Blocking sets in $P G\left(2, q^{\boldsymbol{n}}\right)$ from cones of $P G(2 n, q)$

Francesco Mazzocca • Olga Polverino

Received: 11 February 2004 / Accepted: 12 December 2005
© Springer Science + Business Media, LLC 2006

Abstract

Let Ω and \bar{B} be a subset of $\Sigma=P G(2 n-1, q)$ and a subset of $P G(2 n, q)$ respectively, with $\Sigma \subset P G(2 n, q)$ and $\bar{B} \not \subset \Sigma$. Denote by K the cone of vertex Ω and base \bar{B} and consider the point set B defined by

$$
B=(K \backslash \Sigma) \cup\{X \in \mathcal{S}: X \cap K \neq \emptyset\}
$$

in the André, Bruck-Bose representation of $P G\left(2, q^{n}\right)$ in $P G(2 n, q)$ associated to a regular spread \mathcal{S} of $P G(2 n-1, q)$. We are interested in finding conditions on \bar{B} and Ω in order to force the set B to be a minimal blocking set in $P G\left(2, q^{n}\right)$. Our interest is motivated by the following observation. Assume a Property α of the pair (Ω, \bar{B}) forces B to turn out a minimal blocking set. Then one can try to find new classes of minimal blocking sets working with the list of all known pairs (Ω, \bar{B}) with Property α. With this in mind, we deal with the problem in the case Ω is a subspace of $P G(2 n-1, q)$ and \bar{B} a blocking set in a subspace of $P G(2 n, q)$; both in a mutually suitable position. We achieve, in this way, new classes and new sizes of minimal blocking sets in $P G\left(2, q^{n}\right)$, generalizing the main constructions of [14]. For example, for $q=3^{h}$, we get large blocking sets of size $q^{n+2}+1(n \geq 5)$ and of size greater than $q^{n+2}+q^{n-6}(n \geq 6)$. As an application, a characterization of Buekenhout-Metz unitals in $P G\left(2, q^{2 k}\right)$ is also given.

Keywords Blocking set • André/Bruck-Bose representation • Ovoid.

[^0]
1. Introduction

Let Π_{n} be a finite projective plane of order n. A blocking set in Π_{n} is a point set B intersecting every line and containing none. A point P of B is said to be essential if $B \backslash\{P\}$ is not a blocking set, that is if a line ℓ exists meeting B exactly in the point P. When all points of B are essential no proper subset of B is a blocking set and B is called minimal.

Let $P G(n, q)$ denote the n-dimensional projective space associated with the ($n+$ 1)-dimensional vector space $G F(q)^{n+1}$ over the finite field $G F(q)$ with q elements, q a prime power. Following [12], a blocking set in $P G(n, q), n \geq 2$, is defined as a point set B intersecting every hyperplane and containing no line. A blocking set B is called linear [21] if its points are defined by the non-zero vectors of a $G F\left(q^{\prime}\right)$-vector subspace of $G F(q)^{n+1}, G F\left(q^{\prime}\right)$ a subfield of $G F(q)$; in this case B is also called $G F\left(q^{\prime}\right)$-linear. We say that B is planar if it is contained in a plane of $P G(n, q)$. The definitions of essential point and minimal blocking set extend to blocking sets in $P G(n, q)$ in an obvious way. When a subspace S of $P G(n, q)$ meets a blocking set B just in one point P we say that S is tangent to B in P. It is straightforward to see that if $P G(h, q)$ is an h-dimensional subspace of $P G(n, q), h>1$, then every blocking set in $P G(h, q)$ is also a blocking set in $P G(n, q)$ and the minimality is preserved.

The above two definitions of blocking set clearly coincide for the Desarguesian plane $P G(2, q)$.

Unfortunately, in the literature the terminology on blocking sets is not yet standard, so sometimes it is possible to find slight variations of the previous definitions. For example, in [6] a blocking set in $P G(n, q)$ is defined as a $1-$ blocking set. For information on main results and recent developments of blocking set theory we refer the reader to $[5,8,17,22,23,27,29,30]$. Here we will survey just some results useful in what follows.

Baer subplanes and unitals in $P G\left(2, q^{2}\right)$ and ovoids in $P G(3, q)$ are examples of extremal minimal blocking sets, in the sense of the following two classical results.

