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Abstract We recover Gessel’s determinantal formula for the generating function of
permutations with no ascending subsequence of length m + 1. The starting point
of our proof is the recursive construction of these permutations by insertion of
the largest entry. This construction is of course extremely simple. The cost of this
simplicity is that we need to take into account in the enumeration m − 1 addi-
tional parameters—namely, the positions of the leftmost increasing subsequences
of length i, for i = 2, . . . ,m. This yields for the generating function a functional
equation with m − 1 “catalytic” variables, and the heart of the paper is the solution
of this equation.

We perform a similar task for involutions with no descending subsequence of
length m + 1, constructed recursively by adding a cycle containing the largest en-
try. We refine this result by keeping track of the number of fixed points.

In passing, we prove that the ordinary generating functions of these families of
permutations can be expressed as constant terms of rational series.

Keywords Permutations · Ascending subsequences · Generating functions ·
Generating trees

1 Introduction

Let τ = τ(1) · · · τ(n) be a permutation in the symmetric group Sn. We denote by
|τ | := n the length of τ . An ascending (resp. descending) subsequence of τ of length
k is a k-tuple (τ (i1), . . . , τ (ik)) such that i1 < · · · < ik and τ(i1) < · · · < τ(ik) (resp.
τ(i1) > · · · > τ(ik)). For m ≥ 1, the set of permutations in which all ascending sub-
sequences have length at most m is denoted by S(m). In pattern-avoidance terms, the
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permutations of S(m) are those that avoid the increasing pattern 12 · · ·m(m+ 1), and
an ascending subsequence of length k is an occurrence of the pattern 12 · · ·k. The
set of 12 · · ·m(m + 1)-avoiding permutations of length n is denoted S

(m)
n . Note that

several families of pattern avoiding permutations are equinumerous with S
(m)
n (see

[2, 26]).
In 1990, Gessel proved a beautiful determinantal formula for what could be called

the Bessel generating function of permutations of S(m). This formula was the starting
point of Baik, Deift and Johansson’s study of the distribution of the longest ascending
subsequence in a random permutation [4].

Theorem 1 ([16]) The Bessel generating function of permutations avoiding
12 · · ·m(m + 1) is

∑

τ∈S(m)

t2|τ |

|τ |!2 = det(Ii−j )1≤i,j≤m,

where

Ii =
∑

n≥max(0,−i)

t2n+i

n!(n + i)! . (1)

Note that Ii = I−i , and that we can more loosely write

Ii =
∑

n≥0

t2n+i

n!(n + i)! =
∑

n≥0

t2n−i

n!(n − i)! ,

provided we interpret factorials as Gamma functions (in particular, 1/i! = 1/�(i +
1) = 0 if i < 0).

Gessel’s original proof was algebraic in nature [16]. He first established a deter-
minantal identity dealing with Schur functions (and hence with semi-standard Young
tableaux, whereas the above theorem deals, via Schensted’s correspondence, with
standard tableaux). He then applied to this identity an operator θ that extracts certain
coefficients, and this led to Theorem 1. A few years later, Krattenthaler found a bijec-
tive proof of Gessel’s Schur function identity [23], which specializes into a bijective
proof of Theorem 1. Then, Gessel, Weinstein and Wilf gave two bijective proofs of
this theorem, involving sign-reversing involutions [18]. Two other proofs, involving
Young tableaux, were recently published by Novak [30] and Xin [42].

For small values of m, more proofs of Theorem 1 have been given. In particular,
there exists a wealth of ways of proving that the number of 123-avoiding permutations
of Sn is the nth Catalan number

(2n
n

)
/(n+1), and numerous refinements of this result

[7, 8, 14, 22, 25, 34–36, 40]. The laziest proof (combinatorially speaking) is based
on the following observation: a permutation π of S

(2)
n+1 is obtained by inserting n+ 1

in a permutation τ of S
(2)
n . To avoid the creation of an ascending subsequence of

length 3, the insertion must not take place to the right of the leftmost ascent of τ .
Hence, in order to exploit this simple recursive description of permutations of S(2),
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one must keep track of the position of the first ascent. Let us denote

a(τ) =
{

n + 1, if τ avoids 12;
min{i : τ(i − 1) < τ(i)}, otherwise,

and define the bivariate generating function

F(u; t) :=
∑

τ∈S(2)

ua(τ)−1t |τ |.

It is not hard to see (and this will be explained in details in Sect. 2) that the recursive
description of permutations of S(2) translates into the following equation:

(
1 − t

u2

u − 1

)
F(u; t) = 1 − t

u

u − 1
F(1; t). (2)

The variable u is said to be catalytic for this equation. This means that one cannot
simply set u = 1 to solve for F(1; t) first. However, this equation can be solved using
the so-called kernel method (see e.g., [5, 11, 33]): one specializes u to the unique
power series U that cancels the kernel of the equation (that is, the coefficient of
F(u; t)):

U := 1 − √
1 − 4t

2t
.

This choice cancels the left-hand side of the equation, and thus its right-hand side,
yielding the (ordinary) length generating function of 123-avoiding permutations:

F(1; t) = U − 1

tU
= U = 1 − √

1 − 4t

2t
=

∑

n≥0

tn

n + 1

(
2n

n

)
.

It is natural to ask whether this approach can be generalized to a generic value of
m: after all, a permutation π of S

(m)
n+1 is still obtained by inserting n+1 in a permuta-

tion τ of S
(m)
n . However, to avoid creating an ascending subsequence of length m+1,

the insertion must not take place to the right of the leftmost ascending subsequence of
length m of τ . In order to keep track recursively of the position of this subsequence,
one must also keep track of the position of the leftmost ascending subsequence of
length m − 1. And so on! Hence this recursive construction (often called the gener-
ating tree construction [40, 41]) translates into a functional equation involving m− 1
catalytic variables u2, . . . , um. The whole point is to solve this equation, and this is
what we do in this paper. Our method combines three ingredients: an appropriate
change of variables, followed by what is essentially the reflection principle [17], but
performed at the level of power series, and finally a coefficient extraction. To warm
up, we illustrate these ingredients in Sect. 3 by two simple examples: we first give
another solution of (2) obtained when m = 2, and then a generating function proof of
MacMahon’s formula for the number of standard tableaux of a given shape.

What is the interest of this exercise? Firstly, we believe it answers a natural ques-
tion: we have in one hand a simple recursive construction of certain permutations,
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in the other hand a nice expression for their generating function, and it would be
frustrating not to be able to derive the expression from the construction. Secondly,
the combinatorial literature abounds in objects that can be described recursively by
keeping track of an arbitrary (but bounded) number of additional (or: catalytic) pa-
rameters: permutations of course, but also lattice paths, tableaux, matchings, plane
partitions, set partitions. . . . Some, but not all, can be solved by the reflection princi-
ple, and we hope that this first solution of an equation with m catalytic variables will
be followed by others.

In fact, we provide in this paper another application of our approach, still in the
field of permutations: We recover a determinantal formula for the enumeration of
involutions with no long descending subsequence [16]. Let I(m) (resp. I

(m)
n ) denote

the set of involutions (resp. involutions of length n) avoiding the decreasing pattern
(m + 1)m · · ·21. Again, several families of pattern avoiding involutions are equinu-
merous with S

(m)
n (see [12, 13, 21, 26]).

Theorem 2 The exponential generating function of involutions avoiding (m +
1)m · · ·21 is

∑

τ∈I(m)

t |τ |

|τ |! =
{

et det(Ii−j − Ii+j )1≤i,j≤�, if m = 2� + 1;
det(Ii−j + Ii+j−1)1≤i,j≤�, if m = 2�,

where Ii is defined by (1).

This result is obtained by applying Gessel’s θ operator to a Schur function iden-
tity due to Bender and Knuth [6]. The latter identity has been refined by taking into
account the number of columns of odd size in the tableaux (see Goulden [19]; Krat-
tenthaler then gave a bijective proof of this refinement [23]). Using the operator θ ,
and the properties of Schensted’s correspondence [38, Exercise 7.28], this translates
into a refinement of Theorem 2 that takes into account the number f (τ) of fixed
points in τ . We shall also recover this result.

Theorem 3 If m = 2� + 1, the exponential generating function of involutions avoid-
ing (m + 1)m · · ·21 and having p fixed points is

∑

τ∈I(m),f (τ)=p

t |τ |

|τ |! = tp

p! det(Ii−j − Ii+j )1≤i,j≤�.

If m = 2�, this generating function is

∑

τ∈I(m)

f (τ)=p

t |τ |

|τ |! = det

(
(Ip+�−j − Ip+�+j )1≤j≤�

(Ii+j−1 − Ii−j−1)2≤i≤�,1≤j≤�,

)
,

where we have described separately the first row of the determinant and the next �−1
rows (i = 2, . . . , �).
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The first result of Theorem 3 can be restated as follows: if m = 2� + 1, the gen-
erating function of involutions avoiding (m + 1)m · · ·21, counted by the length and
number of fixed points is

∑

τ∈I(m)

t |τ |

|τ |! s
f (τ) = est det(Ii−j − Ii+j )1≤i,j≤�. (3)

It thus appears as a very simple extension of the first part of Theorem 2, and indeed,
the connection between these two formulas is easy to justify combinatorially (the
fixed points play no role when one forbids a decreasing pattern of even length).

Let us now outline the structure of the paper. In Sect. 2, we describe how the “cat-
alytic” parameters change in the recursive construction of permutations of S(m) and
I(m). We do not give the proofs, as this was done by Guibert and Jaggard & Marincel,
respectively [20, 21]. We then convert these descriptions into the functional equations
that are at the heart of this paper (Propositions 5 and 7). In Sect. 3, we illustrate our
approach by two simple examples, namely the enumeration of permutations of S(2)

and of standard Young tableaux. Next we return to permutations: we first address in
Sect. 4 the solution of the equation obtained for involutions of I(m), and finally, we
solve in Sect. 5 the equation obtained for permutations of S(m). The reason why we
address involutions first is that the solution is really elementary in this case. One step
of the solution turns out to be more difficult in the case of permutations, although the
basic ingredients are the same.

Let us finish with some standard definitions and notation. Let A be a commutative
ring and x an indeterminate. We denote by A[x] (resp. A[[x]]) the ring of polynomials
(resp. formal power series) in x with coefficients in A. If A is a field, then A(x)

denotes the field of rational functions in x (with coefficients in A). This notation is
generalized to polynomials, fractions and series in several indeterminates. We denote
x̄ = 1/x, so that A[x, x̄] is the ring of Laurent polynomials in x with coefficients
in A. A Laurent series is a series of the form

∑
n≥n0

a(n)xn, for some n0 ∈ Z. The
coefficient of xn in F(x) is denoted [xn]F(x).

