the distance from V ′ to V ′′ is precisely the number of additional edges one must
add at the point V . Similarly, if AV,BV,CV are mapped to A′V ′,B ′V ′′,C′V ′′′, the
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condition δψ(V ) = 0 implies that these three lines intersect in a point Z, and stretch-
ability requires that V ′ (resp. V ′′,V ′′′) be between A′ (resp. B ′,C′) and Z.

Part of the following argument (namely, the case q = 0) amounts to a simplified
proof of [1, Theorem 4.3].

Theorem 5.2 Let μ,m′ ∈ Mr , where m′ is an extremal rigid measure assigning unit
density to its root edges; in particular m′ = mϕ for some immersion ϕ of a tree T .
Assume further that Σm′(μ) = 0. Denote by α�,β�, γ� and α′

�, β
′
�, γ

′
� the exit densities

of μ and m′, respectively. There exists a stretchable fractured immersion ψ of T with
the following properties.

(1) All the limits of ψ at discontinuity points are contained in 	r+ω(μ).
(2) The exit densities α̃′

i of the corresponding measure m̃′ = mψ ∈ Mr+ω(μ) are only

different from zero for i = � + ∑�−1
s=0 αs , � = 1,2, . . . , r , in which case α̃′

i = α′
�,

with similar formulas for β̃ ′
i and γ̃ ′

i .
(3) The support of mψ only crosses the dark gray parallelograms in the puzzle of μ

along segments parallel to their edges.

Proof Denote by q the largest integer with the property that qm′ ≤ μ. Assume
first that q = 0, in which case it is clear that the support of m′ is not contained
in the support of μ. Choose an edge e0 such that ϕ(e0) is contained in 	r and
μ(ϕ(e0)) = 0. Theorem 5.1 implies that δe0(V ,μ) = 0 for every vertex V of T .
Orient all the edges of T away from e0, and construct a fractured immersion ψ

of T by attaching each ϕ(e) to the white puzzle piece of μ on its right. The con-
dition δe0(V ) = 0 ensures that ψ is stretchable at V , so that (1) holds. Since all
the ends of T are oriented outward, condition (2) is satisfied as well. The sup-
port of mψ intersects the dark gray parallelograms along their edges, and along
segments parallel to their light gray sides, as illustrated below. The oriented edges
are in the support of m′, and they, along with the dashed ones, may belong to
supp(μ). The figure degenerates when the support of μ is smaller, so that the dot-
ted portions of the support of mψ may be in the interior of a dark gray parallelo-
gram.

Consider now the case q > 0, fix an edge e0 such that ϕ(e0) is a root edge of m′
contained in 	r , and orient all the edges away from e0. Give e0 either orientation, and
construct a fractured immersion ψ0 of T by attaching each ϕ(e) to the white puzzle
piece of μ on its right. To conclude the proof, it will suffice to construct a stretchable
fractured immersion ψ which coincides with ψ0 on the ends of T . Note that ψ0(e)
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is now an edge of a dark gray parallelogram whose other side has length μ(e). We
construct ψ(e) by moving ψ0(e) inside this parallelogram a number of units equal
to

∑

V ≥e

δe0(V ,μ),

away from the white piece to which ψ0(e) was attached, where the sum is ex-
tended over the vertices V which are descendants of e in the chosen orientation.
In other words, the sum is extended over those vertices V for which the shortest
path from e0 to V passes through e. It is important to note that ψ(e) really is con-
tained in this (closed) gray parallelogram, and for this purpose it suffices to show
that

∑

V ≥e

δe0(V ,μ) ≤ μ(e).

This follows from the fact that δe0(V ,μ) = δe(V ,μ) if V ≥ e, and therefore

∑

V ≥e

δe0(V ,μ) =
∑

V ≥e

δe(V ,μ) ≤
∑

V

δe(V ,μ) = μ(e)

by Theorem 5.1, since Σm′(μ) = 0. Also observe that the position of ψ(e0)

does not depend on the orientation chosen for e0 because (with either orienta-
tion)

∑

V ≥e0

δe0(V ,μ) +
∑

V ≤e0

δe0(V ,μ) =
∑

V

δe0(V ,μ) = μ(e0),

and this is precisely the width of the dark gray parallelogram of which ψ0(e0) is
a side. It remains now to verify that ψ is stretchable. Consider first two edges
e1 = AB,e2 = BC adjacent to a vertex B of order 2, oriented toward B and C

respectively. Assume that ϕ(e1) = A′B ′, ϕ(e2) = B ′C′, and the small edge B ′X is
on the right of A′B ′ such that �XB ′C′ = 60◦. We have then

∑

V ≥e

δe0(V ,μ) = μ(B ′X) +
∑

V ≥f

δe0(V ,μ),

so that ψ0(e1) must be moved left μ(B ′X) more units than ψ0(e1). This is precisely
what is needed to align ψ(e) and ψ(f ), as illustrated in the figure below, where the
solid lines represent ψ0(e1) and ψ0(e2), the dashed lines represent ψ(e) and ψ(f ),
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and the dotted line represents the range of the stretch of ψ .