Result 1.1. (A. A. Bruen [8] for $n=2$; A. Beutelspacher [6] for $n>2$) The minimum possible size of a blocking set B in a finite projective space $P G(n, q), n \geq 2$, is $q+\sqrt{q}+1$ and the bound is attained if, and only if, q is a square and B is a Baer subplane.

Actually, the result of A. A. Bruen [8] was proved also for non Desarguesian finite projective planes. Moreover, in the case $n>2$, improved results have been obtained by L.Storme and Sz.Weiner [26].

Result 1.2. (A. A. Bruen and J. A. Thas, [12]) Let B be a minimal blocking set in $P G(n, q)$. Then we have the following:

- if $n=2,|B| \leq q \sqrt{q}+1$ and equality holds if, and only if, q is a square and B is a unital;
- if $n=3,|B| \leq q^{2}+1$ and equality holds if, and only if, B is an ovoid;
- if $n \geq 4,|B|<\sqrt{q^{n+1}}+1$.

For $n>2$, the notion of ovoid can be generalized to a non singular quadric Q of $P G(n, q)$: it is a point set of Q meeting every generator of Q exactly once. Ovoids of a non singular parabolic quadric $Q(2 n, q)$ in $P G(2 n, q)$ contain exactly $q^{n}+1$ points and it is known that they exist if and only if, $n=2,3$ (A. Gunawardena and E. Moorhouse [15] for q odd, J. A. Thas [32] for q even). Very deep results about ovoids of $Q(2 n, q)$ have been recently obtained by S . Ball in [2] and by S. Ball, P. Govaerts and L. Storme in [3]. In particular, these authors prove that an ovoid O of $Q(2 n, q), n=2,3$, meets every elliptic quadric $Q^{-}(2 n-1, q)$ on $Q(2 n, q)$ in $1 \bmod p$ points, p the characteristic of $G F(q)(s e e ~[2]$ for $n=2$, [3] for $n=3$). So, since every hyperplane of $P G(2 n, q)$ intersecting $Q(2 n, q)$ not in a $Q^{-}(2 n-1, q)$ has some points on O, the following useful result on blocking set can be stated.

Result 1.3. Every ovoid of a non singular parabolic quadric $Q(2 n, q)$ of $P G(2 n, q)$, $n=2,3$, is a minimal blocking set in $P G(2 n, q)$.

Minimal blocking sets in $P G(2, q)$ of size less than $3(q+1) / 2$ are called small and have been intensively studied by several authors; an updated survey on them with a quite complete bibliography can be found in [30, Sect. 3.1]. Here we only recall a result by A. Blokhuis [7] stating the non existence of small blocking sets in $P G(2, p)$, p a prime. Conversely, very few results are known about minimal blocking sets of $P G(n, q)$ whose order is "close" to the bounds of Result 1.2 , especially when $n>2$. These blocking sets are called large and we refer to [30, Sect. 3.4] for details. In this direction, in the case of $P G(2, q)$, new interesting results were sketched and announced by A. Gács, T.Szőnyi and Zs.Weiner in [30], but completed and appeared explicitly in [14] afterwards; among them we recall the following.

Result 1.4. (A. Cossidente, A. Gács, C. Mengyán, A. Siciliano, T. Szőnyi and Zs. Weiner, [14]) (i) In $P G\left(2, q^{n}\right)$ there are minimal blocking sets of size $q^{n+1}+1$, if $n \geq 2$, and minimal blocking sets of size $q^{n+1}+q^{n-3}+1$, if $n \geq 3$.
(ii) In $P G\left(2, q^{2}\right)$ there is a minimal blocking set for any size in the interval $[4 q \log q, q \sqrt{q}-q+2 \sqrt{q}]$.

The first part of this result is achieved by generalizing the well known construction for the Buekenhout-Metz unitals [13]. Actually, the authors prove that to some cones in $P G(2 n, q)$ with base an ovoid of $P G(3, q)$ there correspond minimal blocking sets in the André, Bruck-Bose representation of $P G\left(2, q^{n}\right)$ in $P G(2 n, q)$. The second part of the result is based on a construction that relies on a statistical argument.