Most of the series that we use in this paper are power series in t with coefficients
in A[x, x̄], that is, series of the form

F(x; t) =
∑

n≥0,i∈Z

f (i;n)xi tn,

where for all n, almost all coefficients f (i;n) are zero. The positive part of F(x; t)
in x is the following series, which has coefficients in xA[x]:

[x>]F(x; t) :=
∑

n≥0,i>0

f (i;n)xi tn.

We define similarly the negative, non-negative and non-positive parts of F(x; t) in x,
which we denote respectively by [x<]F(x; t), [x≥]F(x; t) and [x≤]F(x; t).
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2 Generating trees and functional equations

2.1 Permutations avoiding 12 · · ·m(m + 1)

Take a permutation π of S
(m)
n+1, written as the word π(1) · · ·π(n+1). Erase from this

word the value n + 1: this gives a permutation τ of S
(m)
n . This property allows us to

display the permutations of S(m) as the nodes of a generating tree. At the root of this
tree sits the unique permutation of length 0, and the children of a node indexed by
τ ∈ S

(m)
n are the permutations of S

(m)
n+1 obtained by inserting the value n + 1 in τ .

In how many ways is this insertion possible? If τ avoids 12 · · ·m, then all insertion
positions are admissible, that is, give a permutation of S

(m)
n+1. There are n + 1 such

positions. Otherwise, only the a leftmost insertion positions are admissible, where a

is the position of the leftmost occurrence of 12 · · ·m in τ . More precisely:

a = min
{
im : ∃ i1 < i2 < · · · < im s.t. τ(i1) < · · · < τ(im)

}
.

As we wish to describe recursively the shape of the generating tree, we now need
to find the position of the leftmost occurrence of 12 · · ·m in the children of τ . But it is
easily seen that this depends on the position of the leftmost occurrence of 12 · · · (m−
1) in τ . And so on! We are thus led to define the following m parameters: for 1 ≤ j ≤
m, and τ ∈ S

(m)
n , let

aj (τ ) =
{

n + 1, if τ avoids 12 · · · j ;
min{ij : ∃ i1 < i2 < · · · < ij s.t. τ(i1) < · · · < τ(ij )}, otherwise.

(4)
Note that a1(τ ) = 1, and that a1(τ ) ≤ · · · ≤ am(τ). We call the sequence L(τ) :=
(a2(τ ), . . . , am(τ)) the label of τ . The empty permutation has label (1, . . . ,1).

We can now describe the labels of the children of τ in terms of L(τ) (Guibert [20,
Prop. 4.47]).

Proposition 4 Let τ ∈ S
(m)
n with L(τ) = (a2, . . . , am). Denote a1 = 1. The labels of

the am permutations of S
(m)
n+1 obtained by inserting n + 1 in τ are

{
(a2 + 1, a3 + 1, . . . , am + 1)

(a2, . . . , aj−1, α, aj+1 + 1, . . . , am + 1) for 2 ≤ j ≤ m and aj−1 + 1 ≤ α ≤ aj .

The first label corresponds to an insertion in position 1, while the label involving α

corresponds to an insertion in position α. We refer the reader to Fig. 1 for an example.
Let us now translate the recursive construction of permutations of S(m) in terms

of generating functions. Let F̃ (u2, . . . , um; t) be the (ordinary) generating function
of permutations of S(m), counted by the statistics a2, . . . , am and by the length:

F̃ (u2, . . . , um; t) =
∑

τ∈S(m)

u
a2(τ )
2 · · ·uam(τ)

m t |τ |

=
∑

a2,...,am

F̃a2,...,am(t)u
a2
2 · · ·uam

m ,
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Fig. 1 The permutation

τ = 8 5 9 6 1 3 4 7 2 ∈ S
(3)
9 .

One has a1(τ ) = 1, a2(τ ) = 3,
a3(τ ) = 7. There are seven
admissible ways to insert the
value 10. Inserting 10 to the
right of τ(7) would create an
occurrence of 1234

where F̃a2,...,am(t) is the length generating function of permutations of S(m) having
label (a2, . . . , am). We still denote a1 = 1. The above proposition gives

F̃ (u2, . . . , um; t)
= u2 · · ·um + tu2 · · ·umF̃ (u2, . . . , um; t)

+ t
∑

a2,...,am

F̃a2,...,am(t)

m∑

j=2

aj∑

α=aj−1+1

u
a2
2 · · ·uaj−1

j−1 uα
j u

aj+1+1
j+1 · · ·uam+1

m .

Using

aj∑

α=aj−1+1

uα
j = u

aj +1
j − u

aj−1+1
j

uj − 1
,

we obtain (given that a1 = 1)

F̃ (u; t) = u2,m + tu2,mF̃ (u; t) + tu2,m

F̃ (u; t) − u2F̃ (1, u3, . . . , um; t)
u2 − 1

+ t

m∑

j=3

uj,m

F̃ (u; t) − F̃ (u2, . . . , uj−2, uj−1uj ,1, uj+1, . . . , um; t)
uj − 1

, (5)

where F̃ (u; t) ≡ F̃ (u2, . . . , um; t) and uj,k = ujuj+1 · · ·uk .
To finish, let us perform an elementary transformation on the series F̃ (u; t). Define

F(v; t) = F(v1, . . . , vm; t) =
∑

τ∈S(m)

v
a2−1
1 v

a3−a2
2 · · ·v|τ |+1−am

m t |τ |, (6)

where (a2, . . . , am) = L(τ). We have eliminated the dependence a2 ≤ · · · ≤ am be-
tween the exponents of u2, . . . , um in F̃ (u; t). As will be seen below, another effect
of this change of series is that the cases j = 2 and j = 3, . . . ,m now play the same
role. We also note that the variable t is now redundant in F(v; t), but it is our main
variable, and we find it convenient to keep it. The series F̃ and F are related by

F(v1, . . . , vm; t) = vm

v1
F̃

(
v1

v2
, . . . ,

vm−1

vm

;vmt

)
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and conversely

F̃ (u2, . . . , um;vmt) = u2,mF (u2,mvm,u3,mvm, . . . , umvm,vm; t),
where as above uj,k = ujuj+1 · · ·uk . The functional equation (5) satisfied by F̃ (u; t)
translates into an equation of a slightly simpler form satisfied by F(v; t).

Proposition 5 The generating function F(v; t) ≡ F(v1, . . . , vm; t) of permutations
of S(m), defined by (6), satisfies

F(v; t) = 1 + tv1F(v; t)

+ t

m∑

j=2

vj−1vj

F (v; t) − F(v1, . . . , vj−2, vj , vj , vj+1, . . . , vm; t)
vj−1 − vj

.

The series F(1, . . . ,1; t) counts permutations of S(m) by their length.

In Sect. 5, we derive from this equation the Bessel generating function of permu-
tations of S(m), as given by Theorem 1.

2.2 Involutions avoiding (m + 1)m · · ·21

It follows from the properties of Schensted’s correspondence [37] that the number of
involutions of length n avoiding 12 · · ·m(m + 1) equals the number of involutions
of length n avoiding (m + 1)m · · ·21. However, this correspondence is not a simple
symmetry, and the generating trees that describe 12 · · ·m(m+1)-avoiding involutions
and (m + 1)m · · ·21-avoiding involutions are not isomorphic. Both trees are defined
by the same principle: the root is the empty permutation and the parent of an involu-
tion π is obtained by deleting the cycle containing the largest entry, and normalizing
the resulting sequence. For instance, if π = 426153, the deletion of the 2-cycle (3,6)

first gives 4215, and, after normalization, 3214.
The tree that generates 12 · · ·m(m + 1)-avoiding involutions is similar to the tree

generating 12 · · ·m(m + 1)-avoiding permutations. Its description involves m cat-
alytic parameters (Guibert [20, Prop. 4.52]). The tree that generates (m + 1)m · · ·21-
avoiding involutions requires �m/2	 catalytic parameters only (Jaggard & Marin-
cel [21]). The source of this compactness is easy to understand: an involution τ con-
tains the pattern k · · ·21 if and only if it contains a symmetric occurrence of this
pattern (by this, we mean that the corresponding set of points in the diagram of τ is
symmetric with respect to the first diagonal, see Fig. 2). Equivalently, this means that
a decreasing subsequence of length 
k/2� occurs in the points of the diagram lying
on or above the first diagonal. Thus we only need to keep track of descending subse-
quences of length at most m/2 (in the top part of the diagram), and we can expect to
have about m/2 catalytic parameters.

Let us now describe in details the tree generating (m + 1)m · · ·21-avoiding in-
volutions. The example of Fig. 2 illustrates the argument. Let τ be an involution of
I

(m)
n . Inserting n + 1 as a fixed point in τ always gives an involution of I(m). For
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Fig. 2 The involution

τ = 3 2 1 12 7 9 5 8 6 11 10 4 ∈ I
(5)
12 .

One has a1(τ ) = 3, a2(τ ) = 9.
There are nine admissible ways
to insert a 2-cycle

1 ≤ i ≤ n + 1, let us now consider the permutation π obtained by adding 1 to all val-
ues larger than or equal to i, and inserting the 2-cycle (i, n + 2). How many of these
insertions are admissible, that is, give an involution of I(m)? If τ avoids (m−1) · · ·21,
then all insertions are admissible, including the most “risky” one, corresponding to
i = 1. Otherwise, the only admissible values of i are n + 1, n, . . . , n − a + 2, where
n − a + 1 is the position of the rightmost symmetric occurrence of (m − 1) · · ·21. In
other words, if we denote m = 2� + ε with ε ∈ {0,1},

n − a + 1 = max
{
i1 : ∃ i1 < i2 < · · · < i� s.t. τ(i1) > · · · > τ(i�) ≥ i� + ε

}
.

Again, in order to keep track of this parameter recursively, we are led to define, for
1 ≤ j ≤ �, the following � catalytic parameters:

aj (τ ) =
⎧
⎨

⎩

n + 1, if τ avoids (2j − 1 + ε) · · ·21;
n + 1 − max{i1 : ∃ i1 < i2 < · · · < ij s.t. τ(i1) > · · · > τ(ij ) ≥ ij + ε},

otherwise.

In particular, a�(τ ) is the parameter that was denoted a above, and it is also the
number of admissible insertions of a 2-cycle in τ . We call the sequence L(τ) :=
(a1(τ ), . . . , a�(τ )) the label of τ . Note that a1(τ ) ≤ · · · ≤ a�(τ ). The empty permu-
tation has label (1, . . . ,1).

We can now describe the labels of the children of τ in terms of L(τ).

Proposition 6 (Jaggard & Marincel [21]) Let τ be an involution in I(m) with L(τ) =
(a1, . . . , a�). Denote a0 = 0. The labels of the a� involutions of I(m) obtained by
inserting a cycle in τ are

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(a1 + 1, a2 + 1, . . . , a� + 1), if m is odd;

(1, a2 + 1, . . . , a� + 1), if m is even;

(a1 + 1, . . . , aj−1 + 1, α, aj+1 + 2, . . . , a� + 2)

for 1 ≤ j ≤ � and aj−1 + 2 ≤ α ≤ aj + 1.

