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Abstract We examine blocks of the Ariki–Koike algebra, in an attempt to generalise
the combinatorial representation theory of the Iwahori–Hecke algebra of type A. We
identify a particular type of combinatorial block, which we call a core block, which
may be viewed as an analogue of a simple block of the Iwahori–Hecke algebra. We give
equivalent characterisations of core blocks and examine their basic combinatorics.
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1 Introduction

Let F be a field and q a non-zero element of F. For each n � 0, one defines the Iwahori–
Hecke algebra Hn = HF,q (Sn) of the symmetric group Sn . This algebra (of which the
group algebra FSn is a special case) arises naturally, and its representation theory has
been extensively studied. There are important Hn-modules indexed by partitions of
n, and there are many theorems concerning Hn which reduce representation-theoretic
notions to statements about the combinatorics of partitions and Young diagrams.

In this paper, we consider the representation theory of the Ariki–Koike algebra. This
is a deformation of the group algebra of the complex reflection group Cr � Sn , defined
using parameters q, Q1, . . . , Qr ∈ F. The development of the representation theory
of this algebra is still in its early stages, but already it seems that in many respects the
Ariki–Koike algebra behaves in the same way as the Iwahori–Hecke algebra; many of
the combinatorial theorems concerning Hn have been generalised to the Ariki–Koike
algebra, with the rôle of partitions being played by multipartitions. In fact, much
of the difficulty of understanding the Ariki–Koike algebra seems to lie in finding the
right generalisations of the combinatorics of partitions to multipartitions—very simple
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combinatorial notions (such as the definition of an e-restricted partition) can have rather
nebulous generalisations (such as ‘Kleshchev’ multipartitions). This paper is intended
as a contribution towards understanding the combinatorics of multipartitions, as it
relates to the Ariki–Koike algebra. This paper may also be read from the point of
view of quantum groups—the decomposition matrices of Ariki–Koike algebras are
in certain cases described using canonical bases of higher-level Fock spaces for the
quantum groups Uv(ŝle), and the combinatorial notions here should be invaluable for
studying these Fock spaces. Our results apply also to the cyclotomic q-Schur algebra
of Dipper et al., [2], although the statements about Kleshchev multipartitions are of
less importance there.

In the representation theory of the Iwahori–Hecke algebra, the weight and core of
a partition play an important rôle; they give rise to block invariants which provide
information about the representation theory of a block—the weight of a block is an
excellent measure of how complicated the representation theory of that block is. In
[4], we generalised the notion of weight to multipartitions. We gave a (non-obvious)
definition of the weight of a multipartition, and examined its properties. In this paper
(which relies heavily on [4], and may be regarded as a sequel), we consider generalising
the notion of the core of a partition. Given a multipartition λ, it seems that we cannot
sensibly define another multipartition which we regard as the core of λ; rather, we
define a combinatorial block which we call the core block of λ.

Core blocks can be quite complicated (in fact, they can have arbitrarily large weight),
but we show that they are well-behaved in certain ways. After giving several equivalent
definitions of a core block, we show that we may describe the set of multipartitions
in a core block in a simple way. We then show that every core block ‘occurs at
e = ∞’, by which we mean that for any core block B there is another Ariki–Koike
algebra Ȟn defined using parameters q̌, Q̌1, . . . , Q̌r with q̌ not a root of unity in
F and a combinatorial block B̌ of Ȟn which closely resembles B. This resemblance
should reflect underlying algebraic structure, but we content ourselves with examining
combinatorics, proving that B and B̌ contain the same multipartitions and the same
Kleshchev multipartitions.

Finally, we examine combinatorial blocks which are ‘decomposable’ in a certain
combinatorial sense. The idea is that the representation theory of such blocks should
reduce to studying blocks of Ariki–Koike algebras defined for smaller values of r .
We show that a decomposable combinatorial block is a core block, and we show that
the set of multipartitions and the set of Kleshchev multipartitions in a decomposable
combinatorial block may be determined from those of the ‘factor’ blocks.

For the remainder of this introduction, we describe the background theory and
notation we shall need. In Section 2, we prove some purely combinatorial theorems
which will be useful in what follows. In Section 3, we look at core blocks.

1.1 Basic definitions

1.1.1 The Ariki–Koike algebra

Let F be a field, and let q, Q1, . . . , Qr be non-zero elements of F. We also assume that
q �= 1; there is a corresponding theory for the case q = 1, but it requires a ‘degenerate’
Ariki–Koike algebra, which we shall not describe here.
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For a non-negative integer n, we define the Ariki–Koike algebra Hn to be the unital
associative F-algebra with generators T0, . . . , Tn−1 and relations

(Ti + q)(Ti − 1) = 0 (1 � i � n − 1)

(T0 − Q1) . . . (T0 − Qr ) = 0

Ti Tj = Tj Ti (0 � i, j � n − 1, |i − j | > 1)

Ti Ti+1Ti = Ti+1Ti Ti+1 (1 � i � n − 2)

T0T1T0T1 = T1T0T1T0.

We define e to be the multiplicative order of q in F; the assumption that q �= 1
means that e ∈ {2, 3, . . . } ∪ {∞}. We shall often consider whether two integers are
congruent modulo e, and we allow the case e = ∞, where ‘congruent modulo e’ will
mean ‘equal’, and where the set Z/eZ should be read as Z. Q1, . . . , Qr are referred
to as the cyclotomic parameters of Hn .

1.1.2 Multipartitions and Specht modules

A partition of n is defined to be a decreasing sequence λ = (λ1, λ2, . . . ) of non-
negative integers whose sum is n. We write |λ| = n, and we use ∅ to denote the
unique partition of 0. A partition is often written with equal terms grouped and zeroes
omitted, so that (2, 2, 2, 1, 1, 0, 0, . . . ) becomes (23, 12). The Young diagram [λ] of a
partition λ is defined as

{(i, j) ∈ N × N | j � λi },

and the elements of [λ] are called nodes.
A multipartition of n with r components is a sequence λ = (λ(1), . . . , λ(r )) of par-

titions such that |λ(1)| + · · · + |λ(r )| = n. Again, we write |λ| = n, and we write the
unique multipartition of 0 as ∅, if r is understood. The Young diagram [λ] of a
multipartition λ is the set

{
(i, j, k) ∈ N × N × {1, . . . , r} | j � λ

(k)
i

}
,

whose elements are also called nodes. We say that the node (i, j, k) is higher than
the node (i ′, j ′, k ′) if either k < k ′ or (k = k ′ and i < i ′). A node n of [λ] is called
removable if [λ] \ {n} is the Young diagram of some multipartition, while a triple
n = (i, j, k) not in [λ] is called an addable node of [λ] if [λ] ∪ {n} is the Young
diagram of some multipartition with r components. We emphasise the potentially
confusing point that an addable node of [λ] is not a node of [λ].

To each multipartition λ of n, one associates a Specht module Sλ. These modules
arise from a cellular basis of Hn; each Specht module lies in one block of Hn , and
we abuse notation by saying that a multipartition λ lies in a block B if Sλ lies in
B. On the other hand, each block contains at least one Specht module, so in order to
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classify the blocks of Hn , it suffices to describe the corresponding partition of the set
of multipartitions.

1.1.3 Rim e-hooks and e-cores

If λ is a partition, then the rim of [λ] is defined to be the set of nodes (i, j) in [λ] for
which (i + 1, j + 1) does not lie in [λ]. If e is finite, then a rim e-hook is defined to
be a connected subset R of the rim containing exactly e nodes, such that [λ] \ R is the
Young diagram of a multipartition. If [λ] does not have any rim e-hooks, or if e = ∞,
then we say that λ is an e-core. If λ = (λ(1), . . . , λ(r )) is a multipartition and each λ( j)

is an e-core, then we say that λ is a multicore.

1.1.4 Residues, blocks and combinatorial blocks

If λ is a multipartition and (i, j, k) is a node or an addable node of [λ], then we define
the residue of (i, j, k) to be the element q j−i Qk of F. For each f ∈ F, we write c f (λ)
for the number of nodes of [λ] of residue f ; now we say that two multipartitions λ
and μ lie in the same combinatorial block (of Hn) if c f (λ) = c f (μ) for all f ∈ F.
Then we have the following.

Theorem 1.1 ([5] Proposition 5.9 (ii)). If λ and μ are multipartitions of n, then λ
and μ lie in the same block of Hn only if they lie in the same combinatorial block.

Graham and Lehrer have conjectured a converse to this theorem, namely that two
multipartitions lie in the same combinatorial block, then they lie in the same block.
This has now been proved by Lyle and Mathas [6, Theorem 2.11], but since their
result uses the results of the present paper, we cannot assume it here. Accordingly, this
paper is entirely concerned with combinatorial blocks. Of course, when re-reading
this paper in the light of the work of Lyle and Mathas, the word ‘combinatorial’ can
be ignored. According to our abuse of terminology, we view a (combinatorial) block
as a set of multipartitions, and under this interpretation Theorem 1.1 shows that a
combinatorial block B is a disjoint union of blocks B1, . . . , Bs . Of course, B1, . . . , Bs

are more correctly viewed as algebras (in particular, indecomposable direct summands
of Hn); occasionally, we shall interpret B as an algebra too, namely the direct sum of
the algebras B1, . . . , Bs . We switch between these two interpretations without notice;
there should be no risk of confusion.

The author’s earlier paper [4] is extensively referenced here, and unfortunately
refers to a now discredited preprint containing a purported proof of the converse of
Theorem 1.1. This result is not used in a fundamental way in [4], but some of the
results need to be re-stated when the classification of blocks is not being assumed.
Essentially, this means reading ‘combinatorial block’ instead of ‘block’ throughout
[4]. A new version of [4] with the appropriate changes appears on the author’s web
site:

http://www.maths.qmul.ac.uk/∼mf/papers/weight.pdf.
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1.1.5 Kleshchev multipartitions

Residues of nodes are also useful in classifying the simple Hn-modules. Suppose λ
is a multipartition, and given f ∈ F define the f -signature of λ by examining all the
addable and removable nodes of λ in turn from higher to lower, and writing a + for
each addable node of residue f and a − for each removable node of residue f . Now
construct the reduced f -signature by successively deleting all adjacent pairs −+. If
there are any − signs in the reduced f -signature of λ, the corresponding removable
nodes are called normal nodes of [λ]. The highest normal node is called a good node
of [λ].