In this paper, in the same spirit of Result $1.4(i)$, we introduce some more general constructions consisting of cones in $P G(2 n, q)$ of base a blocking set in a suitable subspace of $P G(2 n, q)$ such that minimal blocking sets in André, BruckBose representations of $P G\left(2, q^{n}\right)$ are achieved. In this way we can exhibit new classes and new sizes of minimal blocking sets in $P G\left(2, q^{n}\right)$. Some of these blocking sets are large and sometimes their sizes lie in the interval of Result 1.4(ii). We note that, in this last case, our constructions are purely geometrical and do not rely on statistical arguments as the corresponding ones of Result 1.4(ii). As an application of our results we give a characterization of Buekenhout-Metz unitals in
$P G\left(2, q^{2 k}\right)$, also showing how the existence of non Buekenhout-Metz unitals depends on that of a special kind of blocking sets in projective spaces. We point out that, to get new results by our constructions, we especially need examples and properties of minimal blocking sets which are not planar. As we will see in the next sections, some useful results can be found in [16] and [31]; here we only recall the following.

Result 1.5. (U. Heim, [16]) Let $q=p^{h}$ be a power of a prime p. For every integer $d>2$, there exist blocking sets in $P G(d, q)$, not contained in a hyperplane, of size $(d-1) q-$ $(d-3) q / p+1$, if $h>2$, and of size $(d-1) q-(d-3)(q+1) / 2+d-1$, if $q=p$ is an odd prime.

2. Preliminaries

Let us briefly recall the well known André, Bruck-Bose representation of the plane $P G\left(2, q^{n}\right)$. Let \mathcal{S} be a regular $(n-1)$-spread of a hyperplane $\Sigma=P G(2 n-1, q)$ in $\Sigma^{\prime}=P G(2 n, q)$. A point-line geometry $\Pi=\Pi(\mathcal{S})$, isomorphic to $P G\left(2, q^{n}\right)$, can be defined in the following way $[1,9,10]$: (i) the points are the points of $\Sigma^{\prime} \backslash \Sigma$ (affine points) and the elements of \mathcal{S}, (ii) the lines are the n-dimensional subspaces of Σ^{\prime} which intersect Σ in an element of \mathcal{S} (affine lines) and the ($n-1$)-spread \mathcal{S}, (iii) the point-line incidences are inherited from Σ^{\prime}.

The incidence structure $\Pi=\Pi(\mathcal{S})$ can also be defined without the assumption that the spread \mathcal{S} is regular and, in this case, Π is a translation plane [9]. As we are interested in Desarguesian planes, for the rest of the paper we do not care about this more general context. However, we point out that most of our results extend to finite translation planes in a very natural way.

Now let Ω and \bar{B} be a subset of Σ and a subset of Σ^{\prime} not contained in Σ, respectively. Denote by $K=K(\Omega, \bar{B})$ the cone of vertex Ω and base \bar{B}, i.e.

$$
\begin{equation*}
K=K(\Omega, \bar{B})=\bigcup_{\bar{P} \in \bar{B}}\langle\bar{P}, \Omega\rangle, \tag{1}
\end{equation*}
$$

and consider the subset $B=B(\Omega, \bar{B})$ of Π defined by

$$
\begin{equation*}
B=B(\Omega, \bar{B})=(K \backslash \Sigma) \cup\{X \in \mathcal{S}: X \cap K \neq \emptyset\} \tag{2}
\end{equation*}
$$

We are interested in finding conditions on \bar{B} and Ω in order to force the set B to be a minimal blocking set in Π. Our interest is motivated by the following observation. Assume a Property α of the pair (Ω, \bar{B}) forces B to turn out a minimal blocking set. Then one can try to find new classes of minimal blocking sets working with the list of all known pairs (Ω, \bar{B}) with Property α. With this in mind, we deal with the problem in the case Ω is a subspace of Σ and \bar{B} a minimal blocking set in a subspace of Σ^{\prime}; both in a mutually suitable position.

We point out that the notation introduced in this section will be used for the rest of the paper, even without explicitly recalling it.