The first two labels correspond to the insertion of a fixed point, the other ones to the
insertion of a 2-cycle.



580 J Algebr Comb (2011) 33: 571–608

We refer again the reader to Fig. 2 for an example.
Let us now translate the recursive construction of involutions of I(m) in terms of

generating functions. Let G̃(u1, . . . , u�; t) be the (ordinary) generating function of
involutions of I(m), counted by the statistics a1, . . . , a� and by the length:

G̃(u1, . . . , u�; t) =
∑

τ∈I(m)

u
a1(τ )
1 · · ·ua�(τ)

� t |τ |

=
∑

a1,...,a�

G̃a1,...,a�
(t)u

a1
1 · · ·ua�

� ,

where G̃a1,...,a�
(t) is the length generating function of permutations of I(m) having

label (a1, . . . , a�). We still denote a0 = 0. The above proposition gives

G̃(u1, . . . , u�; t)
= u1 · · ·u� + tu1 · · ·u�G̃(u1, . . . , u�; t)χm≡1 + tu1 · · ·u�G̃(1, u2, . . . , u�; t)χm≡0

+ t2
∑

a1,...,a�

G̃a1,...,a�
(t)

�∑

j=1

aj +1∑

α=aj−1+2

u
a1+1
1 · · ·uaj−1+1

j−1 uα
j u

aj+1+2
j+1 · · ·ua�+2

� ,

where χm≡i equals 1 if m equals i modulo 2, and 0 otherwise. Using

aj +1∑

α=aj−1+2

uα
j = u

aj +2
j − u

aj−1+2
j

uj − 1
,

we finally obtain (given that a0 = 0)

G̃(u; t) = u1,� + tu1,�G̃(u; t)χm≡1 + tu1,�G̃(1, u2, . . . , u�; t)χm≡0

+ t2u1,�

�∑

j=1

uj,�

G̃(u; t) − G̃(u1, . . . , uj−2, uj−1uj ,1, uj+1, . . . , u�; t)
uj − 1

,

(7)

where G̃(u; t) ≡ G̃(u1, . . . , u�; t) and uj,k = ujuj+1 · · ·uk .
To finish, let us perform an elementary transformation on the series G̃(u; t). Define

G(v; t) = G(v1, . . . , v�; t) =
∑

τ∈I(m)

v
a1
1 v

a2−a1
2 · · ·va�−a�−1

� t |τ |, (8)

where (a1, . . . , a�) = �(τ). We have eliminated the dependence a1 ≤ · · · ≤ a� be-
tween the exponents of u1, . . . , u� in G̃(u; t). The series G̃ and G are related by

G(v1, . . . , v�; t) = G̃

(
v1

v2
, . . . ,

v�−1

v�

, v�; t
)

,

and conversely

G̃(u1, . . . , u�; t) = G(u1,�, u2,�, . . . , u�; t),
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where as above uj,k = ujuj+1 · · ·uk . The functional equation (7) satisfied by G̃(u; t)
translates as follows.

Proposition 7 The generating function G(v; t) ≡ G(v1, . . . , v�; t) of involutions of
I(m), defined by (8), satisfies

G(v; t) = v1 + tv1G(v; t)χm≡1 + tv1G(v2, v2, v3, . . . , v�; t)χm≡0

+ t2v1

�∑

j=1

vjvj+1
G(v; t) − G(v1, . . . , vj−1, vj+1, vj+1, vj+2, . . . , v�; t)

vj − vj+1
.

The series G(1, . . . ,1; t) counts involutions of I(m) by their length.

In Sect. 4, we derive from this equation the exponential generating function of
involutions of I(m), as given by Theorem 2. We then refine the result to take into
account the number of fixed points.

3 Two examples

In this section, we illustrate the ingredients of our solution of the equations of Propo-
sitions 5 and 7 by taking two examples. The first one deals with the enumeration of
123-avoiding permutations. The second one is a generating function proof of MacMa-
hon’s formula for the number of standard tableaux of a given shape, and should clarify
what we meant in the introduction by “the reflection principle performed at the level
of power series”.

3.1 Permutations avoiding 123

In the introduction, we wrote the following equation for the bivariate generating func-
tion of 123-avoiding permutations, counted by the position of the first ascent and the
length:

(
1 − t

u2

u − 1

)
F(u; t) = 1 − t

u

u − 1
F(1; t).

This is the case m = 2 of Proposition 5, with v1 = u and v2 = 1.
As explained in Sect. 1, this equation can be solved by an appropriate choice of

u that cancels the kernel, and thus eliminates the unknown series F(u; t). This is the
standard kernel method. We present here an alternative solution, sometimes called the
algebraic kernel method [9, 10], where instead F(1; t) is eliminated. This elimination
is obtained by exploiting a certain symmetry of the kernel. This symmetry appears
clearly if we set u = 1 + x. The equation then reads:

(
1 − t(1 + x)(1 + x̄)

)
F(1 + x; t) = 1 − t (1 + x̄)F (1; t)

with x̄ = 1/x. The kernel is now invariant under x �→ x̄. Replace x by x̄:
(
1 − t(1 + x)(1 + x̄)

)
F(1 + x̄; t) = 1 − t (1 + x)F (1; t).
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We now eliminate F(1; t) by taking a linear combination of these two equations. This
leaves

(
1 − t(1 + x)(1 + x̄)

)(
F(1 + x; t) − x̄F (1 + x̄; t)) = 1 − x̄, (9)

or

F(1 + x; t) − x̄F (1 + x̄; t) = 1 − x̄

1 − t(1 + x)(1 + x̄)
:= R(x; t).

In this equation,

– F(1 + x; t) is a series in t with coefficients in Q[x],
– x̄F (1 + x̄; t) is a series in t with coefficients in x̄Q[x̄],
– the right-hand side R(x; t) is a series in t with coefficients in Q[x, x̄].
Consequently, F(1 + x; t) is the non-negative part of R(x; t) in x. In particular, the
length generating function of 123-avoiding permutations is

F(1; t) = [
x0]R(x; t) =

∑

n≥0

[
x0](1 − x̄)x̄n(1 + x)2ntn

=
∑

n≥0

((
2n

n

)
−

(
2n

n + 1

))
tn

=
∑

n≥0

tn

n + 1

(
2n

n

)
. (10)

This small example contains all ingredients of what will be our solution for a generic
value of m:

– a change of variables, which may not have a clear combinatorial meaning,
– a finite group G acting on power series that leaves the kernel unchanged (here, the

group has order 2, and replaces x by 1/x),
– a linear combination (9) of all the equations obtained by letting an element of G

act on the original functional equation; in this linear combination, called the orbit
sum, the left-hand side is a multiple of the kernel, and the right-hand side does not
contain any unknown series,

– finally, a coefficient extraction (10) that gives the generating function under inter-
est.

Let us mention, however, that for a generic value of m, the change of variables used
in Sect. 5 is not a direct extension of v �→ 1 +x. But, on this small example, the latter
choice is simpler.

3.2 Standard Young tableaux

Let λ = (λ1, . . . , λm) ∈ N
m be an integer partition. That is, λ1 ≥ · · · ≥ λm ≥ 0. The

weight of λ is |λ| := λ1 + · · · + λm. We identify λ with its Ferrers shape, in which
the ith row has λi cells. A standard tableau of shape λ is a filling of the cells of λ

with the integers 1,2, . . . , |λ|, that increases along rows and columns (Fig. 3). The
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Fig. 3 The Ferrers shape
associated with the partition
λ = (4,3,3) and a standard
tableau of shape λ

height of the tableau is the number of non-empty rows, that is max(i : λi > 0). Let
f λ denote the number of standard Young tableaux of shape λ.

Our objective here is to recover the hook-length formula, or, rather, an equivalent
form due to MacMahon [29, Sect. III, Chap. V].

Proposition 8 Let λ = (λ1, . . . , λm) be a partition of weight n. The number of stan-
dard Young tableaux of shape λ is

f λ = n!∏m
i=1(λi − i + m)!

∏

1≤i<j≤m

(λi − λj − i + j).

Proof Let F(u) ≡ F(u1, . . . , um) be the generating function of standard tableaux of
height at most m:

F(u) :=
∑

λ1≥···≥λm≥0

f λ

m∏

i=1

u
λi

i .

For j = 2, . . . ,m, we denote by Fj (u1, . . . , uj−2, uj−1uj ,uj+1, . . . , um) ≡ Fj (u)

the generating function of standard tableaux such that the parts λj−1 and λj are equal.
This series is obtained by extracting the corresponding terms from F(u) (it is also
called the (j −1, j)-diagonal of F(u)). In all terms of this series, uj−1 and uj appear
with the same exponent, which allows us to write this series in the above form.

Now a tableau of weight n + 1 is obtained by adding a cell labeled n + 1 to a
tableau of weight n. This cell can be added to the j th row unless this row should have
the same length as the (j − 1)st row. This gives directly the following equation:

F(u) = 1 + u1F(u) +
m∑

j=2

uj

(
F(u) − Fj (u)

)
,

that is,
(

1 −
m∑

j=1

uj

)
F(u) = 1 −

m∑

j=2

ujFj (u).

Observe that the kernel K(u) := 1 − ∑
uj is invariant under the action of the sym-

metric group Sm, seen as a group of transformations of polynomials in u1, . . . , um.
This group is generated by m − 1 elements of order 2, denoted σ1, . . . , σm−1:

σj

(
P(u1, . . . , um)

) = P(u1, . . . , uj−1, uj+1, uj , uj+2, . . . , um).
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Let us multiply the equation by M(u) := um−1
1 · · ·u1

m−1u
0
m. This gives:

K(u)M(u)F (u) = M(u) −
m∑

j=2

um−1
1 · · ·um−(j−1)

j−1 u
m−j+1
j · · ·u0

mFj (u). (11)

Recall that Fj (u) stands for Fj (u1, . . . , uj−2, uj−1uj ,uj+1, . . . , um). Hence the j th

term in the above sum is invariant under the action of the generator σj−1 (which ex-
changes uj−1 and uj ). Consequently, forming the signed sum of (11) over the sym-
metric group Sm gives the following orbit sum, which does not involve the series Fj :

∑

σ∈Sm

ε(σ )σ
(
K(u)M(u)F (u)

) =
∑

σ∈Sm

ε(σ )σ
(
M(u)

)
,

or, given that K(u) is Sm-invariant,

∑

σ∈Sm

ε(σ )σ
(
M(u)F(u)

) =
∑

σ∈Sm
ε(σ )σ (M(u))

K(u)
. (12)

Of course, the sum on the right-hand side can be evaluated explicitly (the numerator
is the Vandermonde determinant), but this will not be needed here.