We say that λ is Kleshchev if and only if there is a sequence

λ = λ(n),λ(n − 1), . . . ,λ(0) = ∅

of multipartitions such that for each i , [λ(i − 1)] is obtained from [λ(i)] by removing
a good node. The importance of Kleshchev multipartitions lies in the fact (proved by
Ariki [1, Theorem 4.2]) that if λ is Kleshchev, then Sλ has an irreducible cosocle Dλ,
and the set {Dλ | λ a Kleshchev multipartition} is a complete set of non-isomorphic
simple Hn-modules.

We shall need a slightly stronger statement about which multipartitions are
Kleshchev.

Lemma 1.2. Suppose λ is a multipartition and f ∈ F, and suppose λ is a multipar-
tition whose Young diagram is obtained by removing all the normal nodes of residue
f from [λ]. Then λ is Kleshchev if and only if λ is.

Proof: Suppose the normal nodes are n1, . . . , nt in descending order. We define
λ(0), . . . ,λ(t) by putting λ(0) = λ, and then removing ni from [λ(i − 1)] to ob-
tain [λ(i)], for i = 1, . . . , t . Then obviously λ(t) = λ, and it is easy to check that ni

is a good node of [λ(i − 1)]. Now the result follows from [4, Proposition 1.1]. �

1.1.6 q-connected cyclotomic parameters

We say that the parameters Q1, . . . , Qr are q-connected if there exist integers ai j such
that Q j = qai j Qi for each i, j . Dipper and Mathas [3] showed that if Q1, . . . , Qr

are not q-connected, then Hn is Morita equivalent to a direct sum of tensor products
of ‘smaller’ Ariki–Koike algebras. So one typically assumes that Q1, . . . , Qr are
q-connected. We make this assumption in this paper, too; the relationship between
q-connectedness and the combinatorics of multipartitions is discussed to some extent
in [4, Section 3.1], and the reader should be able to extend this discussion to cover the
content of the current paper.

In fact, since the cyclotomic parameters of Hn may be simultaneously re-scaled
without affecting the isomorphism type of Hn , we assume that each Q j is a power
of q . So we assume that we can find an r -tuple of integers a = (a1, . . . , ar ) such that
Q j = qa j for each j ; following Yvonne [8], we call such an a a multi-charge. If e is

Springer



52 J Algebr Comb (2007) 26:47–81

finite then we may change any of the a j by adding a multiple of e, and we shall still
have Q j = qa j . If e = ∞, then we have only one possible choice of multi-charge a.

1.1.7 The abacus

Given the assumption that the cyclotomic parameters ofHn are all powers of q, we may
conveniently represent multipartitions on an abacus display. Given a multipartition
λ, choose a multi-charge a = (a1, . . . , ar ), and then for each i � 1 and each j ∈
{1, . . . , r} define the beta-number

β
j

i = λ
( j)
i + a j − i.

It is easy to see that the set B j = {β j
1 , β

j
2 , . . . } is a set containing exactly a j + N

integers greater than or equal to −N , for sufficiently large N . On the other hand, any
such set is the set of beta-numbers (defined using the integer a j ) of some partition.

Now we take an abacus with e vertical runners, which we label 0, . . . , e − 1 from
left to right if e < ∞, or . . . ,−1, 0, +1, . . . from left to right if e = ∞. On runner
l, we mark positions corresponding to the integers congruent to l modulo e; if e is
finite, then we mark these in increasing order down the runner. Now we place a bead
at position β

j
i , for each i . The resulting configuration is called an abacus display for

λ( j); the abacus displays for λ(1), . . . , λ(r ) together form an abacus display for λ.

Example. Suppose that r = 3, a = (−1, 0, 1) and λ = ((1), ∅, (12)). Then we have

B1 = {. . . , −5, −4, −3, −1},
B2 = {. . . , −3, −2, −1},
B3 = {. . . , −4, −3, −2, 0, 1}.

So an abacus display for λ when e = 4 is
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An abacus display for a partition is useful for visualising the removal of rim e-hooks.
If e is finite and we are given an abacus display for λ( j), then [λ( j)] has a rim e-hook
if and only if there is a beta-number β

j
i ∈ B j such that β

j
i − e /∈ B j . Furthermore,

removing a rim e-hook corresponds to reducing such a beta-number by e. On the
abacus, this corresponds to sliding a bead up one position on its runner. So if e is
finite, then λ( j) is an e-core if and only if every bead in the abacus display has a bead
immediately above it.
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We now introduce some notation which does not appear in [4]. Suppose e is finite,
λ is a multicore, and we have chosen a multi-charge a = (a1, . . . , ar ). We construct
the corresponding abacus display for λ as above, and then for each i ∈ Z/eZ and
1 � j � r we define ba

i j (λ) to be the position of the lowest bead on runner i of

the abacus for λ( j); that is, the largest element of B j congruent to i modulo e. It is
clear that if we choose a different multi-charge a′ = a + ex for x ∈ Zr , then we have
ba′

i j (λ) = ba
i j (λ) + ex j .

We need an alternative notation if e = ∞; in this case, we examine the unique
abacus display for λ, and we set Bi j (λ) = 1 if i ∈ B j , and 0 otherwise.

Now for i ∈ Z/eZ and j, k ∈ {1, . . . , r}, we define

γ
jk

i (λ) =
⎧⎨⎩

1

e

(
ba

i j (λ) − ba
ik(λ)

)
(e < ∞)

Bi j (λ) − Bik(λ) (e = ∞)

.

γ
jk

i (λ) may then be regarded as the difference in height between the lowest bead on
runner i of the abacus display for λ( j) and the lowest bead on runner i of the abacus
display for λ(k). If e is finite, then the integers γ

jk
i (λ) depend on the choice of a, but

the differences

γ
jk

il (λ) = γ
jk

i (λ) − γ
jk

l (λ)

do not; these integers will be very helpful in weight calculations.

1.1.8 The weight and hub of a multipartition

Now we can give the main definition from [4]. Given a multipartition λ, we define
c f (λ) for f ∈ F as above, and put

w(λ) =
r∑

j=1

cQ j (λ) − 1

2

∑
f ∈F

(c f (λ) − cq f (λ))2.

w(λ) is a non-negative integer, called the weight of λ.
It is also useful to define the hub of a multipartition. For each i ∈ Z/eZ and j ∈

{1, . . . , r}, define

δ
j
i (λ) = (the number of removable nodes of [λ( j)] of residue qi )

− (the number of addable nodes of [λ( j)] of residue qi ),

and put δi (λ) = ∑r
j=1 δ

j
i (λ). The collection (δi (λ) | i ∈ Z/eZ) of integers is called

the hub of λ.
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1.1.9 Notation

Many of the combinatorial notions we have defined, such as the residue of a node,
Kleshchev multipartitions and weight, depend upon the parameters q, Q1, . . . , Qr .
Occasionally, we shall be considering Ariki–Koike algebras with different parameters,
and we shall use terms such as (q; Q1, . . . , Qr )-residue, (q; Q1, . . . , Qr )-Kleshchev
and (q; Q1, . . . , Qr )-weight when there is a danger of ambiguity.

1.2 Background results from [4]

Here we summarise some results from [4], mostly concerning weight calculations.
In the published version of [4], two of the results we cite (namely, Propositions 3.2
and 4.6) refer to blocks rather than combinatorial blocks, and as such their proofs are
incorrect. However, the statements and proofs given there are correct if blocks are
instead interpreted as combinatorial blocks (and if the last sentence of the proof of
Proposition 3.2 is ignored). (The proof of Lemma 3.3 also uses arguments from the
proof of Proposition 3.2, but is nonetheless valid.)

1.2.1 The weight and hub of a multipartition determine the combinatorial block
in which it lies

An important feature of the weight and hub of a multipartition is that they are invariants
of the combinatorial block containingλ, and in fact determine this combinatorial block.

Proposition 1.3 ([4] Proposition 3.2 & Lemma 3.3). Supposeλ is a multipartition of
n and μ is a multipartition of m. Then:

1. if λ and μ have the same hub, then m ≡ n (mod e), and

w(λ) − w(μ) = r
n − m

e
;

2. if n = m, then λ and μ lie in the same combinatorial block of Hn if and only if they
have the same hub.

In view of this result, we may define the hub of a combinatorial block B to be the
hub of any multipartition λ in B, and we write δi (B) = δi (λ).

1.2.2 Calculating weight from the abacus

In [4], it is shown how to compute the weight of a multipartition efficiently from an
abacus display. We summarise the relevant results here.

Proposition 1.4 ([4] Corollary 3.4). Suppose e is finite, that λ and μ are multi-
partitions, and that [μ] is obtained from [λ] by removing a rim e-hook. Then
w(μ) = w(λ) − r .
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Proposition 1.5 ([4] Proposition 3.5). Suppose λ is a multicore, and for each 1 �
j < k � r let w jk(λ) denote the (q; Q j , Qk)-weight of (λ( j), λ(k)). Then

w(λ) =
∑

1� j<k�r

w jk(λ).

Now suppose that λ is a multicore, that i, l ∈ Z/eZ and that j, k ∈ {1, . . . , r}. If
e = ∞, suppose additionally that γ

jk
il (λ) = 2. Define s jk

il (λ) to be the multicore whose
abacus display is obtained by moving a bead from runner i to runner l on the abacus
for λ( j), and moving a bead from runner l to runner i on the abacus for λ(k).

Proposition 1.6. s jk
il (λ) has the same hub as λ, and

w
(
s jk

il (λ)
) = w(λ) − r

(
γ

jk
il (λ) − 2

)
.

Proof: Write μ = s jk
il (λ). Restricting attention to the j th and kth components and

calculating using the parameters q, Q j , Qk , we see that γ 12
il ((λ( j), λ(k))) = γ

jk
il (λ) and

(μ( j), μ(k)) = s12
il ((λ( j), λ(k))). So by [4, Lemma 3.7] (which is simply the case r = 2

of the present proposition), we have

w
((

μ( j), μ(k)
)) = w

((
λ( j), λ(k)

)) − 2
(
γ

jk
il (λ) − 2

)
.