Assume now that e1 = AV,e2 = BV,e3 = CV are three edges adjacent to V , such
that e1 is oriented toward V . These edges are mapped by ϕ to A′V ′,B ′V ′,C′V ′. Let
V ′X be the small edge opposite A′V ′. We have

∑

V ≥e1

δe0(V ,μ) = μ(V ′X) +
∑

V ≥e2

δe0(V ,μ) +
∑

V ≥e3

δe0(V ,μ).

This relation is precisely what is needed to ensure that the break of ψ at V is stretch-
able, as in the illustration. �

Remark 5.3 The preceding theorem produces a measure m̃′ = mψ which is again a
rigid tree measure. Indeed, m̃′ has the same nonzero densities as m′, and therefore
Σm̃′(m̃′) = Σm′(m′) = −1. In fact, it is easy to see that m̃′ is homologous to m′.
Indeed, using the notation in the proof above, this follows because two edges e, e′ of
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T such that ϕ(e) = ϕ(e′) will satisfy

∑

V ≥e

δe0(V ,m) =
∑

V ≥e′
δe0(V ,m), (5.1)

and therefore their translates ψ(e) and ψ(e′) will coincide as well.

Remark 5.4 The preceding remark extends easily to the more general case where
m′ = a1m1 + a2m2 + · · · + aNmN , where each mj is a rigid tree measure such that
Σmj

(μ) = 0. Indeed, one simply applies the theorem to each mj , and sets m̃′ =
a1m̃1 + a2m̃2 + · · · + aNm̃N . If the measure m′ is rigid, then m̃′ is rigid as well, and
homologous to m′.

Remark 5.5 Theorem 5.2 is true for arbitrary tree measures as well. However, the
stretched measure m̃′ is not generally homologous to m′. The reason is that (5.1) may
fail, and therefore two edges ϕ(e) = ϕ(e′) may be translated by different amounts in
the puzzle of μ. The proof needs almost no alteration. However, since the concept of
a root edge is not defined for non-rigid measures, we choose e0 to be any edge such
that ϕ(e0) ⊂ 	r .

6 Reduction of the intersection problem

We are now ready to discuss the reduction procedures mentioned in the introduc-
tion. We recall first some facts from [1]. Fix a measure m ∈ Mr with integer
densities. A point A� (resp. B�,C�) is called an attachment point of m if � ≥ 1
and m(A�X�) > 0 (resp. m(B�Y�) > 0,m(C�Z�) > 0). We denote by attI (m) (resp.
attJ (m), attK(m)) the collection of indices � ∈ {1,2, . . . , r} such that A� (resp.
B�,C�) is an attachment point for m.

Let now Im,Jm,Km ⊂ {1,2, . . . , n = r +ω(m)} be the sets of cardinality r defined
by (2.2). The index i� ∈ Im (resp. j� ∈ Jm, k� ∈ Km) is called an attachment index
for m if A� (resp. B�,C�) is an attachment point. We denote by I att

m ,J att
m ,Katt

m the
collections of attachment indices; thus I att

m = {i� : � ∈ attI (m)}. Assume further that
we are given flags E , F , G in Cn. The spaces {Ei� : � ∈ I att

m }, {Fj�
: � ∈ J att

m }, {Gk�
:

� ∈ Katt
m } are called the attachment spaces of m.

Let now m̃ ∈ Mr̃ be a second measure with integer densities. If m and m̃ are ho-
mologous, there clearly exist order preserving bijections ϕI : I att

m → I att
m̃ , ϕJ : J att

m →
J att

m̃ , ϕK : Katt
m → Katt

m̃ .
Also recall that a lattice polynomial of a collection X = (Xν)ν∈N of spaces is

defined inductively by the requirements that

(1) for each ν, the expression Pν(X ) = Xν is a lattice polynomial, and
(2) if P(X ) and Q(X ) are lattice polynomials, then (P (X ))+(Q(X )) and (P (X ))∩

(Q(X )) are also lattice polynomials.

More formally, lattice polynomials should be defined as elements of an abstract lattice
generated by a set of variables indexed by N . One can then substitute subspaces for
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the variables to obtain a new subspace. This gives the proper meaning to the last
statement in the next theorem.