We claim that the number f λ can be simply obtained by a coefficient extraction
in the above identity. Consider the series M(u)F(u). Each monomial u

a1
1 · · ·uam

m that
occurs in it satisfies a1 > · · · > am (because ai = m − i + λi , where λ is a partition).
Consequently, if σ is not the identity, the exponents of any monomial u

a1
1 · · ·uam

m

occurring in σ(M(u)F (u)) are totally ordered in a different way. Hence, when we
extract the coefficient of u

m−1+λ1
1 · · ·u0+λm

m from (12), only the term corresponding
to σ = id contributes in the left-hand side, so that

f λ = [
u

m−1+λ1
1 · · ·u0+λm

m

]
∑

σ∈Sm
ε(σ )σ (M(u))

K(u)
.

Given that M(u) = um−1
1 · · ·u1

m−1u
0
m and

1

K(u)
= 1

1 − ∑m
j=1 uj

=
∑

a1,...,am≥0

(a1 + · · · + am)!∏m
i=1 ai ! u

a1
1 · · ·uam

m ,

we obtain

f λ =
∑

σ∈Sm

ε(σ )
(λ1 + · · · + λm)!∏m

i=1(λi − i + σ−1(i))!

= n!det

(
1

(λi − i + j)!
)

1≤i,j≤m

= n!det

(
(λi − i + j + 1) · · · (λi − i + m)

(λi − i + m)!
)

1≤i,j≤m
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= n!∏m
i=1 (λi − i + m)! det

(
(λi − i + j + 1) · · · (λi − i + m)

)
1≤i,j≤m

.

The (i, j)-coefficient of the latter determinant is a polynomial in λi − i of degree
m − j and leading coefficient 1. Hence the determinant is simply the Vandermonde
determinant det((λi − i)m−j ), that is,

∏
i<j (λi − λj − i + j). This completes the

proof of the proposition. �

We recognize in this proof three of the four ingredients that were used in the
enumeration of 123-avoiding permutations: the finite group that leaves the kernel
invariant (here, Sm), the orbit sum (12), and the final coefficient extraction. In this
example, the symmetries of the kernel are obvious already with the original variables
ui , so that no change of variables is required.

This proof is the generating function counterpart of the classical proof that en-
codes tableaux of height at most m by paths in N

m formed of unit positive steps, that
start from (0, . . . ,0) and remain in the wedge x1 ≥ · · · ≥ xm ≥ 0, and then uses the
reflection principle. It is also very close to another proof due to Xin [42, Sect. 3.1].

4 Involutions with no long descending subsequence

We now address the solution of the functional equation of Proposition 7, which de-
fines the generating function of involutions avoiding (m + 1)m · · ·21.

4.1 Invariance properties of the kernel

As discussed in the previous section, our objective is to exploit invariance properties
of the kernel, that is, the coefficient of G(v; t). Let us first divide the equation of
Proposition 7 by v1. Then the kernel reads

1

v1
− tχm≡1 − t2

�∑

j=1

vjvj+1

vj − vj+1
.

The invariance properties of this rational function appear clearly after performing the
following change of variables:

vi = 1

1 − t (xi + · · · + x�)
. (13)

Indeed, the kernel becomes

K(x; t) = 1 − t (x1 + · · · + x�) − tχm≡1 − t (x̄1 + · · · + x̄�),

where x̄i = 1/xi , and is invariant under the action of the hyperoctahedral group B�

(the group of signed permutations), seen as a group of transformations on Laurent
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polynomials in x1, . . . , x�. This group is generated by � elements of order 2, denoted
σ1, . . . , σ�:

σj (P (x1, . . . , x�)) =
{

P(x̄1, x2, . . . , x�), if j = 1;
P(x1, . . . , xj−2, xj , xj−1, xj+1, . . . , x�), for j ≥ 2.

The equation of Proposition 7 now reads:

K(x; t)Ḡ(x; t) = 1 + tḠ(0, x2, . . . , x�)χm≡0

− t

�∑

j=1

x̄j Ḡ(x1, . . . , xj−2, xj−1 + xj ,0, xj+1, . . . , x�),

where

Ḡ(x; t) ≡ Ḡ(x1, . . . , x�; t)

= G

(
1

1 − t (x1 + · · · + x�)
,

1

1 − t (x2 + · · · + x�)
, . . . ,

1

1 − tx�

; t
)

.

4.2 Orbit sum

We now handle separately the odd and even case.
• If m is odd, the equation reads

K(x; t)Ḡ(x; t) = 1 − t

�∑

j=1

x̄j Ḡ(x1, . . . , xj−2, xj−1 + xj ,0, xj+1, . . . , x�; t),

where

K(x; t) = 1 − t (1 + x1 + · · · + x� + x̄1 + · · · + x̄�). (14)

Let us multiply the equation by

M(x) := x1x
2
2 · · ·x�

� . (15)

This gives

K(x; t)M(x)Ḡ(x; t)

= M(x) − t

�∑

j=1

x1 · · ·xj−1
j−1x

j−1
j x

j+1
j+1 · · ·x�

�

× Ḡ(x1, . . . , xj−2, xj−1 + xj ,0, xj+1, . . . , x�; t). (16)

The first term (j = 1) of the sum reads x2
2 · · ·x�

�Ḡ(0, x2 . . . , x�) and is invariant under
the action of the generator σ1 of B� (which replaces x1 by x̄1). For j ≥ 2, the j th

term of the sum is invariant under the action of the generator σj (which exchanges
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xj−1 and xj ). Consequently, forming the signed sum of (16) over the hyperoctahedral
group B� gives the following orbit sum:

∑

σ∈B�

ε(σ )σ
(
K(x; t)M(x)Ḡ(x; t)) =

∑

σ∈B�

ε(σ )σ
(
M(x)

)
,

or, given that K(x; t) is B�-invariant,

∑

σ∈B�

ε(σ )σ
(
M(x)Ḡ(x; t)) =

∑
σ∈B�

ε(σ )σ (M(x))

K(x; t) , (17)

where K(x; t) is given by (14) and M(x) by (15).
• If m is even, the equation reads

K(x; t)Ḡ(x; t) = 1 + t (1 − x̄1)Ḡ(0, x2, . . . , x�; t)

− t

�∑

j=2

x̄j Ḡ(x1, . . . , xj−2, xj−1 + xj ,0, xj+1, . . . , x�; t),

where

K(x; t) = 1 − t (x1 + · · · + x� + x̄1 + · · · + x̄�). (18)

Let us multiply the equation by

M(x) := x2x
2
3 · · ·x�−1

� (1 − x1) · · · (1 − x�). (19)

This gives

K(x; t)M(x)Ḡ(x; t)

= M(x) + tx2x
2
3 · · ·x�−1

� (1 − x̄1)(1 − x1)

�∏

j=2

(1 − xj )Ḡ(0, x2, . . . , x�; t)

− t

�∏

j=1

(1 − xj )

�∑

j=2

x2 · · ·xj−2
j−1x

j−2
j x

j

j+1 · · ·x�−1
�

× Ḡ(x1, . . . , xj−2, xj−1 + xj ,0, xj+1, . . . , x�; t). (20)

The term involving Ḡ(0, x2, . . . , x�) is invariant under the action of the generator σ1

of B�. For j ≥ 2, the j th term of the sum is invariant under the action of the generator
σj . Consequently, forming the signed sum of (20) over the hyperoctahedral group B�

yields the orbit sum (17), where now K(x; t) and M(x) are respectively given by (18)
and (19).
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4.3 Extraction of G(1, . . . ,1; t)
• Assume m is odd, and consider the orbit sum (17). For every σ ∈ B�, the term

σ
(
M(x)Ḡ(x; t)) = σ

(
x1x

2
2 · · ·x�

� G

(
1

1 − t (x1 + · · · + x�)
,

1

1 − t (x2 + · · · + x�)
,

. . . ,
1

1 − tx�

; t
))

is a power series in t with coefficients in Q[x1, . . . , x�, x̄1, . . . , x̄�]. We will prove that
the coefficient of x1 · · ·x�

� in (17) reduces to Ḡ(0, . . . ,0; t) = G(1, . . . ,1; t), which
is the (ordinary) length generating function of involutions avoiding (m + 1)m · · ·21.

First, if σ has some signed elements, all monomials in the xi ’s occurring in
σ(M(x)Ḡ(x; t)) have at least one negative exponent. Hence σ(M(x)Ḡ(x; t)) does
not contribute to the coefficient of x1 · · ·x�

� .
If σ is not signed, it is a mere permutation of the xi ’s. Each monomial oc-

curring in σ(M(x)Ḡ(x; t)) is of the form x
e1
1 · · ·xe�

� , where the ei ’s are positive.
However, monomials with e1 = 1 only occur if σ(1) = 1 (because of the factor
M(x) = x1x

2
2 · · ·x�

� ). But then, if we also want e2 = 2, the only permutations σ that
contribute are those that satisfy σ(2) = 2. Iterating this observation, we see that the
only permutation σ that contributes to the coefficient of x1x

2
2 · · ·x�

� is the identity.
Moreover, its contribution is clearly Ḡ(0, . . . ,0; t) = G(1, . . . ,1; t).

Let us state this as a proposition, in which we have also made explicit the right-
hand side of the orbit sum.

Proposition 9 If m = 2� + 1, the ordinary generating function of involutions avoid-
ing (m + 1)m · · ·21 is the coefficient of x1x

2
2 · · ·x�

� in a rational function:

Gm(t) :=
∑

τ∈I(m)

t |τ | = [
x1x

2
2 · · ·x�

�

] det(xi
j − x̄i

j )1≤i,j≤�

1 − t (1 + x1 + · · · + x� + x̄1 + · · · + x̄�)
.

Equivalently, the exponential generating function of these involutions is

G(e)
m (t) :=

∑

τ∈I(m)

t |τ |

|τ |! = et
[
x1x

2
2 · · ·x�

�

]
det

((
xi
j − x̄i

j

)
et(xj +x̄j )

)
1≤i,j≤�

.

Proof We have just argued that Gm(t) is the coefficient of x1x
2
2 · · ·x�

� in the right-
hand side of (17). It remains to prove that

∑

σ∈B�

ε(σ )σ
(
x1

1 · · ·x�
�

) = det
(
xi
j − x̄i

j

)
1≤i,j≤�

.

This is easily proved if we consider that σ first replaces some xi ’s by their reciprocals,
and then permutes the xi ’s. More precisely, there is a bijection between B� and S� ×
Z

�
2, sending σ to (π, e1, . . . , e�), with π ∈ S� and ei ∈ {−1,1}, such that

σ
(
P(x1, . . . , x�)

) = π
(
P

(
x

e1
1 , . . . , x

e�

�

))
and ε(σ ) = ε(π)(−1){i:ei=−1}. (21)
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Thus
∑

σ∈B�

ε(σ )σ
(
x1

1 · · ·x�
�

) =
∑

π∈S�

ε(π)
∑

e1,...,e�∈{−1,1}
(−1){i:ei=−1}xe1

π(1)
x

2e2
π(2)

· · ·x�e�

π(�)

=
∑

π∈S�

ε(π)

�∏

i=1

(
xi
π(i) − x̄i

π(i)

)

= det
(
xi
j − x̄i

j

)
1≤i,j≤�

.