Using Proposition 1.3(1) and noting that (μ( j), μ(k)) and (λ( j), λ(k)) have the same hub,
we obtain ∣∣(μ( j), μ(k)

)∣∣ = ∣∣(λ( j), λ(k)
)∣∣ − e

(
γ

jk
il (λ) − 2

)
.

λ and μ are identical in all components other than the j th and kth, and so

|μ| = |λ| − e
(
γ

jk
il (λ) − 2

)
,

and since λ and μ have the same hub, we may apply Proposition 1.3(1) again to get
the result. �

Proposition 1.7. Suppose that r = 2, and that λ is a multicore.

1. If γ 12
il (λ) � 2 for all i, l, then w(λ) is the smaller of the two integers∣∣{i

∣∣γ 12
il (λ) = 2 for some l

}∣∣
and ∣∣{l

∣∣γ 12
il (λ) = 2 for some i

}∣∣.
2. w(λ) = 0 if and only if γ 12

il (λ) � 1 for all i, l.
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Proof: (1) is simply [4, Proposition 3.8]. For (2), the result follows from (1) if we
have γ 12

il � 2 for all i, l. On the other hand, if we have γ 12
il � 3 for some i, l, then the

multipartition s12
il (λ) has strictly smaller weight than λ, by Proposition 1.6. �

1.2.3 Scopes isometries

Here we introduce maps between combinatorial blocks of Ariki–Koike algebras anal-
ogous to those defined by Scopes [7] between blocks of symmetric groups. Suppose
k ∈ Z/eZ, and let φk : Z → Z be the map given by

φk(x) =

⎧⎪⎨⎪⎩
x + 1 (x ≡ k − 1 (mod e))

x − 1 (x ≡ k (mod e))

x (otherwise)

.

If e is finite, then φk descends to give a map from Z/eZ to Z/eZ; we abuse notation
by referring to this map as φk also.

Now suppose λ is a multipartition, and that we have chosen an abacus display
for λ. For each j , we define a partition �k(λ( j)) by replacing each beta-number β

with φk(β). Equivalently, we simultaneously remove all removable nodes of residue
qk from [λ( j)] and add all addable nodes of residue qk . We define �k(λ) to be the
multipartition (�k(λ(1)), . . . , �k(λ(r ))).

Proposition 1.8 ([4] Proposition 4.6). If B is a combinatorial block of Hn, then there
is a combinatorial block C of Hn−δk (B) such that �k gives a self-inverse bijection from
the set of multipartitions in B to the set of multipartitions in C.

We write �k(B) for the combinatorial block C described in Proposition 1.8. Now
we note that in a special case, �k preserves the Kleshchev property.

Lemma 1.9. Suppose λ is a multipartition, that k ∈ Z/eZ, and that [λ] has no
addable nodes of residue qk. Then λ is Kleshchev if and only if �k(λ) is.

Proof: Since [λ] has no addable nodes of residue qk , every removable node of residue
qk is normal, and [�k(λ)] is obtained by removing all these nodes. Now the result
follows from Lemma 1.2. �

2 Some combinatorial results

In this section, we prove three combinatorial results which we shall need later. It is
possible that these may be of independent interest. It is also possible that they are
already known; the author has not searched the literature in great detail.
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2.1 A combinatorial lemma concerning the weight lattice of type Ar−1

First we prove a result which will be essential for the proof of the main result of
Section 3, but we phrase it here in terms of the weight lattice for a root system of type
Ar−1, where r � 1. (If r = 1, then this lattice consists of a single point, but the results
all hold without modification.)

We consider the weight lattice Lr of type Ar−1: let Zr denote the free Z-module
with basis {e1, . . . , er }, and define

Lr = Zr

Z(e1 + · · · + er )
.

We write elements of Lr simply by writing representative elements in Zr .
We adopt the following conventions concerning multisets. If T is a set and X a

multiset, we say that X is a multisubset of T if every element of X is an element of T .
If X contains several copies of some t ∈ T , we write X \ {t} to mean X with one of
these copies removed. Similarly, we write X ∪ {t} to mean X with a copy of t added
(so ∪ really means ‘disjoint union’). We want to consider finite multisubsets of Lr .
First we introduce an equivalence relation on the set of such multisets.

Suppose X is a multisubset of Lr , and that there are x, y ∈ X and k, l ∈ {1, . . . , r}
such that

(xk − xl) − (yk − yl) = 2.

Define the multiset Y by

Y = X \ {x, y} ∪ {x − ek + el , y + ek − el},

and say that X ≡ Y whenever X and Y are related in this way. Clearly ≡ is a symmetric
relation; we extend it transitively and reflexively to obtain an equivalence relation.

Now say that a multisubset X of Lr is tight if

(xk − xl) − (yk − yl) � 2

for all x, y ∈ X and all 1 � k, l � r , and that X is ultra-tight if every multiset in the
same ≡-class as X is tight.

Example. Let r = 3. Then the set

X = {(0, 0, 0), (2, 0, 0), (0, −2, 0)}

is tight, but it is not ultra-tight, since

X ≡ Y = {(0, 0, 0), (2, −1, 1), (0, −1, −1)}.

Our aim is to classify ultra-tight multisets.
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Lemma 2.1. Given s ∈ Lr , define

N (s) = {x ∈ Lr | xk − xl � sk − sl + 1 ∀ k, l ∈ {1, . . . , r}}.

Then any multisubset of N (s) is ultra-tight.

Proof: Clearly any multisubset of N (s) is tight, so it will suffice to prove that if X is
a multisubset of N (s) and X ≡ Y , then Y is also a multisubset of N (s). To see this, it
is enough to observe the following: if x, y ∈ N (s) such that (xk − xl) − (yk − yl) = 2
for some k, l, then x − ek + el and y + ek − el also lie in N (s). �

What we want to do is prove a converse to the above lemma, i.e. that every ultra-
tight multisubset of Lr is a multisubset of N (s) for some s. In fact, we write the result
slightly differently. Given a1, . . . , ar−1 ∈ Z and k, l ∈ {1, . . . , r}, we write

akl = (ak + ak+1 + · · · + ar−1) − (al + al+1 + · · · + ar−1),

where we regard ak + · · · + ar−1 as 0 if k = r .

Proposition 2.2. If X is an ultra-tight multisubset of Lr , then there are a1, . . . , ar−1 ∈
Z such that

xk − xl � akl + 1

for all x ∈ X and k, l ∈ {1, . . . , r}.

It is clear that this result shows that an ultra-tight multiset X is a multisubset of
N (s), where sk = (ak + ak+1 + · · · + ar−1) for each k. The inductive step used to
prove Proposition 2.2 is the following.

Proposition 2.3. Suppose X is an ultra-tight multisubset of Lr and 1 � t � r − 1,
and that there exist a1, . . . , ar−1 ∈ Z such that for any x ∈ X we have

xk − xl � akl + 1

whenever k, l ∈ {1, . . . , r − 1} or k, l ∈ {t + 1, . . . , r}. Then there exist
â1, . . . , âr−1 ∈ Z such that for any x ∈ X we have

xk − xl � âkl + 1

whenever k, l ∈ {1, . . . , r − 1} or k, l ∈ {t, . . . , r}.

Proof: The case where t = r − 1 is easy: since X is tight, we can choose âr−1 such that
âr−1 − 1 � xr−1 − xr � âr−1 + 1 for all x , while for 1 � i � r − 2 we set âi = ai .
So we suppose t < r − 1.
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If a1, . . . , ar−1 will not serve as â1, . . . , âr−1, then there is some x ∈ X such that
either

xt − xr � atr + 2

or

xt − xr � atr − 2.

We assume the first of these inequalities; the proof in the other case is similar.
Given the inequalities we already have, we find that for any u ∈ {t + 1, . . . , r − 1}

we have

xt − xr = (xt − xu) + (xu − xr )

� atu + 1 + aur + 1

= atr + 2.

So we must have xt − xu = atu + 1 and xu − xr = aur + 1, and this implies that

xt − xt+1 = at + 1,

xt+1 − xt+2 = at+1,

xt+2 − xt+3 = at+2,

...

xr−2 − xr−1 = ar−2,

xr−1 − xr = ar−1 + 1.

Note also that for any y ∈ X we have

atr � yt − yr � atr + 2; (†)

the first inequality follows because xt − xr = atr + 2 and X is tight, and the second
inequality follows because by assumption yt − yr−1 � at(r−1) + 1 and yr−1 − yr �
a(r−1)r + 1.

Now we draw a directed graph G on the set {1, . . . , r}, with an arrow from k to l
if and only if there is some y ∈ X with

yk − yl = akl − 1.

We consider two cases.

Case 1. G does not contain a directed path from t to r
Under this assumption, the set {1, . . . , r} can be partitioned into two sets T and
R such that t ∈ T , r ∈ R, and there is no arrow k → l for any k ∈ T, l ∈ R. (For
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example, we could let T be the set of all k such that there is a directed path from t
to k.) We define

âk =

⎧⎪⎨⎪⎩
ak + 1 (k ∈ T, k + 1 ∈ R)

ak − 1 (k ∈ R, k + 1 ∈ T )

ak (otherwise)

.

Then we have

âkl =

⎧⎪⎨⎪⎩
akl + 1 (k ∈ T, l ∈ R)

akl − 1 (k ∈ R, l ∈ T )

akl (otherwise)

,

and we claim that yk − yl � âkl for any y ∈ X whenever k, l ∈ {1, . . . , r − 1} or
k, l ∈ {t, . . . , r}. Since t ∈ T and r ∈ R we have âtr = atr + 1, and so by (†) we
have

âtr − 1 � yt − yr � âtr + 1,

which deals with cases where {k, l} = {t, r}. For the other cases, the result is imme-
diate if âkl � akl . If âkl = akl − 1, then k ∈ R and l ∈ T . The fact that there are no
arrows from T to R implies that yl − yk � alk , so that

yk − yl � akl = âkl + 1.

Case 2. G does contain a directed path from t to r
Under this assumption, we’ll show that X is not ultra-tight, which gives a contradic-
tion. First we note the following.