The following result is a reformulation of results in [1]. The fact that the lat-
tice polynomial is essentially the same for all homologous measures is not explicitly
stated there, but it is easily verified using the argument of [1, Proposition 5.1].

Theorem 6.1 Assume that m ∈ Mr is a rigid measure with integer densities, and
E , F , G are flags in C

n, n = r + ω(m). There exists a lattice polynomial Pm of the
attachment spaces of m such that generically

Pm

(
Ei ,Fj ,Gk : i ∈ I att

m , j ∈ J att
m ,k ∈ Katt

m

) ∈ S(E , Im) ∩ S(F , Jm) ∩ S(G,Km).

Moreover, if m̃ ∈ Mr̃ is homologous to m and Ẽ , F̃ , G̃ are flags in Cñ,

Pm̃

(
ẼϕI (i), F̃ϕJ (j), G̃ϕK(k) : i ∈ I att

m , j ∈ J att
m ,k ∈ Katt

m

)

equals

Pm

(
ẼϕI (i), F̃ϕJ (j), G̃ϕK(k) : i ∈ I att

m , j ∈ J att
m ,k ∈ Katt

m

)
.

Given a measure (rigid or not) m ∈ Mr and an extremal, rigid tree measure
m′ ∈ Mr , we will be able to apply a reduction of the Schubert problem associated
to m provided that Σm′(m) = −p < 0. More precisely, the Schubert problem will
be reduced to the corresponding problem for the measure m − pm′ (which satisfies
cm−pm′ = cm by Corollary 4.3) in a space X of dimension n − pω(m′). The space
X is obtained by applying the lattice polynomial Pm′ to the attachment spaces of m

corresponding to the attachment points of m′. The following result describes the pro-
cedure in detail. The argument is essentially contained in [1, Proposition 5.1], but we
include it here for completeness, and as a practical recipe. Observe that Σm′(m)+ω′n
is precisely the sum (1.2) mentioned in our initial discussion of reductions.

For the following result, recall that rigid tree measures m′ assign unit mass to their
root edges, and hence Σm′(m′) = −1 by Theorem 4.2(3).

Theorem 6.2 Let m,m′ ∈ Mr be two measures with integer densities such that m′
is a rigid tree measure, and Σm′(m) = −p < 0. Denote by i�, j�, k�, � = 1,2, . . . , r ,
the elements of I = Im,J = Jm,K = Km, respectively. Given generic flags E , F , G
in C

n, n = r + ω(m), the space

X = Pm′
(
Eix ,Fjy ,Gkz : x ∈ attI (m

′), y ∈ attJ (m′), z ∈ attK(m′)
)

has dimension n − pω(m′). Moreover, denote by E ′ the flag in X obtained by inter-
secting the spaces in E with X and discarding repeating spaces, with similar defini-
tions for F ′ and G′. Then we have

S(E ′, Im−pm′) ∩ S(F ′, Jm−pm′) ∩ S(G′,Km−pm′)

⊂ S(E , Im) ∩ S(F , Jm) ∩ S(G,Km).
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Proof Denote the exit densities of m by a�, b�, c�, � = 0,1, . . . , r . Thus the elements
of Im,Jm,Km are given by

i� = � +
∑

�′<�

a�′ , j� = � +
∑

�′<�

b�′, k� = � +
∑

�′<�

c�′

for � = 1,2, . . . , r . By Corollary 4.3, we can write m = pm′ + μ, where μ ∈ Mr ,
and Σm′(μ) = 0. Denote the exit densities of μ and m′ by α�,β�, γ� and α′

�, β
′
�, γ

′
�,

respectively. We have

a� = α� + pα′
�, b� = β� + pβ ′

�, c� = γ� + pγ ′
�

for � = 0,1, . . . , r . Theorem 5.2 yields a rigid tree measure m̃′ ∈ Mr+ω(μ), homolo-
gous to m′, whose only possible nonzero exit densities are α̃′

i = α′
� for

i = � +
∑

k<�

αk = � +
∑

k<�

(ak − pα′
k), � = 0,1,2, . . . , r,

with analogous formulas for β̃ ′
i and γ̃ ′

i . The set Ipm̃′ of cardinality r + ω(μ) has
elements

ĩx = x +
∑

y<x

pα̃′
y, x = 1,2, . . . , r + ω(μ).

In particular

ĩx = i� when x = � +
∑

k<�

αk, (6.1)

with similar formulas for j̃x and k̃x . We deduce that the attachment spaces of pm̃′ are
precisely

{
Eix ,Fjy ,Gkz : x ∈ attI (m

′), y ∈ attJ (m′)z ∈ attK(m′)
}
.