This gives the expression of Gm(t). We then convert it into an expression for the
exponential generating function G

(e)
m (t) by observing that the ordinary generating

function 1/(1 − at) = ∑
n tnan corresponds to the exponential generating function∑

n tnan/n! = exp(at). �

Remark The determinant occurring in the proposition can be evaluated in closed
form (see, e.g., [24, Lemma 2]):

det
(
xi
j − x̄i

j

)
1≤i,j≤�

= (
x1 · · ·x�

)−�
�∏

i=1

(x2
i − 1)

∏

1≤i<j≤�

(
(xi − xj )(1 − xixj )

)

but this is not needed here.

• Assume now that m = 2� is even. The identity (17) still holds, with K(x; t)
and M(x) given by (18) and (19). Based on the study of the odd case, it would be
tempting to extract the coefficient of x2 · · ·x�−1

� in this identity. However, this will
not give Ḡ(0, . . . ,0; t), as both σ = id and σ = σ1 (the generator of B� that replaces
x1 by x̄1) contribute to this coefficient. But we note that each term in the equation is a
multiple of P(x) := ∏�

i=1(1 − xi). Hence we will first divide by P(x). Let us study
the action of σ ∈ B� on P(x), with σ described as in (21). We have:

σ
(
P(x)

) = π
((

1 − x
e1
1

) · · · (1 − x
e�

�

)) = π

(
P(x)

∏

i:ei=−1

(−x̄i )

)

= (−1){i:ei=−1}P(x)
∏

i:ei=−1

x̄π(i).

Hence, denoting e = (e1, . . . , e�), xe = (x
e1
1 , . . . , x

e�

� ) and N(x) = x2 · · ·x�−1
� , divid-

ing (17) by P(x) gives

∑

π∈S�

e∈{−1,1}�

ε(π)π

(
N

(
xe

)
Ḡ

(
xe; t)

∏

i:ei=−1

x̄i

)

= 1

K(x; t)

(
∑

π∈S�

e∈{−1,1}�

ε(π)π

(
N

(
xe

) ∏

i:ei=−1

x̄i

))
. (22)
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Let us now extract from the left-hand side the coefficient of x2 · · ·x�−1
� . The ar-

gument is similar to the odd case. If e �= (1, . . . ,1), each monomial occurring in
N(xe)Ḡ(xe; t)∏

i:ei=−1 x̄i contains a negative exponent, and thus cannot contribute.

Now for e = (1, . . . ,1), the term π(N(x)Ḡ(x; t)) only contributes if π = id, and
then its contribution is Ḡ(0, . . . ,0; t), the length generating function of involutions
avoiding (m + 1)m · · ·21. We obtain the following counterpart of Proposition 9.

Proposition 10 If m = 2�, the ordinary generating function of involutions avoiding
(m + 1)m · · ·21 is the coefficient of x0

1x1
2 · · ·x�−1

� in a rational function:

Gm(t) :=
∑

τ∈I(m)

t |τ | = [
x0

1x1
2 · · ·x�−1

�

] det(xi−1
j + x̄i

j )1≤i,j≤�

1 − t (x1 + · · · + x� + x̄1 + · · · + x̄�)
.

Equivalently, the exponential generating function of these involutions is

G(e)
m (t) :=

∑

τ∈I(m)

t |τ |

|τ |! = [
x0

1x1
2 · · ·x�−1

�

]
det

((
xi−1
j + x̄i

j

)
et(xj +x̄j )

)
1≤i,j≤�

.

Proof We have just argued that Gm(t) is the coefficient of x1
2 · · ·x�−1

� in the right-
hand side of (22). It remains to evaluate the numerator in the right-hand side:

∑

π∈S�

e∈{−1,1}�

ε(π)π

(
N

(
xe

) ∏

i:ei=−1

x̄i

)
=

∑

π∈S�

ε(π)π

(
∑

e∈{−1,1}�

�∏

i=1

x
(i−1)ei−χei=−1

i

)

=
∑

π∈S�

ε(π)π

(
�∏

i=1

(
xi−1
i + x̄i

i

)
)

= det
(
xi−1
j + x̄i

j

)
.

This gives the expression of Gm(t). Taking the corresponding exponential generating
function gives G

(e)
m (t). �

Remark Again, the determinant occurring in the proposition can be evaluated in
closed form [24, (2.6)], but this is not needed here.

4.4 Determinantal expression of the series

• Let us assume that m is odd, and return to Proposition 9. Taking the exponential
generating function rather than the ordinary one makes the extraction of the coef-
ficient of x1 · · ·x�

� an elementary task, as all variables xj decouple. The series Ii

defined by (1) arise naturally from

[
xi

]
et(x+x̄) = Ii .
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We have:

G(e)
m (t) = et

∑

π∈S�

ε(π)

�∏

i=1

[
xi
i

]((
x

π(i)
i − x̄

π(i)
i

)
et(xi+x̄i )

)

= et
∑

π∈S�

ε(π)

�∏

i=1

(Ii−π(i) − Ii+π(i))

= et det(Ii−j − Ii+j )1≤i,j≤�.

We have thus recovered the first part of Theorem 2.
• If m is even, we start from Proposition 10. Again, the variables xj decouple in

the exponential generating function:

G(e)
m (t) =

∑

π∈S�

ε(π)

�∏

i=1

[
xi−1
i

]((
x

π(i)−1
i + x̄

π(i)
i

)
et(xi+x̄i )

)

=
∑

π∈S�

ε(π)

�∏

i=1

(Ii−π(i) + Ii+π(i)−1)

= det(Ii−j + Ii+j−1)1≤i,j≤�.

We have thus recovered the second part of Theorem 2.

Remark The determinantal expression of G
(e)
m implies that this series is D-finite, that

is, satisfies a linear differential equation with polynomial coefficients. However, this
follows as well from the constant term expressions of Propositions 9 and 10 using the
closure properties of D-finite series [27, 28].

4.5 The number of fixed points

We now enrich our results by taking into account the number of fixed points, thereby
recovering Theorem 3. Recall from Proposition 6 that the label of the involution ob-
tained by inserting n + 1 as a fixed point in τ ∈ I

(m)
n is (a1 + 1, a2 + 1, . . . , a� + 1)

if m is odd, (1, a2 + 1, . . . , a� + 1) otherwise. Hence, if we keep track of the number
of fixed points by a new variable s, the functional equation of Proposition 7 becomes

G(v; t, s)
= v1 + stv1G(v; t, s)χm≡1 + stv1G(v2, v2, v3, . . . , v�; t, s)χm≡0

+ t2v1

�∑

j=1

vjvj+1
G(v; t, s) − G(v1, . . . , vj−1, vj+1, vj+1, vj+2, . . . , v�; t, s)

vj − vj+1
.
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The series G(1, . . . ,1; t, s) counts involutions of I(m) by their length and number of
fixed points. The change of variables (13) now gives

K(x; t, s)Ḡ(x; t, s) = 1 + stḠ(0, x2, . . . , x�; t, s)χm≡0

− t

�∑

j=1

x̄j Ḡ(x1, . . . , xj−2, xj−1 + xj ,0, xj+1, . . . , x�; t, s),

where

K(x; t, s) = 1 − t (x1 + · · · + x�) − stχm≡1 − t (x̄1 + · · · + x̄�),

and

Ḡ(x; t, s) ≡ Ḡ(x1, . . . , x�; t)

= G

(
1

1 − t (x1 + · · · + x�)
,

1

1 − t (x2 + · · · + x�)
, . . . ,

1

1 − tx�

; t, s
)

.

• If m is odd, the argument of Sects. 4.2, 4.3, 4.4, applies verbatim. The only
difference is that the term t occurring in the kernel is replaced by st . This gives at
once the first part of Theorem 3, in the form (3).

• If m is even, the equation reads

K(x; t)Ḡ(x; t, s) = 1 + t (s − x̄1)Ḡ(0, x2, . . . , x�; t, s)

− t

�∑

j=2

x̄j Ḡ(x1, . . . , xj−2, xj−1 + xj ,0, xj+1, . . . , x�; t, s)

with K(x; t) = 1 − t (x1 + · · · + x� + x̄1 + · · · + x̄�). We multiply it by

M(x; s) := x2x
2
3 · · ·x�−1

� (s − x1) · · · (s − x�),

and then argue as in Sect. 4.2 to conclude that

∑

σ∈B�

ε(σ )σ
(
M(x; s)Ḡ(x; t, s)) =

∑
σ∈B�

ε(σ )σ (M(x; s))
K(x; t) , (23)

with the above values of K(x; t) and M(x; s).
Now we cannot follow exactly the argument of Sect. 4.3, because σ(M(x; s)) does

not differ from M(x; s) by a monomial. So it does not help to divide the equation by
(s − x1) · · · (s − x�). Instead, let us leave the equation as it is, and extract all terms of
the form xa

1 x1
2 · · ·x�−1

� with a ≥ 0. More precisely, for a series F(x1, . . . , x�; t, s) in
Q[x1, . . . , x�, s][[t]], let us denote

[
x

≥0
1 x1

2 · · ·x�−1
�

]
F(x1, . . . , x�; t, s) :=

∑

a≥0

xa
1

[
xa

1 x1
2 · · ·x�−1

�

]
F(x1, . . . , x�; t, s).

(24)
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Consider the term

σ
(
M(x; s)Ḡ(x; t, s)) = σ

(
x2x

2
3 · · ·x�−1

� (s − x1) · · · (s − x�)Ḡ(x; t, s)).
Let us decouple in σ the sign changes e1, . . . , e� and the permutation π of the xi ’s,
as in (21). We wish to determine [x≥0

1 x1
2 · · ·x�−1

� ]σ(M(x; s)Ḡ(x; t, s)).
– If one of the ei ’s, for i ≥ 2, is −1, then all monomials occurring in

σ(M(x; s)Ḡ(x; t, s)) involve a negative exponent and thus do not contribute.
– If e1 = −1 while ei = 1 for i ≥ 2, the only way to obtain a non-zero contribution

of σ(M(x; s)Ḡ(x; t, s)) is to take π = id, and the contribution is then

s�Ḡ(0, . . . ,0; t, s).
– If σ = π ∈ S�, the contribution is

(s − x1)
[
x

≥0
1 x1

2 · · ·x�−1
�

](
(s − x2) · · · (s − x�)π

(
x1

2 · · ·x�−1
� Ḡ(x; t, s))).

We note that this is a multiple of (s − x1).