Claim. For any k < r , we have xk − xr � akr + 1.

Proof: This comes directly from above if k � t (and in fact we have xt − xr =
atr + 2). For k < t , we have

xk − xr = (xk − xt ) + (xt − xr )

� akt − 1 + atr + 2

= akr + 1.

Now suppose

t = k1 → k2 → · · · → ks = r
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is a path from t to r of minimal length in G, and choose y1, . . . , ys−1 ∈ X such that

ym
km

− ym
km+1

= akm km+1
− 1

for all m. We also define xm = x − ekm+1
+ er for m = 1, . . . , s − 1. We want to

prove the following statements by (downwards) induction, for m = s − 1, . . . , 1:

Am : there is a multiset Ym containing y1, . . . , ym and xm such that Ym ≡ X ;

Bm :
(
xm

km
− xm

km+1

) − (
ym

km
− ym

km+1

) = 2;

Cm : xkm − xr = akmr + 1.

If we can prove statement C1, we shall have a contradiction.
As−1 is immediate—we can take Ys−1 = X . Now we prove Bs−1 and Cs−1; by the
claim, we have(

xks−1
− xr

) − (
ys−1

ks−1
− ys−1

r

)
�

(
aks−1r + 1

) − (
aks−1r − 1

) = 2;

we must have equality since X is tight, which gives Bs−1. Since ys−1
ks−1

− ys−1
r =

aks−1r − 1, we have Cs−1 too.
Now we perform our inductive steps: first, we show that for m � s − 2 the statements
Am+1 and Bm+1 imply Am : we construct the set Ym by taking the multiset Ym+1,
removing xm+1 and ym+1, and adding xm and ym+1 + ekm+1

− ekm+2
. By Bm+1, we

have Ym ≡ Ym+1 ≡ X .
Next we show that for m � s − 2 statements Am and Cm+1 imply Bm and Cm . Since
the chosen path has minimal length, k1, . . . , ks are pairwise distinct; in particular,
(er )km = (er )km+1

= 0. Hence

xm
km

− xm
km+1

= (
x − ekm+1

+ er
)

km
− (

x − ekm+1
+ er

)
km+1

= (
xkm − xr

) − (
xkm+1

− xr
) + 1

�
(
akmr + 1

) − (
akm+1r + 1

) + 1

(by the claim and statement Cm+1)

= akm km+1
+ 1

= ym
km

− ym
km+1

+ 2;

since Ym is tight, we must have equality, which implies Bm and Cm .
So by induction statement C1 is true, which is a contradiction. �

Proof of Proposition 2.2. We proceed by induction on r , with the case r = 1 being
trivial. For r > 1, let X be an ultra-tight multisubset of Lr . The natural projection
Zr → Zr−1 induces a map Lr → Lr−1, and we write X for the image of X under this
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map. It is clear that X is ultra-tight, so by induction we can find integers a1, . . . , ar−2

such that

xk − xl � akl + 1

for all x ∈ X and k, l ∈ {1, . . . , r − 1}.
We let ar−1 be an arbitrary integer, and then we apply Proposition 2.3 for t =

r − 1, . . . , 1 in turn. �

2.2 Results concerning integer matrices

Now we prove two simple results concerning manipulation of integer matrices.
Suppose A and B are both e × r matrices with integer entries; for consistency with
later sections, we index the rows with the integers 0, . . . , e − 1 and the columns with
the integers 1, . . . , r .

First we suppose that all the entries of A and B are 0 or 1. We write A ↔ B if there
are indices k, l, m, n with k �= l and m �= n such that

ai j − bi j = δikδ jm + δilδ jn − δikδ jn − δilδ jm

for all i, j , where we employ the Kronecker delta. That is, A and B differ by the
addition of a 2 × 2 submatrix of the form ( +1 −1

−1 +1 ) or ( −1 +1
+1 −1 ).

Clearly if A ↔ B, then A and B have the same row sums and column sums. Our
result is a converse to this statement.

Proposition 2.4. Suppose A and B are e × r matrices with all entries equal to 0 or
1 and with the same row and column sums, that is,

ai1 + · · · + air = bi1 + · · · + bir

for all i ∈ {0, . . . , e − 1} and

a0 j + · · · + a(e−1) j = b0 j + · · · + b(e−1) j

for all j ∈ {1, . . . , r}. Then there is a sequence A = A0, . . . , As = B of matrices with
all entries equal to 0 or 1 such that A0 ↔ A1 ↔ · · · ↔ As.

Proof: It suffices to assume that A �= B and to find a matrix A′ such that either

1. A ↔ A′ and there are fewer positions where A′ and B differ than positions where
A and B differ, or

2. A′ ↔ B and there are fewer positions where A and A′ differ than positions where
A and B differ.

Put C = A − B. Then the entries of C are all equal to −1, 0 or +1, and the row
and column sums of C are all zero. For t > 0, we define a chain of length t to be a
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sequence (i0, j0), . . . , (it−1, jt−1) such that

cik jk = +1, cik jk+1
= −1

for all k = 0, . . . , t − 1, where we interpret it as i0. We can certainly find a chain of
some length, by the following procedure:� since C is non-zero, we can find g0, h0 such that cg0h0

= +1;� suppose we have gk, hk with cgk hk = +1; since the gk th row sum of C is zero, we
can find hk+1 such that cgk hk+1

= −1;� suppose we have gk, hk+1 with cgk hk+1
= −1; since the hk+1th column sum of C is

zero, we can find gk+1 such that cgk+1hk+1
= +1.

This enables us to construct a sequence g0, h0, g1, h1, . . . such that cgk hk = +1 and
cgk hk+1

= −1 for each k; since there are only finitely many entries in C , the sequence
(g0, h0), (g1, h1), . . . must repeat at some point, say (gv, hv) = (gu, hu) with v > u.
Defining t = v − u and ik = gu+k , jk = hu+k for k = 0, . . . , t − 1 gives a chain.

Take a chain (i0, j0), . . . , (it−1, jt−1) of length t with t > 0 minimal, and consider
the position (i0, jt−1).� If ai0, jt−1

= 0, then we define

a′
i j = ai j + δi i0

δ j jt−1
+ δi it−1

δ j j0 − δi i0
δ j j0 − δi it−1

δ j jt−1
.

Certainly i0 �= it−1 and j0 �= jt−1, so the matrix A′ = (a′
i j ) satisfies the conditions

of (1) above.� If bi0, jt−1
= 1, then we define

a′
i j = bi j − δi i0

δ j jt−1
− δi it−1

δ j j0 + δi i0
δ j j0 + δi it−1

δ j jt−1
.

Now A′ = (a′
i j ) satisfies the conditions of (2) above.� Otherwise, we have ci0, jt−1

= +1; but this implies that t � 3 and that

((i0, jt−1), (i1, j1), (i2, j2), . . . , (it−2, jt−2))

is a chain of length t − 1; contradiction.
�

Now we prove our second result concerning integer matrices.

Proposition 2.5. Suppose A and B are e × r matrices satisfying the following con-
ditions:� there exist integers α0, . . . , αe−1 and β0, . . . , βe−1 with

αi ≡ βi ≡ i (mod e)
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for each i and with

ai j ∈ {αi , αi + e}, bi j ∈ {βi , βi + e}

for all i, j ;� there is a constant K such that

bi1 + · · · + bir = ai1 + · · · + air + K

for all i ;� for any j ,

b0 j + · · · + b(e−1) j ≡ a0 j + · · · + a(e−1) j (mod e2).

Then there is an e × r integer matrix C with entries constant down each column and
such that:�

bi j + ci j ∈ {αi , αi + e}

for each i, j ;�
(bi1 + ci1) + · · · + (bir + cir ) = ai1 + · · · + air

for i = 0, . . . , e − 1;�
(b0 j + c0 j ) + · · · + (

b(e−1) j + c(e−1) j
) = a0 j + · · · + a(e−1) j

for j = 1, . . . , r .

Proof: By reducing βi by e if necessary, we assume that for each i there is at least
one j with bi j = βi + e. Then we have

rβi + e � bi1+ · · · + bir � rβi + re

as well as

rαi � ai1+ · · · + air � rαi + re

so that
K − re

r
� βi − αi � K + (r − 1)e

r
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for each i . Since βi − αi is divisible by e, this means that the integers βi − αi can only
take two different values (which differ by e) as i varies. By adding a constant multiple
of e to all entries of B and to each βi , we may assume that βi − αi = 0 or e for all i ,
and equals 0 for at least one value of i .

Now we examine the column sums of A and B. We write a∗ j for the sum a0 j

+ · · · + a(e−1) j and similarly b∗ j . We have

b∗ j − a∗ j ≡ 0 (mod e2)

and

e−1∑
i=0

(βi − αi ) − e2 � b∗ j − a∗ j �
e−1∑
i=0

(βi − αi ) + e2

and by the above assumptions we have 0 �
∑e−1

i=0 (βi − αi ) � e(e − 1), so that b∗ j −
a∗ j can only equal 0 or ±e2. But if b∗ j − a∗ j = −e2, then we must have bi j = βi for
all i , and we may increase each bi j by e without affecting earlier hypotheses to get
b∗ j − a∗ j = 0. So we assume that b∗ j − a∗ j equals 0 or e2 for each j . By re-ordering
rows and columns, we may assume that βi − αi = e for i = 0, . . . , l − 1 only, and
that b∗ j − a∗ j = e2 for j = 1, . . . , k only. Note that we then have K = ek. We would
like to define

ci j =
{

−e ( j � k)

0 ( j > k)
;

this would give the correct row and column sums for B + C , and would give bi j + ci j =
αi or αi + e, except possibly when i � l and j � k. So it suffices to show that we
have bi j = βi + e when i � l and j � k. For any 1 � j � k, we have(

b0 j + · · · + b(l−1) j
) − (

a0 j + · · · + a(l−1) j
) = e2 + (

al j + · · · + a(e−1) j
)

− (
bl j + · · · + b(e−1) j

)
� e2 + (

αl + · · · + αe−1)

− ((βl + e) + · · · + (βe−1 + e)
)

= el. (∗)

with equality only if bi j = βi + e for i = l, . . . , e − 1. On the other hand, for any
0 � i � l − 1 we have

(bi1 + · · · + bik) − (ai1 + · · · + aik) = ek + (
ai(k+1) + · · · + air

)
− (

bi(k+1) + · · · + bir
)

� ek + (r − k)(αi + e) − (r − k)βi

= ek. (∗∗)
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And so (summing (∗) over j and (∗∗) over i) we get

ekl �
l−1∑
i=0

k∑
j=1

(bi j − ai j ) � ekl.