Now, the measure pm̃′ is homologous to m′, and therefore Theorem 6.1 implies that
the space X in our statement belongs generically to the intersection

S(E , Ipm̃′) ∩ S(F , Jpm̃′) ∩ S(G,Kpm̃′).

Relation (6.1) implies that

dim(X ∩ Ei� ) ≥ � +
∑

k<�

αk, � = 1,2, . . . , r,

with similar estimates for dim(X ∩ Fj�
) and dim(X ∩ Gk�

). Thus, by intersecting the
spaces in the flags E , F , G with X we obtain (after eliminating repeating spaces) flags
E ′, F ′, G′ in X with the property that

E
′
x ⊂ X ∩ Ei� for x = � +

∑

k<�

αk, (6.2)
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and similarly for F ′ and G′.
Note now that ω(m−pm′) = n−pω(m′) = dim(X), and therefore it makes sense

to solve the Schubert problem associated with this measure and the flags E ′, F ′, G′.
To conclude the proof, let M be a space in the intersection

S(E ′, Im−pm′) ∩ S(F ′, Jm−pm′) ∩ S(G′,Km−pm′).

To see that M belongs to

S(E , Im) ∩ S(F , Jm) ∩ S(G,Km),

observe that the �th element of Im−pm′ is equal to i = � + ∑
k<� αk , so that

dim(M ∩ Ei� ) = dim
(
M ∩ (X ∩ Ei� )

) ≥ dim(M ∩ E
′
i ) ≥ �,

where we used (6.2) in the first inequality. �

When the measure m is itself rigid, we can represent it as in Corollary 4.5. That is,
there exist rigid tree measures m1,m2, . . . ,mn and positive integers p1,p2, . . . , pn

such that m = ∑n
i=1 pimi , and Σm1(mi) = 0 for i = 2,3, . . . , n. Choosing m′ = m1,

we have Σm′(m) = −p1 < 0, and m − p1m
′ = ∑n

i=2 pimi has fewer extremal sum-
mands than m. Repeating this procedure reduces the intersection problem associated
to m to the problems corresponding to the measures m1,m2, . . . ,mn. Note, however,
that this apparently very simple method assumes knowledge of the lattice polyno-
mials Pmj

for j = 1,2, . . . , n. The actual calculation of these polynomials is done
recursively using the fact that, with rare exceptions, the dual m∗ of a rigid extremal
measure is not extremal [1, Proposition 5.2].

As an illustration, we will see how to deduce the two kinds of reductions men-
tioned in the Introduction. First, consider a measure m′ with ω(m′) = 1. There are
only three nonzero exit densities α′

x = β ′
y = γ ′

z = 1, and we must have x + y + z = r ;
see the first triangle in the figure below. The sum

Σm′(μ) = ix + jy + kz − n

corresponds to the original reductions in [9], and a reduction can be applied when
this sum is negative. The relevant lattice polynomial is

Pm′(E,F,G) = E + F + G,

thus yielding the formula mentioned in the introduction. The second reduction out-
lined in the introduction corresponds with a measure m′ satisfying ω(m′) = 2 whose
support is shown in the second triangle below.
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There are now six exit densities equal to 1, but three of them are α′
0, β

′
0, γ

′
0, which

do not correspond to attachment points. The others are α′
x, β

′
y, γ

′
z , where the numbers

x, y, z are the lengths of the dotted segments in the boundary of 	r . Clearly x + y +
z = 2r , and

Σm′(μ) = ix + jy + kz − 2n.

This time the lattice polynomial is

Pm′(E,F,G) = (E ∩ F) + (F ∩ G) + (G ∩ E).

We conclude this section with an analysis of the measures in M3 which do not
allow any of the reductions outlined above. There are 11 extremal measures in M3,
and all of them are rigid tree measures. Their supports are depicted below.

Let us call these tree measures μ1,μ2,μ3, ν1, ν2, ν3, ρ1, ρ2, ρ3, τ1, and τ2. In addi-
tion to the equalities Σμ(μ) = −1, the only other nonzero values for Σμ(ν) with μ,ν

among these measures are equal to one. These are: Σνj
(μj ), Σρj

(μj ), Στ1(μj ) for
j = 1,2,3, and the three cycles Σνj

(νj+1), Σρj
(ρj−1), and Στj

(τj+1). An arbitrary
measure m ∈ M3 with integer densities can be written as

m =
3∑

j=1

(ajμj + bjνj + cjρj ) + d1τ1 + d2τ2,

where the coefficients aj , bj , cj , dj are non-negative integers. Note that Σμj
(m) =