Hence, the result of our coefficient extraction on (23) is

− s�Ḡ(0, . . . ,0; t, s) + (s − x1)
∑

π∈S�

ε(π)
[
x

≥0
1 x1

2 · · ·x�−1
�

](
(s − x2) · · · (s − x�)

× π
(
x1

2 · · ·x�−1
� Ḡ(x; t, s)))

= [
x

≥0
1 x1

2 · · ·x�−1
�

]
∑

σ∈B�
ε(σ )σ (M(x; s))
K(x; t) .

Let us specialize this to x1 = s:

−s�Ḡ(0, . . . ,0; t, s) =
([

x
≥0
1 x1

2 · · ·x�−1
�

]
∑

σ∈B�
ε(σ )σ (M(x; s))
K(x; t)

)∣∣∣∣
x1 �→s

.

The kernel K(x; t) is independent of s. But this is also the case of

∑

σ∈B�

ε(σ )σ
(
M(x; s)) =

∑

π∈S�

ε(π)π

(
�∏

i=1

(
(s − xi)x

i−1
i − (s − x̄i )x̄

i−1
i

)
)

= det
(
s
(
xi−1
j − x̄i−1

j

) − xi
j + x̄i

j

)
1≤i,j≤�

= det
(−xi

j + x̄i
j

)
1≤i,j≤�

as is seen by taking linear combinations of rows. We have thus obtained the following
counterpart of Proposition 10.

Proposition 11 If m = 2�, the ordinary generating function of involutions avoiding
(m + 1)m · · ·21, counted by the length and number of fixed points, is, with the nota-
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tion (24):

Gm(t, x1) :=
∑

τ∈I(m)

t |τ |xf (τ)

1

= − 1

x�
1

[
x

≥0
1 x1

2 · · ·x�−1
�

] det(x̄i
j − xi

j )1≤i,j≤�

1 − t (x1 + · · · + x� + x̄1 + · · · + x̄�)
.

Equivalently, the exponential generating function of these involutions is

G(e)
m (t, x1) :=

∑

τ∈I(m)

t |τ |

|τ |!x
f (τ)

1

= − 1

x�
1

[
x

≥0
1 x1

2 · · ·x�−1
�

]
det

((
x̄i
j − xi

j

)
et(xj +x̄j )

)
1≤i,j≤�

.

We can now perform the coefficient extraction explicitly in the expression of
G

(e)
m (t, x1):

G(e)
m (t, x1) = − 1

x�
1

∑

π∈S�

ε(π)
[
x

≥0
1

]((
x̄

π(1)
1 − x

π(1)
1

)
et(x1+x̄1)

)

×
�∏

i=2

[
xi−1
i

]((
x̄

π(i)
i − x

π(i)
i

)
et(xi+x̄i )

)

= − 1

x�
1

∑

π∈S�

ε(π)
∑

k≥0

xk
1(Ik+π(1) − Ik−π(1))

�∏

i=2

(Ii+π(i)−1 − Ii−π(i)−1)

=
∑

k≥0

xk−�
1 det

(
(Ik−j − Ik+j )1≤j≤�

(Ii+j−1 − Ii−j−1)2≤i≤�,1≤j≤�

)
.

Upon extracting the coefficient of x
p

1 , this gives the second part of Theorem 3.

5 Permutations with no long ascending subsequence

We now want to derive from the functional equation of Proposition 5 the Bessel
generating function of permutations avoiding 12 · · ·m(m + 1), given in Theorem 1.
We follow the same steps as in the case of involutions, but the coefficient extraction
is more delicate.

5.1 Invariance properties of the kernel

The kernel of the equation of Proposition 5, that is, the coefficient of F(v; t), reads

1 − tv1 − t

m∑

j=2

vj−1vj

vj−1 − vj

.
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Its invariance properties appear clearly if we set

vj = 1

x1 + · · · + xj

.

Indeed, the kernel then becomes

K(x; t) := 1 − t (x̄1 + · · · + x̄m), (25)

with x̄i = 1/xi , and is invariant under the action of the symmetric group Sm, seen as
a group of transformations of Laurent polynomials in the xi . This group is generated
by m − 1 elements of order 2, denoted σ1, . . . , σm−1:

σj

(
P(x1, . . . , xm)

) = P(x1, . . . , xj−1, xj+1, xj , xj+2, . . . , xm).

The functional equation now reads

K(x; t)F̄ (x; t) = 1 − t

m−1∑

j=1

x̄j+1F̄ (x1, . . . , xj−1, xj + xj+1,0, xj+2, . . . , xm; t),

with

F̄ (x; t) ≡ F̄ (x1, . . . , xm; t) = F

(
1

x1
,

1

x1 + x2
, . . . ,

1

x1 + · · · + xm

; t
)

. (26)

5.2 Orbit sum

Let us multiply the equation by

M(x) = x0
1x1

2 · · ·xm−1
m . (27)

This gives:

K(x; t)M(x)F̄ (x; t)

= M(x) − t

m−1∑

j=1

x0
1 · · ·xj−1

j x
j−1
j+1x

j+1
j+2 · · ·xm−1

m

× F̄ (x1, . . . , xj−1, xj + xj+1,0, xj+2, . . . , xm; t). (28)

The j th term of the sum is invariant under the action of the generator σj (which ex-
changes xj and xj+1). Consequently, forming the signed sum of (28) over the sym-
metric group Sm gives the following orbit sum:

∑

σ∈Sm

ε(σ )σ
(
K(x; t)M(x)F̄ (x; t)) =

∑

σ∈Sm

ε(σ )σ
(
M(x)

)
,
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or, given that K(x; t) is Sm-invariant,

∑

σ∈Sm

ε(σ )σ
(
M(x)F̄ (x; t)) =

∑
σ∈Sm

ε(σ )σ (M(x))

K(x; t) = det(xi−1
j )1≤i,j≤m

K(x; t) , (29)

where K(x; t) is given by (25) and M(x) by (27).

5.3 Extraction of F(1, . . . ,1; t)
For 1 ≤ j ≤ m, let us now denote zj = x1 + · · · + xj . Equivalently, xj = zj − zj−1
with z0 = 0. All series occurring in the orbit sum (29) become series in t with coeffi-
cients in Q(z1, . . . , zm). In particular,

F̄ (x; t) = F

(
1

z1
,

1

z2
, . . . ,

1

zm

; t
)

has coefficients which are Laurent polynomials in the zj ’s. This is not the case for all
terms in (29). For instance, if σ is the 2-cycle (1,2),

σ(F̄ (x; t)) = F

(
1

x2
,

1

x1 + x2
, . . . ,

1

x1 + · · · + xm

; t
)

= F

(
1

z2 − z1
,

1

z2
, . . . ,

1

zm

; t
)

involves coefficients which are not Laurent polynomials in the zj ’s. In order to per-
form our extraction, we will expand all rational functions of the zj ’s as (iterated)
Laurent series, by expanding first in z1, then in z2, and so on. For instance, the ex-
pansion of 1/(x1 + x3 + x4) reads

1

x1 + x3 + x4
= 1

z4 − z2 + z1
=

∑

e1≥0

(−z1)
e1

(z4 − z2)e1+1

=
∑

e1≥0,e2≥0

(
e1 + e2

e1

)
(−z1)

e1z
e2
2

z
1+e1+e2
4

.

In other words, the coefficients of our series in t now lie in the ring of iterated Laurent
series in z1, . . . , zm, which is defined inductively as follows:

– if m = 1, it coincides with the ring of Laurent series1 in z1 (with rational coeffi-
cients),

– if m > 1, it is the ring of Laurent series in z1 whose coefficients are iterated Laurent
series in z2, . . . , zm.

It follows from this definition that an iterated Laurent series in the zj ’s only contains
finitely many non-positive monomials, that is, monomials z

e1
1 · · · zem

m with ej ≤ 0 for
all j . This allows us to define below a linear operator Λ, which extracts from an
iterated Laurent series some coefficients associated with non-positive monomials and
adds them up.

1Recall that our Laurent series only involve finitely many negative exponents.
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Definition 12 Let Λ be the linear operator defined on iterated Laurent series in
z1, . . . , zm by the following action on monomials:

Λ
(
z
e1
1 · · · zem

m

) =
{

1, if e1 ≤ 0, . . . , em ≤ 0 and ej = 0 ⇒ ej+1 = · · · = em = 0;
0, otherwise.

(30)

Remark The action of Λ can also be described as the extraction of a constant term:
for any iterated Laurent series F(z1, . . . , zm),

Λ
(
F(z1, . . . , zm)

) = [
z0

1 · · · z0
m

]
(

F(z1, . . . , zm)

m∑

i=0

i∏

j=1

zj

1 − zj

)
.

This operator has been designed to extract from (29) the series F(1, . . . ,1; t) in
which we are interested. The following proposition is thus the counterpart of Propo-
sitions 9 and 10.

Proposition 13 The ordinary generating function of permutations avoiding
12 · · ·m(m + 1) is obtained by applying Λ to a rational function:

Fm(t) :=
∑

τ∈S(m)

t |τ | = Λ

( det(xi−j
j )1≤i,j≤m

1 − t (x̄1 + · · · + x̄m)

)
,

with xj = zj − zj−1 and z0 = 0.
Equivalently, the exponential generating function of these permutations is

F (e)
m (t) :=

∑

τ∈S(m)

t |τ |

|τ |! = Λ
(
det

(
x

i−j
j etx̄j

)
1≤i,j≤m

)
.

Remarks

1. The fact that the action of Λ can be described as a constant term extraction, com-
bined with closure properties of D-finite series [27, 28], implies that the series Fm

(and F
(e)
m ) are D-finite. This was first proved by Gessel [16].

2. Again, the determinant is a Vandermonde determinant and can be evaluated in
closed form, but this will not be needed.

Proof We will prove that for all σ ∈ Sm,

Λ

(
σ(M(x)F̄ (x; t))

M(x)

)
=

{
F(1, . . . ,1; t), if σ = id;
0, otherwise,

(31)

so that the first result directly follows from (29), after dividing by M(x) and apply-
ing Λ. It is then easily converted into an expression for the exponential generating
function.
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Recall the Definition (26) of F̄ (x; t), and that Sm acts by permuting the xj ’s.
Also,

F(v1, . . . , vm; t) =
∑

τ∈S(m)

v
a2(τ )−1
1 v

a3(τ )−a2(τ )
2 · · ·v|τ |+1−am(τ)

m t |τ |,

where the labels ai(τ ) are defined by (4). This definition implies that, if aj (τ ) =
aj+1(τ ), then aj (τ ) = aj+1(τ ) = · · · = am(τ) = |τ | + 1. In other words, the v-
monomials occurring in F(v; t) satisfy a property that should be reminiscent of the
definition of Λ:

F(v1, . . . , vm; t) =
∑

(e1,...,em)∈E
c(e1, . . . , em)v

e1
1 v

e2
2 · · ·vem

m te1+···+em, (32)

where

E = {
(e1, . . . , em) ∈ N

m : ej = 0 ⇒ ej+1 = · · · = em = 0
}
.