So equality holds in (∗) and (∗∗), and in particular we have bi j = βi + e for i � l
and j � k, as required. �

3 Core blocks

In this section, we introduce core blocks of Ariki–Koike algebras, giving several
equivalent definitions. For the rest of this paper q, Q1, . . . , Qr are fixed, and we
assume that there are integers a1, . . . , ar such that Qi = qai for each i . Let Hn be the
Ariki–Koike algebra with these parameters.

3.1 The definition of a core block

In order to introduce core blocks, we need to consider separately the case e = ∞; in
this case, every combinatorial block of Hn will be a core block. For the case where e
is finite, the definition is given by the equivalent statements in the following theorem.
It is straightforward to check that these statements, appropriately re-phrased, all hold
for every combinatorial block of Hn when e = ∞, with property (4) following from
Proposition 1.3.

Theorem 3.1. Suppose that e is finite, and that λ is a multipartition lying in a com-
binatorial block B of Hn. The following are equivalent.

1. λ is a multicore, and there exist a multi-charge a = (a1, . . . , ar ) and integers
α0, . . . , αe−1 such that for each i, j , ba

i j (λ) equals either αi or αi + e.
2. λ is a multicore, and there exist a multi-charge a = (a1, . . . , ar ) and integers

s1, . . . , sr such that

ba
i j (λ) − ba

ik(λ)

e
� s j − sk + 1

for all i ∈ {0, . . . , e − 1}, j, k ∈ {1, . . . , r}.
3. λ is a multicore, and for any multi-charge a = (a1, . . . , ar ) there exist integers

s1, . . . , sr such that

ba
i j (λ) − ba

ik(λ)

e
� s j − sk + 1

for all i ∈ {0, . . . , e − 1}, j, k ∈ {1, . . . , r}.
4. There is no combinatorial block of any Hm with the same hub as B and smaller

weight.
5. Every multipartition in B is a multicore.
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Now we can make the main definition of this paper.

Definition. Suppose B is a combinatorial block of Hn . Then we say that B is a core
block if and only if either� e is finite and the equivalent conditions of Theorem 3.1 are satisfied for any multi-

partition λ in B, or� e = ∞.

Example. Suppose r = 2, e = 4, Q1 = q3, Q2 = 1, and consider the combinatorial
block B of H8 containing the bipartition ((4, 12), (2)). Choosing the multi-charge
(3, 4), we get an abacus display

0 1 2 3

...
...

...
...� � � �� � � �� ��

...
...

...
...

0 1 2 3

...
...

...
...� � � �� � � �� � ��

...
...

...
...

for this bipartition. So we may take (α0, α1, α2, α3) = (−4, 1, 2, −1), and we find that
B is a core block. The other bipartitions in B are ((3, 12), (3)) and (∅, (32, 12)), with
abacus displays

0 1 2 3

...
...

...
...� � � �� � � �� ��

...
...

...
...

0 1 2 3

...
...

...
...� � � �� � � �� � ��

...
...

...
...

,

0 1 2 3

...
...

...
...� � � �� � � �� � �

...
...

...
...

0 1 2 3

...
...

...
...� � � �� � � �� �� �

...
...

...
...

.

In order to prove Theorem 3.1, we need some preliminary results. First we observe
that from the integers ba

i j (λ) we may recover the multi-charge a and the hub of λ. The
proof of the following lemma is straightforward—for (1), recall that for sufficiently
large N , the number of beta-numbers for λ( j) which are greater than or equal to −N
is a j + N .

Lemma 3.2. Suppose e is finite, that λ is a multicore and that a = (a1, . . . , ar ) is a
multi-charge. Then

1.

a j =
∑e−1

i=0 ba
i j (λ)

e
+ e + 1

2

for j = 1, . . . , r;
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2.

δi (λ) =
∑r

j=1 ba
i j (λ) − ∑r

j=1 ba
(i−1) j (λ) − r

e

for i = 0, . . . , e − 1 (reading the subscript i − 1 modulo e).

Proposition 3.3. Suppose e is finite, and λ and μ are multicores with the same hub.
Suppose that:� there exist a multi-charge a = (a1, . . . , ar ) and integers α0, . . . , αe−1 such that

ba
i j (λ) ∈ {αi , αi + e}, for each i, j ;� there exist a multi-charge b = (b1, . . . , br ) and integers β0, . . . , βe−1 such that

bb
i j (μ) ∈ {βi , βi + e}, for each i, j .

Then ba
i j (μ) ∈ {αi , αi + e}, for each i, j .

Proof: Let A be the matrix with entries ai j = ba
i j (λ), and let B be the matrix with en-

tries bi j = bb
i j (μ). We wish to use Proposition 2.5, so we need to verify the hypotheses

of that proposition concerning the row and column sums of A and B.
Take j ∈ {1, . . . , r}. The fact that a j and b j are congruent modulo e means that∑e−1

i=0 ai j

e
+ e + 1

2
≡

∑e−1
i=0 bi j

e
+ e + 1

2
(mod e)

by Lemma 3.2(1), so that

e−1∑
i=0

ai j ≡
e−1∑
i=0

bi j (mod e2).

Now we look at row sums. Using Lemma 3.2(2), the fact that λ and μ have the
same hub implies that

r∑
j=1

ai j −
r∑

j=1

a(i−1) j =
r∑

j=1

bi j −
r∑

j=1

b(i−1) j

for all i , so that there is a constant K such that

r∑
j=1

bi j =
r∑

j=1

ai j + K

for all i .
By Proposition 2.5 there is a matrix C with entries constant down each column

such that any entry in row i of B + C is equal to αi or αi + e, and such that B + C
has the same row sums and the same column sums as A. Clearly the entries of C are
all divisible by e, i.e. there is a vector c = (c1, . . . , cr ) ∈ Zr such that the entries of
any row of C are (ec1, . . . , ecr ). So (by the comment following the definition of the
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integers ba
i j (λ)) the (i, j) entry of B + C is b

b+ec
i j (μ), for each i, j . But the fact that

the column sums of B + C equal the column sums of A means that we have b j +
ec j = a j for each j , by Lemma 3.2(1). Hence ba

i j (μ) = (B + C)i j = αi or αi + e, for
any i, j . �

Proposition 3.4. Suppose e is finite, and λ and μ are multipartitions satisfying the
hypotheses of Proposition 3.3. Then w(λ) = w(μ).

Proof: Let a = (a1, . . . , ar ) and α0, . . . , αe−1 be as in Proposition 3.3, and write
ai j = ba

i j (λ) and bi j = ba
i j (μ). Then ai j and bi j each equal either αi or αi + e, for each

i, j . Furthermore, the row and column sums of A = (ai j ) equal the corresponding row
and column sums of B = (bi j ). Define

âi j = ai j − αi

e
, b̂i j = bi j − αi

e
.

Then the matrices Â = (âi j ) and B̂ = (b̂i j ) are 0–1 matrices with corresponding row
and column sums equal. So by Proposition 2.4 there is a sequence Â = A0 ↔ A1 ↔
· · · ↔ At = B̂. If we let âk

i j be the i, j entry of Ak and define ak
i j = eâk

i j + αi , then we

have ak
i j = ba

i j (λk) for some multipartition λk (with λ0 = λ, λt = μ). Moreover, the

relation Ak−1 ↔ Ak means that λk = s jm
il (λk−1) for some i, l, j, m with γ

jm
il (λk−1) =

2. By Proposition 1.6, this means that w(λk) = w(λk−1). �

Proof of Theorem 3.1. Trivially (3)⇒(2), and it is easy to see that (2)⇒(3): sup-
pose the sequence (s1, . . . , sr ) satisfies the given condition for the multi-charge
a = (a1, . . . , ar ). Then for any other multi-charge a′ = (a1 + ex1, . . . , ar + exr ), the
sequence (s1 + x1, . . . , sr + xr ) will work.

The preceding paragraph also shows that we may choose the multi-charge a and
the integers s1, . . . , sr in (2) in such a way that s1 = · · · = sr . If we do this, and
then set αi = min{ba

i j | j ∈ {1, . . . , r}} for each i , then the inequalities for (1) will
follow. So (2)⇒(1). To show that (1)⇒(2), we use the chosen multi-charge and put
s1 = · · · = sr = 0.

It is also straightforward to show that (4) and (5) are equivalent. Suppose first that
(4) is false, so there is a multipartition μ in a combinatorial block C with the same hub
as B but smaller weight. By Proposition 1.3, we have w(C) = w(B) − ar for some
positive integer a. If we add a rim ae-hook to the Young diagram of μ, then we shall
have a multipartition in B, by Proposition 1.4. This is not a multicore, and so (5) is
false. So (5)⇒(4). To show that (4)⇒(5) is even easier: if there is a multipartition
μ in B which is not a multicore, then we may remove a rim e-hook from the Young
diagram of μ to get a multipartition with the same hub and smaller weight.

The hard part, then, is to show that (1), (2) and (3) are equivalent to (4) and (5).
First we show that (4)⇒(2), for which we use Proposition 2.2. Certainly (4) im-
plies that λ is a multicore, because otherwise we could remove a rim e-hook from
[λ] to get a multipartition of lower weight. Choose a multi-charge a = (a1, . . . , ar ),
and then for i = 0, . . . , e − 1 define x (i) = (ba

i1(λ), . . . , ba
ir (λ)). Let X (λ) be the

multiset {x (0), . . . , x (e−1)}, regarded as a multisubset of the weight lattice Lr . It is
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straightforward to see that the condition that X (λ) is tight is exactly the condition
γ

jk
il (λ) � 2 for all i, l, j, k. Moreover, if Y is a multiset such that Y ≡ X (λ), then

Y = X (μ) for some multipartition μ ∈ B: for the condition

(xk − xl) − (yk − yl) = 2

for some x, y ∈ X is exactly the condition γ kl
i j (λ) = 2 for some i, j ; and replacing

x and y with x − ek + el and y + ek − el corresponds to replacing λ with skl
i j (λ),

which has the same weight as λ and so lies in the same combinatorial block. Now it
easy to see that condition (4) implies that X (λ) is ultra-tight: for if there is Y ≡ X (λ)
which is not tight, then we have Y = X (μ) for some μ in B, and γ kl

i j (μ) � 3 for some

i, j, k, l. But then the multipartition skl
i j (μ) has the same hub as μ but smaller weight,

contradicting (4). So if we assume (4), then X (λ) is ultra-tight, and so by Proposition
2.2 and the comment following it, we find that X (λ) is a multisubset of N (s) for some
s, and this gives condition (2).