3. Construction 1

Let Y be a fixed element of the spread \mathcal{S} of Σ and let Ω be a hyperplane of Y. Let Γ^{\prime} be an $(n+1)$-dimensional subspace of Σ^{\prime} such that $\Gamma^{\prime} \cap \Omega=\emptyset$ and assume that \bar{B} is a subset of Γ^{\prime} not contained in Σ. Note that, since $\Gamma^{\prime} \cap \Omega=\emptyset$, the intersection of Γ^{\prime} and Y is a point T and

$$
\begin{equation*}
\langle\bar{P}, \Omega\rangle \cap\left\langle\bar{P}^{\prime}, \Omega\right\rangle=\Omega \tag{3}
\end{equation*}
$$

for any distinct points $\bar{P}, \bar{P}^{\prime} \in \bar{B}$. Moreover, define $K=K(\Omega, \bar{B})$ and $B=B(\Omega, \bar{B})$ by (1) and (2), respectively. If $\bar{B} \cap \Sigma \subseteq Y$, the number γ of elements of \mathcal{S} distinct from Y and meeting K is 0 , otherwise $\gamma \geq q^{n-1}$. The bound $\gamma=q^{n-1}$ is attained if, and only if, $\bar{B} \cap \Sigma$ is a point not in Y. The size of B is given by

$$
\begin{equation*}
|B|=|K \backslash \Sigma|+\gamma+1=q^{n-1}|\bar{B} \backslash \Sigma|+\gamma+1 \tag{4}
\end{equation*}
$$

Proposition 3.1. B is a blocking set of the plane Π if, and only if, the following properties are fulfilled:
(i) \bar{B} meets every hyperplane of Γ^{\prime} not through T,
(ii) \bar{B} contains no hyperplane of Γ^{\prime},
(iii) \bar{B} contains no line through T,
(iv) a spread element $X \in \mathcal{S}$ exists such that $X \cap K=\emptyset$.

Proof: Let \bar{B} satisfy the four properties above. Let S_{n} be an n-dimensional subspace of Σ^{\prime} not contained in Σ and assume $S_{n} \cap \Omega=\emptyset$. Then $\operatorname{dim}\left\langle S_{n}, \Omega\right\rangle=2 n-1$ and, as a consequence, $\operatorname{dim}\left(\left\langle S_{n}, \Omega\right\rangle \cap \Gamma^{\prime}\right)=n$. This implies that there exists a point $\bar{P} \in \bar{B} \cap$ $\left\langle S_{n}, \Omega\right\rangle \cap \Gamma^{\prime}$ and hence $S_{n} \cap\langle\bar{P}, \Omega\rangle \neq \emptyset$. Moreover S_{n} is not contained in K. Actually, under this assumption, (3) implies that the n-dimensional subspace $\left\langle S_{n}, \Omega\right\rangle \cap \Gamma^{\prime}$ is contained in \bar{B}; a contradiction by (ii). In conclusion, the cone K blocks any n dimensional subspace S_{n} of Σ^{\prime} defining a line in Π not through Y and no such S_{n} is contained in it. To conclude that B is a blocking set of Π, it is enough to note that $B \cap \mathcal{S} \neq \emptyset$, as $Y \in B$, and no line of Π through Y is contained in B by (iii) and (iv).

Conversely, assume that B is a blocking set in Π and suppose that there exists an n-dimensional subspace S_{n}^{\prime} of Γ^{\prime} not through T such that $\bar{B} \cap S_{n}^{\prime}=\emptyset$. The subspace spanned by S_{n}^{\prime} and Ω is a hyperplane H of Σ^{\prime}; so $H \cap \Sigma$ is a hyperplane of Σ and must contain a unique spread element Z, which turns out to be distinct from Y. Now, if S_{n} is an n-dimensional subspace of H through Z not contained in Σ, there exists a common point P of S_{n} and K, as B is a blocking set in Π. Then P is on a line joining a point of Ω and a point \bar{P} of \bar{B} which must belong to $S_{n}^{\prime}=H \cap \Gamma^{\prime}$, a contradiction. So, \bar{B} blocks every hyperplane of Γ^{\prime} not on T. Moreover, it is straightforward to prove (iii) and (iv) and, as a consequence, $\Gamma=\Gamma^{\prime} \cap \Sigma$ is not contained in \bar{B}. Finally,
assume the existence of an n-dimensional subspace S_{n}^{\prime} other than Γ and contained in \bar{B}. As already noted, the $(2 n-1)$-dimensional subspace $S_{2 n-1}=\left\langle S_{n}^{\prime}, \Omega\right\rangle$ contains an element Z of the spread \mathcal{S}, so we can consider an n-dimensional subspace S_{n} through Z and contained in $S_{2 n-1}$. Since every point of S_{n} is on a line meeting S_{n}^{\prime} and Ω, S_{n} should be contained in K; a contradiction, as B does not contain lines of Π. It follows the validity of (ii), finishing the proof.