−aj , Σνj
(m) = aj + bj+1 − bj , Σρj

(m) = aj + cj−1 − cj , Στ2(m) = d1 − d2, and
Στ1(m) = a1 + a2 + a3 + d2 − d1. A reduction is possible unless a1 = a2 = a3 = 0,
b1 = b2 = b3, c1 = c2 = c3, and d1 = d2. Observe also that τ1 +τ2 = ν1 +ν2 +ν3, and
this measure has the same exit densities as ρ1 + ρ2 + ρ3. Thus the only intersection
problems which cannot be reduced with our methods arise from measures of the form
d(τ1 + τ2) for some integer d > 0. The measure m is rigid if and only if b1b2b3 =
c1c2c3 = d1d2 = 0. The first ten of the rigid tree measures above correspond with
the reductions considered in [9] and [3]. It should be noted that this analysis can be
applied, via the duality described in [1], to the analysis of measures m with ω(m) = 3.
The intersection problems for such measures can be reduced to duals of measures of
the form d(τ1 + τ2).
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A similar analysis can be carried out for r = 4 and r = 5, but with many more
tree measures. Indeed, for r ≤ 5 all extremal measures in Mr are rigid. For r = 6
there are already some extremal measures which are not tree measures, though their
exit densities coincide with those of a sum of extremal rigid measures. An example is
provided below, where all solid edges have unit density. The two resulting measures
have the same exit densities, but only the first one is extremal; the second one is the
sum of either two or three extremal measures.

For larger values of r , there exist tree extremal measures which are not rigid,
and do not have the same exit densities as any sum of extremal rigid measures. The
support of such a tree measure m is pictured below.

Here r = 13, and the exit points are A0,A4,A10,B0,B4,B7,C0,C4, and C10. It is
easy to verify that one cannot find among these points Ax,By,Cz such that x +
y + z = 13, and therefore the exit densities do not majorize the exit densities of any
measure μ with ω(μ) = 1. Since ω(m) = 3, it follows that the exit densities of m do
not majorize those of any rigid tree measure.

7 Connection with multiplication formulas

Triples (I, J,K) with the property that cIJK > 0 are characterized by the identity
(1.1) and the Horn inequalities. The system of Horn inequalities is redundant, but it
can be reduced to a non-redundant collection of essential Horn inequalities. It was
proved in [5, Theorem 7.14] and [7, Theorem 1.4] that, when one of these essential
inequalities is saturated (that is, it is an equality), the coefficient cIJK can be written
as the product of two Littlewood–Richardson coefficients corresponding to smaller
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sets. The result in [5] is deduced from more general considerations about quiver rep-
resentations, while the approach of [7] is closer to ours.

We begin here by formulating this result in terms of measures. Our formulation
depends on seeing that the Horn inequalities can be deduced by superposing the puz-
zle of a measure over the support of another measure in Mr . It was first observed in
[4] that the Horn inequalities can be proved this way, and the formulation in terms
of measures appears in [1]. Consider therefore a measure m ∈ Mr and a measure
ν ∈ Ms with the property that s + ω(ν) = r . The puzzle of ν sits in a triangle of size
r which we take to be precisely 	r . As seen in [1], the puzzle of ν indicates a certain
Horn inequality which is saturated precisely when the support of m crosses the dark
gray parallelograms of this puzzle on segments parallel to their edges. The inequality
is essential precisely when ν is rigid. The following illustration shows an example
when such a Horn inequality is saturated. The solid lines represent the support of m,
and the densities can be taken to be 1 on the entire support.

One can now construct two measures mν ∈ Ms and mν∗ ∈ Mω(ν) in the following
way. To construct mν , delete all light gray pieces and dark gray parallelograms, and
move the white pieces along with the remaining support of m together. This yields
the measure mν provided that we also assign to each small edge e on the border of a
white piece a density equal to the total of the densities on the support of m on lines
crossing the corresponding dark gray parallelogram and parallel to e. The measure
mν∗ is obtained in an analogous manner by deleting the white puzzle pieces and the
dark gray parallelograms. For the measures m and ν illustrated above we obtain the
measures in the next figure. The thicker lines indicate edges where the measure mν

has densities 2 and 3.

We collect in the following result a few useful facts about this construction.
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Lemma 7.1 Assume that a measure m ∈ Mr saturates the Horn inequality deter-
mined by the puzzle of a measure ν ∈ Ms with s + ω(ν) = r . Then

(1) ω(mν) = ω(mν∗) = ω(m).
(2) The exit densities of mν and mν∗ are determined by the exit densities of m and by

the puzzle of ν.
(3) (mν)

∗ + (mν∗)∗ = m∗.