Finally, we show that (1)⇒(4). Suppose (1) holds for λ, with ba
i j (λ) = αi or αi + e

for each i, j . Suppose also that (4) is false, and take a multipartitionμ in a combinatorial
block C of minimal weight having the same hub as λ. Then condition (4) holds for
μ and C , and so (since (4)⇒(2)⇒(1)) we can find b = (b1, . . . , br ) and integers
β0, . . . , βe−1 such that bb

i j (μ) = βi or βi + e for each i, j . By Proposition 3.4 we have
w(μ) = w(λ), which is a contradiction. �

3.2 The multipartitions in a core block

Theorem 3.1 gives us several equivalent conditions for a multipartition to lie in a core
block. As a corollary, we can give a simple description of all the multipartitions lying
in a given core block; this will be useful later. We give separate statements for the
cases e < ∞ and e = ∞; this is an artefact of our notation, and the results are really
the same in substance.

Proposition 3.5. Suppose that e is finite, that λ is a multipartition lying in a core
block B, and that a and α0, . . . , αe−1 are chosen so that ba

i j (λ) ∈ {αi , αi + e} for each
i, j . Then the multipartitions lying in B are precisely those multicores μ for which:� ba

i j (μ) ∈ {αi , αi + e} for each i, j ;� for each i ,

r∑
j=1

ba
i j (μ) =

r∑
j=1

ba
i j (λ),

i.e. the number of ba
i j (μ) equal to αi + e equals the number of ba

i j (λ) equal to αi + e.

Proof: First suppose that μ does satisfy the given conditions. The second condition
implies thatλ andμ have the same hub, by Lemma 3.2(2). Now Proposition 3.4 shows
that they have the same weight, and so they lie in the same combinatorial block.
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Conversely, suppose μ lies in B. Then μ lies in a core block and has the same hub
as λ, so the hypotheses of Proposition 3.3 are satisfied. So we have ba

i j (μ) = αi or
αi + e for each i, j ; furthermore, the fact that λ and μ have the same hub means that
there is a constant K such that

r∑
j=1

ba
i j (μ) =

r∑
j=1

ba
i j (λ) + K

for each i . By Lemma 3.2(1) we have

r∑
j=1

e−1∑
i=0

ba
i j (μ) =

r∑
j=1

e−1∑
i=0

ba
i j (λ),

which gives K = 0. �

Proposition 3.6. Suppose e = ∞, and that λ is a multipartition lying in a combina-
torial block B of Hn. Then the multipartitions in B are precisely those multipartitions
μ for which

r∑
j=1

Bi j (μ) =
r∑

j=1

Bi j (λ)

for all i ∈ Z.

Proof: Note that the sums Bi∗(λ) = Bi1(λ) + · · · + Bir (λ) determine the hub of λ:
we have

δi (λ) = Bi∗(λ) − B(i−1)∗(λ).

Also, the hub ofλ determines the Bi∗(λ): from the above equation, the δi (λ) determine
these sums up to addition of a constant, and we have Bi∗(λ) = 0 for sufficiently large
i .

So μ satisfies the condition given in the proposition if and only if μ has the same
hub as λ; but this happens if and only if μ lies in the same combinatorial block as λ,
by Proposition 1.3. �

3.3 Elementary moves

In this section, we study the relationship between two multipartitions lying in the same
combinatorial block of Hn . In the case of Iwahori–Hecke algebras of type A, we know
that, given two partitions λ and μ lying in the same combinatorial block, we may get
from one to the other by a sequence of simple ‘moves’, i.e. addition and removal of
rim e-hooks in the Young diagram. Furthermore, by first removing and then adding
rim hooks, we may guarantee that the intermediate partitions have weight equal to
or less than the common weight of λ and μ. We want to prove a similar result for
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multipartitions: that one may get from a multipartition to any other multipartition in
the same combinatorial block by a sequence of ‘elementary moves’, without going
via any multipartition of higher weight. Given that there are combinatorial blocks
containing more than one partition when e = ∞, it is clear that addition and removal
of rim e-hooks will not suffice; we must use the functions skl

i j as well.
Recall that the hub and weight of a combinatorial block B of Hn determine B.

Moreover, condition (4) of Theorem 3.1 implies that, of the combinatorial blocks with
a given hub, only the one with the smallest weight is a core block. So if λ is a partition
with this hub, then we may speak of this core block as the core block of λ. It seems
that this is as close as we can get to a generalisation of the core of a partition.

Given multipartitions λ and μ, we write λ � μ (and say that μ is obtained from
λ by an elementary move) if one of the following holds:� [μ] is obtained from [λ] by adding or removing a rim e-hook;� λ and μ are both multicores, and μ = skl

i j (λ) for some i, j, k, l.

Proposition 3.7. Supposeλ andμ are multipartitions lying in the same combinatorial
block of Hn. Then there is a sequence λ = λ0, . . . ,λt = μ of multipartitions such
that λi−1 � λi for each i , and w(λi ) � w(λ) for each i .

Proof: We prove two statements:

1. if λ is a multipartition not lying in a core block of Hn , then there is a sequence
λ = λ0, . . . ,λt of multipartitions such that λi−1 � λi for each i , w(λi ) � w(λ)
for each i and w(λt ) < w(λ);

2. if λ and μ are multipartitions lying in a core block B, then there is a sequence
λ = λ0, . . . ,λt = μ of multipartitions in B such that λi−1 � λi for each i .

It is clear that these two statements will imply the theorem: using (1) repeatedly, we can
get from λ and μ to two multipartitions in the core block of λ and μ using elementary
moves, without passing multipartitions of higher weight. We can then pass between
these two multipartitions using (2).

First we prove (1); the assertion that λ does not lie in a core block means that
e < ∞. If λ is not a multicore, then we may take t = 1, removing a rim e-hook from
the Young diagram of λ to get λ1. So we suppose that λ is a multicore, and we use
Proposition 2.2. As in the proof that (4)⇒(2) in Theorem 3.1, we choose a multi-charge
a, and for each i = 0, . . . , e − 1 we set x (i) = (ba

i1, . . . , b
a
ir ). We regard the multiset

X (λ) = {x (0), . . . , x (e−1)} as a multisubset of the weight lattice Lr , and we assert that
X (λ) is not ultra-tight. Indeed, if X (λ) is ultra-tight, then Proposition 2.2 implies that
X (λ) is a multisubset of N (s) for some s; but then condition (2) of Theorem 3.1 holds,
contradicting the fact that λ does not lie in a core block. So there is some Y ≡ X (λ)
which is not tight. We have Y = X (μ) for some μ in the same combinatorial block
as λ, and the definition of the relation ≡ means that we can get from λ to μ via a
sequence λ = λ0 � · · · � λt−1 = μ of elementary moves, with all the λi in the
same combinatorial block as λ. The fact that X (μ) is not tight means that γ kl

i j (μ) � 3

for some i, j, k, l. Now we define λt = skl
i j (μ), and we have w(λt ) < w(λ).

Now we prove (2), supposing first that e is finite. Obviously λ and μ are both
multicores, and by Proposition 3.5 we may choose a and integers α0, . . . , αe−1 so that
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ba
i j (λ) equals αi or αi + e and ba

i j (μ) equals αi or αi + e for each i, j . Now we let
λ0, . . . ,λt be as in the proof of Proposition 3.4.

If e = ∞, then (2) follows by a very similar application of Proposition 2.4, using
the integers Bi j (λ). �

Example. Suppose r = 2, e = 4, Q1 = q3, Q2 = 1, λ = ((3, 13), (3, 13)) and μ =
((4, 23), (2)). Then it is easily checked that λ and μ lie in the same combinatorial
block of H12. The core block of λ and of μ is the combinatorial block B of H8

described in the last example. We have λ � λ1 � λ2 � μ, where

λ = ((3, 13), (3, 13)) =

0 1 2 3

...
...

...
...� � � �� � �� � ��

...
...

...
...

0 1 2 3

...
...

...
...� � � �� � � �� � ��

...
...

...
...

,

λ1 = (∅, (32, 12)) =

0 1 2 3

...
...

...
...� � � �� � � �� � �

...
...

...
...

0 1 2 3

...
...

...
...� � � �� � � �� �� �

...
...

...
...

,

λ2 = ((4, 12), (2)) =

0 1 2 3

...
...

...
...� � � �� � � �� ��

...
...

...
...

0 1 2 3

...
...

...
...� � � �� � � �� � ��

...
...

...
...

,

μ = ((4, 23), (2)) =

0 1 2 3

...
...

...
...� � � �� � �� � ��

...
...

...
...

0 1 2 3

...
...

...
...� � � �� � � �� � ��

...
...

...
...

.

3.4 Every core block occurs for e = ∞

Suppose B is a core block of Hn , with e < ∞, and suppose that F contains elements
of infinite multiplicative order. The aim of this section is to show that there is an Ariki–
Koike algebra Ȟn over the same field, with parameters q̌, Q̌1, . . . , Q̌r , with q̌ being
of infinite order, such that B is also a combinatorial block of Ȟn . By this we mean that
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there is a combinatorial block B̌ of Ȟn containing exactly the same multipartitions as B,
that the (q̌; Q̌1, . . . , Q̌r )-weight of B̌ equals the (q; Q1, . . . , Qr )-weight of B and that a
multipartitionλ in B is (q; Q1, . . . , Qr )-Kleshchev if and only if it is (q̌; Q̌1, . . . , Q̌r )-
Kleshchev. It is tempting to speculate that B and B̌ have similar structure—perhaps
even that they are isomorphic, with compatible isomorphisms between corresponding
Specht modules—but we leave such issues for a future paper, and restrict attention to
combinatorics here.