With this property at hand, we can now address the proof of (31). If σ = id,

Λ

(
σ(M(x)F̄ (x; t))

M(x)

)
= Λ

(
F

(
1

z1
,

1

z2
, . . . ,

1

zm

; t
))

= F(1, . . . ,1; t)

by definition of Λ and (32).
It remains to prove the second part of (31). Let us consider an example, say m = 5

and σ = 13425. Let τ ∈ S
(5)
n , and denote ei = ai+1(τ ) − ai(τ ), with a1(τ ) = 1 and

am+1(τ ) = |τ | + 1. Of course, ei ≥ 0 for all i. Up to a factor t |τ |, the contribution of
τ in σ(M(x)F̄ (x; t))/M(x) is

1

x2x
2
3x3

4x4
5

σ

(
x2x

2
3x3

4x4
5

x
e1
1 (x1 + x2)e2 · · · (x1 + · · · + x5)e5

)

= x3x
2
4x3

2x4
5

x2x
2
3x3

4x4
5x

e1
1 (x1 + x3)e2(x1 + x3 + x4)e3(x1 + x2 + x3 + x4)e4(x1 + · · · + x5)e5

= (z2 − z1)
2

(z3 − z2)(z4 − z3)z
e1
1 (z3 − z2 + z1)e2(z4 − z2 + z1)e3z

e4
4 z

e5
5

.

To prepare the Laurent expansion in the variables zi , we rewrite this fraction as

(z2 − z1)
2

z
e1
1 z

1+e2
3 z

1+e3+e4
4 z

e5
5

(
1 − z3

z4

)(
1 − z2

z3

)1+e2
(
1 − z2

z4

)e3
(
1 + z1

z3(1− z2
z3

)

)e2
(
1 + z1

z4(1− z2
z4

)

)e3
.

It is now clear that, in each term of the Laurent expansion, z2 has a non-negative
exponent, while z4 has a negative exponent. By definition of Λ, this implies that

Λ

(
1

M(x)
σ

(
M(x)

x
e1
1 (x1 + x2)e2 · · · (x1 + · · · + x5)e5

))
= 0.
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As this holds for every permutation τ ∈ S
(5)
n , we have proved that (31) holds for

σ = 13425.
Let us say that a series of Q(x1, . . . , xm)[[t]] is positive in zj (or zj -positive)

if, in every term of its z-expansion, zj appears with a positive exponent. We define
similarly the notion of zj -negative, zj -non-positive, zj -non-negative series. We have
just observed that, for m = 5 and σ = 13425, the series σ(M(x)F̄ (x; t))/M(x) is
non-negative in z2 but negative in z4. This is generalized by the following lemma.

Lemma 14 Take σ ∈ Sm \ {id}. Let σ(j) be the largest non-fixed left-to-right maxi-
mum of σ . That is,

for k < j,σ (k) < σ(j), and for every k such that σ(k) > σ(j), one has σ(k) = k.

Let σ(i) be any value that is not a left-to-right maximum and satisfies σ(i) ≤ i. For
e1 ≥ 0, . . . , em ≥ 0, consider the fraction

1

M(x)
σ

(
M(x)

x
e1
1 (x1 + x2)e2 · · · (x1 + · · · + xm)em

)
. (33)

Then this fraction is non-negative in zσ(i) but negative in zσ(j). Since σ(i) < σ(j),
applying Λ to this fraction gives 0.

Returning to the example σ = 13425 studied above, we observe that the lemma
applies with σ(i) = 2 and σ(j) = 4.

This lemma implies the second part of (31): indeed, the contribution of any τ ∈
S(m) in σ(M(x)F̄ (x; t))/M(x) is of the form (33). Hence proving the lemma will
conclude the proof of Proposition 13. �

Proof of Lemma 14 We establish this lemma via a sequence of three elementary
properties.

Property 1 Let i1 < i2 < · · · < ik , and e ∈ Z. The fraction

1

(±zi1 ± · · · ± zik )
e

is non-negative in zi1 , . . . , zik−1 . If e ≥ 0, it is non-positive in zik , and even negative
in zik if e > 0.

Proof The result is obvious if e ≤ 0, as the fraction is a polynomial in this case. If
e > 0, we prove it by induction on k. It clearly holds for k = 1. If k > 1, we write

1

(±zi1 ± · · · ± zik )
e

= 1

(±zi2 ± · · · ± zik )
e
(
1 ± zi1

zi2 ±···±zik

)e

=
∑

n≥0

(
e − 1 + n

n

)
(±zi1)

n

(±zi2 ± · · · ± zik )
e+n

,

and we conclude by induction on k. �
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Property 2 Let σ , j , e1, . . . , em be as in Lemma 14. The fraction

σ

(
1

x
e1
1 (x1 + x2)e2 · · · (x1 + · · · + xm)em

)

is non-negative in all zσ(k) such that σ(k) is not a left-to-right maximum, and non-
positive in zσ(j).

Proof It suffices to prove that the result holds for each term

σ(
1

(x1 + · · · + x�)e�
) = 1

(zσ(1) − zσ(1)−1 + · · · + zσ(�) − zσ(�)−1)e�
, (34)

for � ∈ {1, . . . ,m} (with z0 = 0).
By Property 1, this term is non-negative in all variables, except possibly in

zmax(σ (1),...,σ (�)). Since max(σ (1), . . . , σ (�)) is always a left-to-right maximum, this
proves the first part of the property.

Consider now the variable zσ(j).

– If � < j , then max(σ (1), . . . , σ (�)) < σ(j), so that the term (34) is independent of
zσ(j), and thus non-positive in this variable.

– If j ≤ � ≤ σ(j), then max(σ (1), . . . , σ (�)) = σ(j). Then (34) is non-positive in
zσ(j) by Property 1.

– Finally, if � > σ(j), then {σ(1), . . . , σ (�)} = {1, . . . , �}, so that the term (34) sim-
ply reads 1/z

e�

� . This is independent of zσ(j), and thus non-positive in this variable.
�

Property 3 Let σ and j be as in Lemma 14. The fraction

σ(M(x))

M(x)

is non-negative in all zσ(k) such that σ(k) ≤ k, and negative in zσ(j).

Proof We have

σ(M(x))

M(x)
=

m∏

�=1

(zσ(�) − zσ(�)−1)
�−σ(�).

Assume σ(k) ≤ k. The two terms of the above product that involve zσ(k) are (zσ(k) −
zσ(k)−1)

k−σ(k) and (zσ(k)+1 −zσ(k))
e , with e = σ−1(σ (k)+1)−σ(k)−1. The former

term is non-negative in zσ(k) because σ(k) ≤ k. The latter term is non-negative in
zσ(k) by Property 1. This proves the first part of the property.

The two terms that involve zσ(j) are (zσ(j)−zσ(j)−1)
j−σ(j) and (zσ(j)+1 −zσ(j))

e,
with e = σ−1(σ (j) + 1) − σ(j) − 1. Since σ(j) > j , the former term is negative in
zσ(j) by Property 1. By construction of j , the exponent e is 0, so that the latter term
is simply 1. �

Lemma 14 now follows by combining Properties 2 and 3. �
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5.4 Determinantal expression of the series

Let us write etx̄ = ∑
b≥0(t x̄)b/b!. The second formula in Proposition 13 reads:

∑

τ∈S(m)

t |τ |

|τ |! =
∑

b1,...,bm≥0

tb1+···+bm

b1! · · ·bm!
∑

σ∈Sm

ε(σ )Λ

(
σ(M(x))

M(x)σ (xb)

)
, (35)

where M(x) = x2x
2
3 · · ·xm−1

m , b = (b1, . . . , bm), and xb = x
b1
1 · · ·xbm

m . We will give a

closed form expression of Λ(
σ(M(x))

M(x)σ (xb)
) (Lemma 17), which in turn will give a closed

form expression of the sum over σ occurring in (35).

Proposition 15 For b = (b1, . . . , bm) ∈ N
m,

∑

σ∈Sm

ε(σ )Λ

(
σ(M(x))

M(x)σ (xb)

)
= (b1 + · · · + bm)!∏m

i=1(bi − i + m)!
∏

1≤i<j≤m

(bi − i − bj + j).

Let us delay for the moment the proof of this proposition, and derive from it Ges-
sel’s determinantal formula (Theorem 1).

Proof of Theorem 1 The exponential generating function of permutations of S(m)

now reads

∑

τ∈S(m)

t |τ |

|τ |! =
∑

b1,...,bm≥0

tb1+···+bm
(b1 + · · · + bm)!∏m
i=1 bi !(bi − i + m)!

∏

1≤i<j≤m

(bi − i − bj + j).

Replacing t by t2, and taking the Bessel generating function gives

∑

τ∈S(m)

t2|τ |

|τ |!2 =
∑

b1,...,bm≥0

t2(b1+···+bm)

∏m
i=1 bi !(bi − i + m)!

∏

1≤i<j≤m

(bi − i − bj + j). (36)

But this is exactly Gessel’s determinant. Indeed:

det(Ij−i )1≤i,j≤m

=
∑

σ∈Sm

ε(σ )

m∏

i=1

Iσ(i)−i

=
∑

σ∈Sm

ε(σ )

m∏

i=1

∑

bi≥0

t2bi−i+σ(i)

bi !(bi − i + σ(i))!

=
∑

b1,...,bm≥0

t2(b1+···+bm)

∏m
i=1 bi !(bi − i + m)! det

(
(bi − i + j + 1) · · · (bi − i + m)

)
,

and this coincides with (36), because the above determinant is the Vandermonde de-
terminant in the variables ui := bi − i (since (bi − i + j + 1) · · · (bi − i + m) is a
polynomial in ui of dominant term u

m−j
i ). �
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There remains to prove Proposition 15. The proof relies on two lemmas. The first
one is a simple identity based on a partial fraction expansion. The second gives a
closed form expression of Λ(

σ(M(x))

M(x)σ (xb)
), for b ∈ N

m.

Lemma 16 Let x1, . . . , xk, u1, . . . , uk be indeterminates, and let the symmetric group
Sk act on the xi ’s by permuting them (that is, τ(xi) = xτ(i) for τ ∈ Sk). Then

∑

τ∈Sk

ε(τ )τ

(
k−1∏

i=1

(xi + ui) · · · (xi + uk)

xi + ui + · · · + xk + uk

)
=

∏

1≤i<j≤k

(xi − xj ).

Proof Let us denote u = (u1, . . . , uk) and

T (x,u) =
k−1∏

i=1

(xi + ui) · · · (xi + uk)

xi + ui + · · · + xk + uk

.

This is a rational function of uk , in which the numerator and denominator have degree
k − 1. By a partial fraction expansion,

T (x,u) = C(x,u) +
k−1∑

�=1

α�(x,u)

x� + u� + · · · + xk + uk

, (37)

where C and the α�’s are independent of uk . By letting uk tend to infinity, one obtains

C(x,u) =
∏

1≤i≤j<k

(xi + uj ).