Proof Parts (1) and (2) are obvious. To prove (3), we observe that the support of
(mν)

∗ is contained in the support of m∗. More precisely, an edge XY in the support
of m∗ has density equal to the length of the corresponding edge AB in the support
of m. The measure (mν)

∗ assigns XY a density equal to the length of the white
portion of AB , that is, the sum of all the lengths of those parts of AB contained
in a white puzzle piece. Similarly, (mν∗)∗ assigns XY a density equal to the light
gray portion of AB; see the discussion of duality in Sect. 4. These considerations,
suitably modified for segments AB which contain edges of dark gray parallelograms,
immediately yield (3). �

Theorem 1.4 of [7] can now be formulated as follows.

Theorem 7.2 With the above notation, we have cm ≤ cmν cmν∗ . If the measure ν is
rigid, then cm = cmν cmν∗ .

Strict inequality can hold in this result, and equality may hold even when ν is
not rigid, for instance when cmν = cmν∗ = 1. As an illustration, consider a measure
m ∈ M6 whose only nonzero exit densities are

α0 = α2 = α4 = β0 = β2 = β4 = γ0 = γ2 = γ4 = s,

where s is a non-negative integer; the example given in [7] corresponds to s = 1.
The following figure represents the possible support of m along with the puzzle of
a measure ν, and the supports of the measures mν and mν∗ . Both of these measures
have exit densities

α0 = α1 = α2 = β0 = β1 = β2 = γ0 = γ1 = γ2 = s,

and it is easy to calculate

cm =
(

s + 2

2

)
, cmν = cmν∗ = s + 1, cmν cmν∗ − cm =

(
s + 1

2

)
.

The inequality cm ≤ cmν cmν∗ is strict, except for the degenerate case s = 0.
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The first part of Theorem 7.2 is not actually stated in [7]. This is essentially a
uniqueness statement, and it is fairly easy to deduce from the arguments of [7]: given
the measures mν and mν∗ and the exit densities of m, the measure m is uniquely de-
termined. Lemma 7.1(3) provides an easy proof, and it does not even require advance
knowledge of the exit densities of m. The more difficult second part is an existence
statement: given measures μ ∈ Ms and μ∗ ∈ Mω(ν) with the same exit densities as
mν and mν∗ respectively, there exists a measure ρ ∈ Mr with the same exit densities
as m such that ρν = μ and ρν∗ = μ∗. The obvious candidate is determined by the
equation ρ∗ = μ∗ + (μ∗)∗.

We have cm = cm∗ , where m∗ ∈ M∗
ω(m) is the dual of m. It follows that Theo-

rem 7.2 also yields a factorization of cm when m∗ saturates a Horn inequality arising
from a rigid puzzle. We show next that, under the conditions of Corollary 4.3, the
measure m∗ does saturate such an inequality. The measures (m∗)ν and (m∗)ν∗ in the
following statement are the analogues of mν and mν∗ for measures in M∗

ω(m).

Theorem 7.3 Assume that m,m′ ∈ Mr , m′ is a rigid tree measure, and Σm′(m) =
−p < 0. Denote μ = m − pm′. There exists a rigid measure ν ∈ Mω(μ) with the
following properties.

(1) ω(ν) = pω(m′) and the support of ν∗ is contained in the support of (pm′)∗.
(2) The support of m∗ ∈ Mω(m) = Mω(μ)+ω(ν) intersects any gray parallelogram

in the puzzle of ν only on line segments parallel to its sides. In particular, m∗
saturates the Horn inequality determined by the puzzle of ν.

(3) (m∗)ν = μ∗.
(4) The support of (m∗)ν∗ is contained in the support of ν∗. In particular, (m∗)ν∗ is

rigid.

Proof The equality Σm′(μ) = Σm′(m) − pΣm′(m′) = 0 allows us to apply Theo-
rem 5.2 to obtain a tree measure ρ = m̃′ ∈ Mr+ω(μ), homologous with m′, and with
properties (1) and (2) in that statement. As seen from the proof of Theorem 5.2, the
support of ρ only intersects a dark gray parallelogram in the puzzle of μ along seg-
ments parallel to its edges. Note incidentally that ρμ = m′. We will show that the
measure ν = pρμ∗ satisfies the requirements of the theorem. The measure ρμ∗ is ob-
tained as above, by removing the white pieces and dark gray parallelograms of the
puzzle of μ.

Recall first that the measure ρ is homologous to m′, and homologous sides have
equal densities. It follows that the supports of (pρ)∗ and (pm′)∗ coincide. The mea-
sure pρμ∗ is obtained from pρ by simply decreasing, possibly to 0, the length of the
sides of the various segments in the support of pρ. It follows that ν∗ is obtained from
(pρ)∗ by decreasing, possibly to 0, the densities of some edges. Thus assertion (1) is
verified.