Suppose, then, that e is finite and that B is a core block of Hn . We choose and
fix a multi-charge a = (a1, . . . , ar ) and integers α0, . . . , αe−1 such that ba

i j (λ) equals
αi or αi + e for each multipartition λ in B and each i, j . Let q̌ be any element of F
of infinite order, and let Q̌ j = q̌a j for j = 1, . . . , r. Now let Ȟn be the Ariki–Koike
algebra over F with parameters q̌, Q̌1, . . . , Q̌r .

Proposition 3.8. There is a combinatorial block B̌ of Ȟn such that a multipartition
λ lies in B̌ if and only if it lies in B.

Proof: It is clear from the definition of residues that if two multipartitions lie in the
same combinatorial block of Ȟn , then they lie in the same combinatorial block of Hn .
So we need to show that all the multipartitions in B lie in the same combinatorial
block of Ȟn . Given λ in B, define

bk =
∑r

j=1 ba
k j (λ) − rαk

e
;

that is, bk is the number of j for which ba
k j (λ) equals αk + e. Now construct the abacus

display for λ with e = ∞ using the multi-charge a, and for each integer l let dl be the
number of j ∈ {1, . . . , r} for which Bk j (λ) = 1. It is straightforward the express the
dl in terms of the bk ; for any integer k, we write k for its image in Z/eZ. Since ba

k j (λ)
equals αk or αk + e for each k, j , we have

dl =

⎧⎪⎨⎪⎩
r (l < αl + e)

bl (l = αl + e)

0 (l > αl + e)

.

Now the (q̌; Q̌1, . . . , Q̌r )-hub of λ is given by δi (λ) = di − di−1; by Proposition 3.5,
the integers bk do not depend on the choice of λ in B, and so the (q̌; Q̌1, . . . , Q̌r )-hub
(δi (λ))i∈Z does not depend on the choice of λ either. So by Proposition 1.3(2), all the
multipartitions in B lie in the same combinatorial block of Ȟn . �

Given combinatorial blocks B and B̌ as above, we say that B̌ is a lift of B.
Clearly, choosing a lift corresponds to choosing an appropriate multi-charge. It is
a straightforward exercise, using Propositions 1.5 and 1.7, to show that B and B̌
have the same weight. In fact, more is true: if λ is any multipartition in B and if
1 � j1 < · · · < js � r , then the (q; Q j1 , . . . , Q js )-weight of (λ( j1), . . . , λ( js )) equals
its (q̌; Q̌ j1 , . . . , Q̌ js )-weight.

Now we turn our attention to Kleshchev multipartitions.
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Proposition 3.9. Suppose B is a core block of Hn, that B̌ is a lift of B and that
λ is a multipartition in B. Then λ is (q; Q1, . . . , Qr )-Kleshchev if and only if it is
(q̌; Q̌1, . . . , Q̌r )-Kleshchev.

Before we can prove Proposition 3.9, we need to examine the relationship between
lifts and Scopes pairs. Suppose B is a core block of Hn , and that B̌ is a lift of B. Given
k ∈ Z/eZ, define C = �k(B) as in Section 1.2.3, and define

Č =
( ∏

l∈Z | l=k

�l

)
(B̌).

We remark that this is a valid definition: any two of the values l ∈ Z for which l = k
differ by at least e, and so the corresponding operators �l commute; moreover, only
finitely many of these operators have a non-trivial effect on B̌.

Lemma 3.10. Suppose B, B̌, C, Č are as above. Then C is a core block of Hn−δk (B),
and Č is a lift of C.

Proof: It is clear that the set of multipartitions in Č equals the set of multipartitions
in C : these are precisely the multipartitions which may be obtained from some multi-
partition in B by simultaneously adding all addable nodes of (q; Q1, . . . , Qr )-residue
qk and removing all removable nodes of (q; Q1, . . . , Qr )-residue qk . So in order to
prove that C is a core block with Č as a lift, it suffices to show that there are integers
β0, . . . , βe−1 such that for each multipartition μ in C we have ba

i j (μ) ∈ {βi , βi + e}
for each i, j .

Each μ is of the form �k(λ) for some λ in B, and so we have

ba
i j (μ) = ba

i j

(
�k(λ)

)
= φk

(
ba

φk (i) j (λ)
)

∈ {
φk

(
αφk (i)

)
, φk

(
αφk (i) + e

)}
= {

φk
(
αφk (i)

)
, φk

(
αφk (i)

) + e
}
.

�

Now we set up the inductive step of the proof of Proposition 3.9.

Lemma 3.11. Suppose B, B̌, C, Č are as above, and that the integers α0, . . . , αe−1

can be chosen in such a way that αk > αk−1 + 1. If λ is a multipartition in B, then:� λ is (q; Q1, . . . , Qr )-Kleshchev if and only if �k(λ) is (q; Q1, . . . , Qr )-Kleshchev;� λ is (q̌; Q̌1, . . . , Q̌r )-Kleshchev if and only if �k(λ) is (q̌; Q̌1, . . . , Q̌r )-Kleshchev.

Proof: The fact that αk > αk−1 + 1 means that ba
k j (λ) � ba

(k−1) j (λ) + 1 for each j ,

which implies thatλhas no addable nodes of (q; Q1, . . . , Qr )-residue qk , and therefore
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no addable nodes of (q̌; Q̌1, . . . , Q̌r )-residue q̌l for any l with l = k. The result now
follows by Lemma 1.9. �

The initial case of Proposition 3.9 deals with a particular type of core block, which
we now describe. If B and B̌ are as above, then we define Bi∗(B̌) to be the sum
Bi1(λ) + · · · + Bir (λ) for any λ in B̌; by Proposition 3.6, these integers do not
depend on the choice of λ. Now we say that B̌ is e-flat if, for every i, l with i − l � e
we have either Bi∗(B̌) = 0 or Bl∗(B̌) = r .

Lemma 3.12. Suppose B̌ is e-flat, and that λ is a multipartition in B̌. Then there
is some i ∈ Z such that the (q̌; Q̌1, . . . , Q̌r )-residue of any node in [λ] lies in
{q̌ i+1, q̌ i+2, . . . , q̌ i+e−1}, and the (q̌; Q̌1, . . . , Q̌r )-residue of any addable node of
[λ] lies in {q̌ i , q̌ i+1, . . . , q̌ i+e}.

Proof: The e-flat condition means that there is some i ∈ Z (independent of λ) such
that

Bk j (λ) =
{

1 (if k < i)

0 (if k � i + e)

for any j, k. Furthermore, the definition of the abacus display guarantees that among
Bi j , B(i+1) j , . . . ,B(i+e−1) j there are exactly (a j − i) 1s and (e − a j + i) 0s. Hence
[λ( j)] ⊆ [ν( j)], where ν( j) is the partition with abacus display

�� � i
−

3
i
−

2
i
−

1
i i
+

1 �� � e
−

a
j
+

2
i
−

2

e
−

a
j
+

2
i
−

1

e
−

a
j
+

2
i

e
−

a
j
+

2
i
+

1

�� � i
+

e
−

2
i
+

e
−

1
i
+

e
i
+

e
+

1
i
+

e
+

2

�� �
�� � � � � �� � � � �� � � � �� �

,

i.e. the partition ((e − a j + i)a j −i ). So every node of [λ( j)] is a node of [ν( j)], and every
addable node of [λ( j)] is a node or an addable node of [ν( j)], and it is straightforward
to check the conditions on the residues of the nodes and addable nodes of [ν( j)]. �

Corollary 3.13. Suppose B and B̌ are as above, with B̌ e-flat, and thatλ is a multipar-
tition in B̌. Suppose thatμ is a multipartition with [μ] ⊆ [λ], and that n is a removable
node of [μ]. Then n is (q; Q1, . . . , Qr )-good if and only if it is (q̌; Q̌1, . . . , Q̌r )-good.

Proof: The (q̌; Q̌1, . . . , Q̌r )-residue of n is q̌ i+d for some 1 � d � e − 1, and so its
(q; Q1, . . . , Qr )-residue is qi+d . The lemma implies that a node or an addable node
of [μ] has (q̌; Q̌1, . . . , Q̌r )-residue q̌ i+d if and only if it has (q; Q1, . . . , Qr )-residue
qi+d . So the q̌ i+d -signature of [μ] coincides with the qi+d -signature. �
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Proof of Proposition 3.9. We proceed by induction on n. First we suppose that B̌ is
e-flat. Then the result follows easily using Corollary 3.13: if we are given

λ = λ(n),λ(n − 1), . . . ,λ(0) = ∅

where λ(i − 1) is obtained from λ(i) by removing a node n(i), then n(i) is a
(q; Q1, . . . , Qr )-good node of λ(i) if and only if it is a (q̌; Q̌1, . . . , Q̌r )-good node.
Hence λ is (q; Q1, . . . , Qr )-Kleshchev if and only if it is (q̌; Q̌1, . . . , Q̌r )-Kleshchev.

Next we suppose that B̌ is not e-flat. So there exist i, l with i − l � e such that
Bl∗(B) < r and Bi∗(B) > 0. Since B is a core block, i is less than or equal to αı + e,
and l is at least αl + e. The first consequence of this is that i and l cannot be congruent
modulo e, so the interval {l + 1, l + 2, . . . , ı} in Z/eZ contains fewer than e elements;
the second consequence is that

αı − αl � (i − e) − (l − e) � e.