The value of α� is obtained by taking the residue of T (x,u) at uk = −(x� + u� +
· · · + xk). This gives, for � ≤ k − 1:

α�(x,u) =
∏

1≤i≤j<k(xi + uj )
∏

1≤i<k(xi − (x� + u� + · · · + xk))∏
i �=�,i<k(xi + ui + · · · + xk−1 + uk−1 + xk − (x� + u� + · · · + xk))

.

Return now to (37). It is easy to check that α�(x,u)/(x� + u� + · · · + xk + uk) is
left unchanged by the exchange of x� and x�+1. Consequently, the sum of the lemma
reads

∑

τ∈Sk

ε(τ )τ
(
T (x,u)

) =
∑

τ∈Sk

ε(τ )τ
(
C(x,u)

) = det

(
k−1∏

h=i

(xj + uh)

)

1≤i,j≤k

=
∏

1≤i<j≤k

(xi − xj ),

because
∏k−1

h=i (xj + uh) is a polynomial in xj of leading term xk−i
j ; the sum over τ

thus reduces to a Vandermonde determinant. �
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Lemma 17 Let b = (b1, . . . , bm) ∈ N
m and σ ∈ Sm. Let

1

xe
= σ(M(x))

M(x)σ (xb)
,

where as before M(x) = x2 · · ·xm−1
m . That is, e = (e1, . . . , em) where ei = bτ(i) −

τ(i) + i and τ = σ−1. Let k = max{i : bi > 0} (if b = (0, . . . ,0), we take k = 0).
Then

Λ

(
1

xe

)
=

{∏k
i=1

(
ei+···+ek−1

ei−1

)
, if σ(j) = j for all j > k;

0, otherwise.
(38)

Remark If σ(j) = j for all j > k, and i ≤ k, then ei + · · · + ek ≥ 1. Indeed, if
ei + · · · + ek = bτ(i) + · · · + bτ(k) + (i + · · · + k) − (τ (i) + · · · + τ(k)) were non-
positive, this would mean that {τ(i), . . . , τ (k)} = {i, . . . , k} and bi = · · · = bk = 0,
which contradicts the definition of k. However, ei may be non-positive, and in this
case the above expression vanishes. However, ei + k − i ≥ 0. When we apply this
lemma to prove Proposition 15, we will write the above product of binomial coeffi-
cients in the following equivalent form:

(e1 + · · · + ek)!∏
1≤i≤k(ei + k − i)!

k−1∏

i=1

ei(ei + 1) · · · (ei + k − i)

ei + · · · + ek

. (39)

Proof For an iterated Laurent series in z1, . . . , zk , of the form R(z) =∑
n∈Zk c(n1, . . . , nk)z

n1
1 · · · znk

k , we define the negative part of R(z) by

[z<]R(z) = [
z<

1 · · · z<
k

]
R(z) :=

∑

n1<0,...,nk<0

c(n1, . . . , nk).

Let us first prove that if f = (f1, . . . , fk) ∈ Z
k ,

[z<]
(

1

xf

)
=

k∏

i=1

(
fi + · · · + fk − 1

fi − 1

)
. (40)

We adopt the standard convention that
(
a
b

) = 0 unless 0 ≤ b ≤ a. Given that xi =
zi − zi−1, we have

1

xf
= 1

z
f1
1 · · · zfk

k

(
1 − z1

z2

)f2 · · · (1 − zk−1
zk

)fk
.

If fi ≤ 0 for some i, the z-expansion of 1/xf only involves non-negative powers of
zi , so that the negative part of 1/xf is zero. The right-hand side of (40) is zero as
well, and thus (40) holds. Assume now fi > 0 for all i. The proof works by induction
on k. If k = 1 and f1 > 0,

[z<]
(

1

z
f1
1

)
= 1 =

(
f1 − 1

f1 − 1

)
.
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For k ≥ 2,

[z<]
(

1

xf

)
= [z<] 1

z
f1
1 z

f2
2

(
1 − z1

z2

)f2(z3 − z2)f3 · · · (zk − zk−1)fk

= [z<]
∑

n≥0

(
n + f2 − 1

f2 − 1

)
z
n−f1
1

z
n+f2
2 (z3 − z2)f3 · · · (zk − zk−1)fk

=
f1−1∑

n=0

(
n + f2 − 1

f2 − 1

)[
z<

2 · · · z<
k

] 1

z
n+f2
2 (z3 − z2)f3 · · · (zk − zk−1)fk

=
f1−1∑

n=0

(
n + f2 − 1

f2 − 1

)(
n + f2 + · · · + fk − 1

n + f2 − 1

) k∏

i=3

(
fi + · · · + fk − 1

fi − 1

)

by the induction hypothesis. Now

f1−1∑

n=0

(
n + f2 − 1

f2 − 1

)(
n + f2 + · · · + fk − 1

n + f2 − 1

)

=
f1−1∑

n=0

(
n + f2 + · · · + fk − 1

n

)(
f2 + · · · + fk − 1

f2 − 1

)

=
(

f1 + f2 + · · · + fk − 1

f1 − 1

)(
f2 + · · · + fk − 1

f2 − 1

)
.

The last equality results from the classical binomial identity

a∑

n=0

(
n + b

n

)
=

(
a + b + 1

a

)
.

This gives (40).
Let us now prove (38). Assume that σ(j) = j for all j > k. This implies that

ek+1 = · · · = em = 0. As argued just after the statement of the lemma, ek > 0. But
then 1/xe is negative in zk , and involves none of the variables zk+1, . . . , zm. Thus, by
definition of Λ,

Λ

(
1

xe

)
= [

z<
1 · · · z<

k

] 1

x
e1
1 · · ·xek

k

=
k∏

i=1

(
ei + · · · + ek − 1

ei − 1

)

(by (40)), and this gives the first part of (38).
Assume now that there exists j > k such that σ(j) �= j . Then there also exists

j > k such that σ(j) < j . Let us choose such a j . Then there also exists � > σ(j)

such that τ(�) < �. We have

eσ(j) = bj − j + σ(j) = −j + σ(j) < 0,
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e� = bτ(�) − τ(�) + � > 0,

with � > σ(j). Let �′ = max{p > σ(j) : ep > 0} (this set is non-empty as it contains
�). Then e�′+1 = · · · = em = 0, and 1/xe is non-negative in zσ(j) but negative in z�′ .
By definition of Λ, this implies that Λ(1/xe) = 0. �

Proof of Proposition 15 Let us denote by SUM(b) the sum we want to evaluate.
Let k = max{i : bi > 0}. By Lemma 17, the sum can be reduced to permutations σ

that fix all points larger than k, and then we use the closed form expression (39) of
Λ(

σ(M(x))

M(x)σ (xb)
). This gives:

SUM(b) =
∑

σ∈Sk

ε(σ )Λ

(
σ(M(x))

M(x)σ (xb)

)

=
∑

τ∈Sk

ε(τ )
(b1 + · · · + bk)!∏k

i=1(bτ(i) − τ(i) + k)!

×
k−1∏

i=1

(bτ(i) − τ(i) + i) · · · (bτ(i) − τ(i) + k)

bτ(i) − τ(i) + i + · · · + bτ(k) − τ(k) + k

= (b1 + · · · + bk)!∏k
i=1(bi − i + k)!

∏

1≤i<j≤k

(bi − i − bj + j).

The last equality is the case xi = bi − i, ui = i of Lemma 16. It is easy to check that,
given that bk+1 = · · · = bm = 0, the above expression coincides with

(b1 + · · · + bm)!∏m
i=1(bi − i + m)!

∏

1≤i<j≤m

(bi − i − bj + j),

as stated in Proposition 15. �

6 Final comments

Clearly, our proof of Theorem 1, dealing with permutations of S(m), is more compli-
cated than our proof of Theorem 2, dealing with involutions of I(m). We still wonder
if there exists another change of variables, another coefficient extraction or another
way to perform this extraction effectively that would simplify Sects. 5.3 and 5.4.

Our approach is robust enough to be adapted to other enumeration problems.
Consider for instance the set S̃(m) of permutations π of S(m) in which the values
1,2, . . . ,m occur in this order. That is, π−1(1) < · · · < π−1(m). Garsia and Goupil
found recently a simple formula for the number of such permutations of (small) length
n: if n ≤ 2m, this number is [15, Corollary 6.2]

 S̃
(m)
n =

n−m∑

r=0

(−1)r
(

n − m

r

)
n!

(m + r)! . (41)
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This was then reproved by Panova [32]. See also [1].
In terms of the generating tree described in Sect. 2.1, this means that one is only

counting the nodes of the subtree rooted at the permutation 12 · · ·m. The only change
in the functional equation of Proposition 5 is thus the initial condition: instead of 1
(which accounts for the empty permutation), it is now v1 · · ·vmtm. Sections 5.1 to 5.3
translate verbatim, and we reach the following counterpart of Proposition 13.

Proposition 18 The ordinary generating function of permutations that avoid
12 · · ·m(m + 1) and in which the values 1, . . . ,m occur in this order is obtained
by applying the operator Λ of Definition 12 to a rational function:

∑

τ∈S̃(m)

t |τ | = Λ

(
tm

x1
2 · · ·xm−1

m (1 − t (x̄1 + · · · + x̄m))

×
∑

σ∈Sm

ε(σ )σ

(
x1

2 · · ·xm−1
m∏m

i=1(x1 + · · · + xi)

))
,

with xj = zj − zj−1 and z0 = 0.
Equivalently, the exponential generating function of these permutations is

∑

τ∈S̃(m)

t |τ |

|τ |! = Λ

(
tmet(x̄1+···+x̄m)

x1
2 · · ·xm−1

m

∑

σ∈Sm

ε(σ )σ

(
x1

2 · · ·xm−1
m∏m

i=1(x1 + · · · + xi)

))
.

We have not further pursued in this direction, but one could try to obtain a more
explicit formula giving the whole generating function (which would imply (41) when
n ≤ 2m).

As discussed at the beginning of Sect. 2.2, the generating tree for 12 · · ·m(m+ 1)-
avoiding involutions can be described using m catalytic variables. Since these involu-
tions are equinumerous with (m+ 1)m · · ·21-avoiding involutions, it is natural to ask
whether one could derive Theorem 2 from this tree and the corresponding functional
equation. This could allow us to address the enumeration of 12 · · ·m(m+1)-avoiding
fixed point free involutions, for which determinantal formulas exist (obtained by ap-
plying Gessel’s θ operator [16] to identities (5.41) and (5.42) of [3], which are equiv-
alent to Theorem 2.3(3) in [31]; see also Stanley’s survey [39, Thm. 8]). The recursive
construction we have used for involutions does not allow us to address this problem.

Acknowledgements The author thanks Aaron Jaggard for communicating an early version of his paper
with Joseph Marincel [21].
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