To verify the remaining assertions, we examine more closely the process which
generates the measure ν. Consider a lattice point in the support of μ, and examine
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the inflation applied to the six small edges adjacent to this vertex.

The support of m′ will contain at most four of these six edges, and these are indi-
cated by dotted lines. The support of ρ is also indicated by dotted lines in the inflation.
Next, to obtain the support of μ∗, we replace the dark gray parallelograms by solid
edges in the boundary of the light gray puzzle piece.

Consider now the puzzle of the measure pρ which covers a triangle with sides

r + ω(μ) + pω(ρ) = r + ω(μ) + pω(m′) = r + ω(m),

which is also the size of the puzzle of m. We want to preserve the already existing col-
ors, so that we introduce three new ones. The parts of supp(pρ) contained in white
puzzle pieces, or contained in dark gray parallelograms and parallel to their white
sides, inflate to darker gray parallelograms. The parts contained in the light gray puz-
zle pieces, or in dark gray parallelograms and parallel to the light gray sides, inflate to
black parallelograms. Finally, the puzzle pieces arising from branch points of pρ are
medium gray. Thus, the darker gray parallelograms correspond to the original edges
in the support of m′, translated to the puzzle of μ, while the black parallelograms
are obtained from the edges added in order to fill the gaps in the support of ρ. The
following illustration represents the generic case, with the highest possible number
of nonzero densities. When some densities are zero, the figure degenerates in vari-
ous ways. For instance, the lattice point might not be a branch point of μ (in which
case there is no light gray piece), or one of the edges may be in supp(m′) \ supp(μ)

(in which case the support of ρ intersects dark gray parallelograms only along their
edges).
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This picture of the puzzle of pρ occupies the same triangle as the puzzle of m.
In fact, one can identify the various pieces in the puzzle of m as follows. The union
of the dark and darker gray parallelograms form precisely the inflated pieces of the
support of m, while the white pieces are translates of the connected components of
	r \ supp(m). The light gray, medium gray, and black areas reconstitute the pieces
in the puzzle of m corresponding to branch points. Therefore, replacing the dark and
darker gray parallelograms with solid lines (which are assigned density equal to the
length of the white sides of the parallelograms) and deleting the white puzzle pieces
we obtain the dual m∗. Preserving the color scheme adopted above for the puzzle of
pρ, the picture also displays the puzzle of ν. Deleting now the black parallelograms
and the medium gray puzzle pieces we obtain the measure μ∗, while deleting the light
gray pieces and the black parallelograms we obtain the measure (m∗)ν∗ with support
contained in that of ν∗.

The theorem follows. �

The preceding result yields a proof of Corollary 4.3 based on the factorization of
Littlewood–Richardson coefficients. With the notation of the theorem, we have

cm = cm∗ = c(m∗)ν c(m∗)ν∗ = cμ∗ = cμ,

where we use the rigidity of (m∗)ν∗ in the third equality.
Remark 5.4 implies that Theorem 7.3 is true in the more general situation when

m′ can be written as m′ = p1m1 + p2m2 + · · · + pNmN , where each mj is a tree
measure such that Σmj

(μ) = 0. This produces a saturated Horn inequality for m∗.
Consider in particular the case of a rigid measure m, and write it as in Corollary 4.5,
that is m = p1m1 + p2m2 + · · · + pnmn, where each mj is a rigid tree measure and
Σmj

(mi) = 0 for j < i. In this case we obtain n−1 saturated, rigid, Horn inequalities
for m∗ by applying this observation to measures of the form m′ = a1m1 +· · ·+aNmN

with N < n. There may be more such inequalities because the order induced by ≺0
on the set {m1,m2, . . . ,mn} is not generally total.

Corollary 7.4 Consider a rigid measure m ∈ Mr which assigns integer densities to
all edges. If m∗ saturates no Horn inequality, then m is extremal. Conversely, if m is
a tree measure, then m∗ saturates no Horn inequalities.

Proof The first assertion follows from the discussion above. Assume therefore that
m is a tree measure and m∗ saturates the Horn inequality determined by the puzzle of
some measure ν. Then the measures (m∗)ν and (m∗)ν∗ assign integer densities to all
edges, and ((m∗)ν)∗ + ((m∗)ν∗)∗ = m. Thus m is the sum of two nonzero measures
which assign integer densities to all edges, and this is not possible because m assigns
unit density to its root edges. �
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Simple examples show that (2m)∗ may saturate some Horn inequality when m is
a rigid tree measure.