Hence (since αk − αk−1 ≡ 1 (mod e) for every k) there must be some k ∈ {l + 1, l +
2, . . . , ı} such that αk exceeds αk−1 by at least e + 1. Now we define C = �k(B) as
above, and the result follows by induction, using Lemma 3.10 and Lemma 3.11. �

3.5 Decomposable blocks

In this section, we examine a special type of combinatorial block of Hn which may be
‘decomposed’ into smaller combinatorial blocks. That is, for a combinatorial block B
satisfying certain conditions, we can decompose B as a ‘product’ of B J and BK , where
(J, K ) is a partition of the set {1, . . . , r}, B J is a combinatorial block of an Ariki–
Koike algebra defined using the parameters (Q j | j ∈ J ), and BK is a combinatorial
block of an Ariki–Koike algebra defined using (Qk | k ∈ K ). Our results are purely
combinatorial, but it seems likely that there is algebraic structure underlying them—
a bold conjecture might be that B is Morita equivalent to the tensor product B J ⊗
BK . This would in some sense be a generalisation of the main result of Dipper and
Mathas [3].

Suppose B is a combinatorial block of Hn , and λ is a multipartition in B. For
any distinct j, k in {1, . . . , r}, we examine the bipartition (λ( j), λ(k)), and calculate
its weight using the parameters q, Q j , Qk . If J is a non-empty proper subset of
{1, . . . , r} and K = {1, . . . , r} \ J , then we say that λ is (J, K )-decomposable if
w((λ( j), λ(k))) = 0 for all j ∈ J, k ∈ K .

Proposition 3.14. Suppose λ is (J, K )-decomposable. Then every multipartition in
B is (J, K )-decomposable, and B is a core block of Hn.

This reduces to the following lemma.

Lemma 3.15. Suppose λ is (J, K )-decomposable, and μ is a multipartition in the
same combinatorial block which is obtained from λ by an elementary move. Then μ
is (J, K )-decomposable.
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Proof: First we note that λ must be a multicore; for if λ( j) is not an e-core, and
(say) j ∈ J , then w((λ( j), λ(k))) � 2 for any k ∈ K . μ is of the form shh′

gg′ (λ) for some
g, g′ ∈ Z/eZ and h, h′ ∈ {1, . . . , r}. The fact that μ has the same weight as λ means
that γ hh′

gg′ (λ) = 2. This implies that h, h′ both lie in J or both lie in K ; we assume

without loss that they both lie in J . We must prove that γ
jk

il (μ) � 1 for all i, l ∈ Z/eZ,
j ∈ J and k ∈ K . The definition of μ shows that

γ
jk

i (μ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

γ
jk

i (λ) − 1 (i = g, j = h)

γ
jk

i (λ) + 1 (i = g, j = h′)
γ

jk
i (λ) + 1 (i = g′, j = h)

γ
jk

i (λ) − 1 (i = g′, j = h′)
γ

jk
i (λ) (otherwise).

So (since by assumption γ
jk

il (λ) � 1) we may assume that j = h or j = h′. In fact, we
assume j = h; the proof in the other case is similar. We may also assume that i = g′

or l = g, or both.
Now we have

2 = γ hh′
gg′ (λ) = γ hk

gg′ (λ) + γ kh′
gg′ (λ)

with γ hk
gg′ (λ), γ kh′

gg′ (λ) � 1. So in fact γ hk
gg′ (λ) = γ kh′

gg′ (λ) = 1. Hence

γ hk
g′g(μ) = γ hk

g′g(λ) + 2 = 1.

Also, if l �= g, g′, then

γ hk
g′l (μ) = γ hk

g′l (λ) + 1

= γ hk
g′g(λ) + γ hk

gl (λ) + 1

� −1 + 1 + 1

= 1,

and if i �= g, g′ then

γ hk
ig (μ) = γ hk

ig (λ) + 1

= γ hk
g′g(λ) + γ hk

ig′ (λ) + 1

� −1 + 1 + 1

= 1.

�
Proof of Proposition 3.14. Suppose μ is another multipartition in B. By Proposition
3.7, we can get from λ to μ via a sequence λ = λ0 � · · · � λt = μ of elementary
moves, with w(λ1) � w(λ). We prove that μ is (J, K )-decomposable by induction
on t , with the case t = 0 being vacuous.
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As noted in the proof of Lemma 3.15,λmust be a multicore, so thatλ1 is a multicore
of the form shh′

gg′ (λ) for some g, g′ ∈ Z/eZ and h, h′ ∈ {1, . . . , r}. The fact that λ is

(J, K )-decomposable means that γ
jk

gg′ (λ) � 1 whenever j ∈ J and k ∈ K , and this

implies that γ hh′
gg′ (λ) � 2 for any h, h′ ∈ {1, . . . , r}. So by Proposition 1.6, we have

w(λ1) � w(λ), and so w(λ1) = w(λ). λ and λ1 have the same hub, and hence λ1 lies
in B. By Lemma 3.15 λ1 is (J, K )-decomposable, and so by induction (replacing λ
with λ1) μ is (J, K )-decomposable.

So every multipartition in B is (J, K )-decomposable. This implies in particular that
every multipartition in B is a multicore, and so B is a core block. �

In view of Proposition 3.14, we may say that a (core) block B is (J, K )-
decomposable, meaning that any multipartition in B is (J, K )-decomposable. By the
comments concerning weight following the proof of Proposition 3.8, if B is (J, K )-
decomposable and e < ∞, then a lift of B is also (J, K )-decomposable. The aim
of the rest of this section is to describe the set of multipartitions in a decomposable
combinatorial block, and to describe which of them are Kleshchev.

Suppose that λ is (J, K )-decomposable, and suppose that J = { j1 < · · · < js},
K = {k1 < · · · < kt }. LetλJ be the multipartition (λ( j1), . . . , λ( js )) with s components.
For any p, letHJ

p be the Ariki–Koike algebra with parameters q, Q j1 , . . . , Q js . Define

λK and HK
p similarly. We abuse notation by regarding a node of [λ] as a node of [λJ ]

or [λK ] in the obvious way, and when we speak of the residue of a node of [λJ ],
we calculate this using the parameters q, Q j1 , . . . , Q js (so that the residue will be the
same as that of the corresponding node of [λ]).

Proposition 3.16. If B is a (J, K )-decomposable combinatorial block, containing
multipartitions λ and μ, then:� |λJ | = |μJ |;� λJ and μJ lie in the same combinatorial block of HJ

|λJ |;� λK and μK lie in the same combinatorial block of HK
|λK |.

Proof: Using Proposition 3.7 and the fact that B is a core block, it suffices to consider
the case where we can get from λ to μ by an elementary move. So assume we have

μ = s j j ′
il (λ) for some j, j ′ ∈ {1, . . . , r} and i, l ∈ Z/eZ with γ

j j ′
il (λ) = 2. This implies

that j and k lie both in J or both in K ; we assume without loss that they both lie in J ,
say j = jc, j ′ = jd . Then we have:� μJ = scd

il (λJ ), with γ cd
il (λJ ) = 2;� μK = λK .

The result follows.
�

We see from Proposition 3.16 that a (J, K )-decomposable combinatorial block B of
Hn defines an integer p ∈ {0, . . . , n} and a pair (B J , BK ), where B J is a combinatorial
block of HJ

p and BK is a combinatorial block of HK
n−p; each multipartition λ in B

corresponds to a pair of multipartitions λJ in B J and λK in BK . We say that B
decomposes as the product of B J and BK .

We now consider which multipartitions in B are Kleshchev.
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Proposition 3.17. Suppose B is a (J, K )-decomposable combinatorial block of Hn,
and that λ is a multipartition in B. Then λ is Kleshchev if and only if both λJ and λK

are Kleshchev.

Proof: Given i ∈ Z/eZ, define λ by removing all the normal nodes of residue qi

from [λ], and define λJ and λK similarly. Then it suffices to prove that

λ is (J, K )-decomposable, with λ
J = λJ and λ

K = λK . (‡)

For if λ is Kleshchev, then (assuming n > 0) there is some i such that [λ] has at least
one normal node of residue qi , and λ is Kleshchev by Lemma 1.2. By induction and

(‡), λJ and λK are Kleshchev, and so λJ and λK are Kleshchev. Conversely, if λJ and
λK are Kleshchev, then (assuming n > 0 and without loss of generality that |λJ | > 0)

there is some i such that [λJ ] has at least one normal node of residue qi , and λJ and

λK are Kleshchev. By induction this gives λ Kleshchev, so that λ is Kleshchev.
So we prove (‡). If λ has no removable nodes of residue qi , then (‡) is trivial, so

we assume that there is at least one removable node. The fact that γ
jk

i(i−1)(λ) � 1 for

j ∈ J and k ∈ K means that if [λJ ] has removable nodes of residue qi , then [λK ] has
no addable nodes of this residue; similarly, if [λK ] has removable nodes of residue qi ,
then [λJ ] has no addable nodes of this residue. So we are (without loss of generality)
in one of two situations:

1. [λ] has no addable nodes of residue qi ;
2. [λK ] has neither addable nor removable nodes of residue qi .

In case 1, λ is obtained simply by removing all removable nodes of residue qi from

[λ], and similarly for λJ and λK . So it is clear that λ
J = λJ and λ

K = λK , and we
just need to show that λ is (J, K )-decomposable. Since [λ] has no addable nodes of

residue qi , we have λ
( j) = �i (λ

( j)) for each j ∈ {1, . . . , r}. And so for j ∈ J , k ∈ K ,
l, m ∈ Z/eZ we have

γ
jk

lm (λ) = γ
jk

φi (l)φi (m)(λ) � 1,

as required.
In case 2, the qi -signature of λ coincides with that of λJ ; in particular, the normal

nodes of [λ] of residue qi are precisely the normal nodes of [λJ ] of residue qi . So

again it is clear that λ
J = λJ and λ

K = λK , and we need to show that λ is (J, K )-
decomposable. Assuming we are not in case 1, [λJ ] has at least one addable node of

residue qi . The fact that γ
j j ′

i(i−1) � 2 for all j, j ′ implies that each [λ( j)] has at most

one removable node of residue qi . Hence for each j ∈ J , we have either λ
( j) = λ( j) or

λ
( j) = �i (λ

( j)). The fact that [λK ] has neither addable nor removable nodes of residue

qi means that λ
(k) = λ(k) = �i (λ

(k)) for k ∈ K . Hence for j ∈ J , k ∈ K , l, m ∈ Z/eZ
we have either

γ
jk

lm (λ) = γ
jk

lm (λ)
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or

γ
jk

lm (λ) = γ
jk

φi (l)φi (m)(λ);

in either case, γ
jk

lm (λ) � 1. �
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