8 An arboretum of rigid tree measures

The reduction procedure described in Sect. 6 requires, given a measure m ∈ Mr , find-
ing a rigid extremal measure m′ ∈ Mr such that Σm′(m) < 0. We have seen that such
measures m′ have the support contained in the support of m. Unfortunately, it is easy
to construct measures m with very large support. For instance, let μ1,μ2, . . . ,μN be
an enumeration of all the rigid tree measures in Mr , and let c1, c2, . . . , cN be positive
integers. Then the support of the measure m = ∑N

i=1 ciμi contains every small edge
in 	r . Moreover,

Σμj
(m) = −cj +

∑

i �=j

ciΣμj
(μi), j = 1,2, . . . ,N.

Thus the choice m′ = μj is possible provided that cj is sufficiently large. In other
words, any rigid tree measure might serve as m′ in this procedure, and an exhaustive
application of our reductions would require a complete catalogue of rigid tree mea-
sures in Mr . We are not aware of any algorithmic construction of such a catalogue,
and we are in possession of a complete list only for r ≤ 6. In this section we have a
more modest goal: we use Theorem 4.2 to describe those rigid measures which have
precisely three nonzero exit densities on each side of 	r . Assume thus that the rigid
tree measure m ∈ Mr has weight ω, and nonzero densities α,α′, α′′ in the NW di-
rection, β,β ′, β ′′ in the SW direction, and γ, γ ′, γ ′′ in the E direction. These integers
must satisfy

α + α′ + α′′ = β + β ′ + β ′′ = γ + γ ′ + γ ′′ = ω, (8.1)

and

α2 + α′2 + α′′2 + β2 + β ′2 + β ′′2 + γ 2 + γ ′2 + γ ′′2 = ω2 + 2 (8.2)

by Theorem 4.2(3). Assume first that ω = 3k+1 for some integer k ≥ 1. The smallest
value allowed by (8.1) for the sum

α2 + α′2 + α′′2 + β2 + β ′2 + β ′′2 + γ 2 + γ ′2 + γ ′′2

is achieved when the weights on each side are k, k and k + 1, and that value is pre-
cisely ω2 + 2. Thus (8.2) implies that the weights on each side have precisely these
values (in some order). Similarly, when ω = 3k + 2, the densities on each side must
be k, k + 1 and k + 1. When ω = 3(k + 1), relation (8.2) implies

α2 + α′2 + α′′2 + β2 + β ′2 + β ′′2 + γ 2 + γ ′2 + γ ′′2 ≥ 9(k + 1)2 = ω2,

with equality achieved only when all the exit densities are equal to k + 1. It follows
easily from (8.2) that on two sides the exit densities will all be equal to k + 1, while
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on the remaining side they must be k, k + 1, k + 2. We will now produce actual ex-
amples of rigid tree measures with three nonzero exit densities in each direction, and
with all possible values of ω. A first series of examples is described in the following
figure.

The thinner edges have density one, and the thicker ones have density two, ex-
cept for one exit density which is equal to three, as labeled. Other such mea-
sures can be obtained by applying 120◦ rotations to these measures, or symme-
tries about a horizontal line. Another way to obtain new measures is to change
the lengths of the edges indicated by a dot. These lengths can be chosen ar-
bitrarily; here is an example of this procedure applied to the second measure
above.

The three measures above provide examples with ω = 3k + 1,3k + 2 and 3(k + 1)

when k = 1. For larger values of k one must continue the spiral pattern. A second
series of examples is illustrated below.

As in the first series of examples, these measures can be rotated by multiples of 120◦,
and reflected in a horizontal line. Their shapes can also be changed by modifying
arbitrarily the lengths of six of the edges. Again, the spiral can be continued to yield
examples with weights 3k + 1,3k + 2 and 3(k + 1) for all integers k ≥ 1.
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A third series of examples is illustrated next.

Note that this series has two spiral arms. To obtain measures with higher weight one
proceeds by alternately increasing each spiral by 1/3 of a complete turn.

When ω(m) = 3k + 1 there is one more series of measures which have greater
symmetry. The first two in the series are pictured below.

These measures are invariant under 120◦ rotations, but not under reflection relative
to a horizontal line.

A similar series is available for ω = 3k + 2.

Some of these examples have versions for k = 0, though in that case there will
be fewer than three nonzero exit densities in some direction. Using duality of mea-
sures, it can be shown that the measures described above (along with their rotations,
reflections and stretched versions) are the only measures with exactly three nonzero
exit densities in each direction. Thus, for instance, there are no rigid tree measures
whose exit densities are (in counterclockwise order, starting with α) (k +1, k +1, k),

(k + 1, k, k + 1) and (k, k + 1, k + 1) or (k + 1, k, k), (k, k, k + 1) and (k, k + 1, k).
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