The minimum size of a subset \bar{B} verifying the Properties (i)-(iv) is $q+1$; in this case \bar{B} is a line of Γ^{\prime} meeting Σ in a point distinct from T and the corresponding B is a minimal blocking set of $P G\left(2, q^{n}\right)$ of size $q^{n}+q^{n-1}+1$. Actually, $q^{n}+q^{n-1}+1$ is the smallest size of a blocking set of $P G\left(2, q^{n}\right)$ of type $B(\Omega, \bar{B})$, as easily follows from Result 1.1. Moreover, it follows from (4) that, if a blocking set $B=B(\Omega, \bar{B})$ in $P G\left(2, q^{n}\right)$ has size $q^{n}+q^{n-1}+1$, then \bar{B} is a line of Γ^{\prime} meeting Σ in a point distinct from T.

Corollary 3.2. If \bar{B} is a blocking set of Γ^{\prime}, then B is a blocking set of Π.

Proof: It is enough to remark that every blocking set in Γ^{\prime} fulfills Properties (i)-(iv) of Proposition 3.1.

Proposition 3.1 has a kind of converse, in the following sense.

Proposition 3.3. Let \bar{B}^{\prime} be a subset of Σ^{\prime} not contained in Σ and disjoint from Ω. Define $K\left(\Omega, \bar{B}^{\prime}\right)$ and $B\left(\Omega, \bar{B}^{\prime}\right)$ by (1) and (2), respectively, and assume that $B\left(\Omega, \bar{B}^{\prime}\right)$ is a blocking set of Π. Then there exist an $(n+1)$-dimensional subspace Γ^{\prime} of Σ^{\prime} skew to Ω and a subset \bar{B} of Γ^{\prime} verifying Properties (i)-(iv) of Proposition 3.1 such that $B(\Omega, \bar{B})=B\left(\Omega, \bar{B}^{\prime}\right)$.

Proof: Let Γ^{\prime} be an $(n+1)$-dimensional subspace of Σ^{\prime} intersecting Y in a point $T \notin \Omega$ and define $\bar{B}=K\left(\Omega, \bar{B}^{\prime}\right) \cap \Gamma^{\prime}$. It is straightforward to see that $K(\Omega, \bar{B})=$ $K\left(\Omega, \bar{B}^{\prime}\right)$, so $B(\Omega, \bar{B})=B\left(\Omega, \bar{B}^{\prime}\right)$, concluding the proof.

Note that if \bar{B} fulfills Properties (i)-(iv) of Proposition 3.1, then $\bar{B} \cup\{T\}$ meets every hyperplane of Γ^{\prime} and, if \bar{B} contains a subset \bar{B}^{\prime} which is either a blocking set or a line, then $B\left(\Omega, \bar{B}^{\prime}\right)$ is a blocking set in $P G\left(2, q^{n}\right)$ and $B\left(\Omega, \bar{B}^{\prime}\right) \subseteq B(\Omega, \bar{B})$. So, as we are interested in minimal blocking sets and we know the structure of $B(\Omega, \bar{B})$ when \bar{B} is a line, w.l.o.g. we suppose for the rest of the section that \bar{B} is a minimal blocking set of Γ^{\prime}. Moreover, we assume that $\Gamma=\Gamma^{\prime} \cap \Sigma$ is a tangent hyperplane of \bar{B} at a point Q, i.e.

$$
\Gamma^{\prime} \cap \Sigma \cap \bar{B}=\{Q\}
$$

By Corollary 3.2, B is a blocking set of Π and, in order to check its minimality, we distinguish the following two cases in the next subsections: $Q \in Y$ and $Q \notin Y$.

3.1. Construction $1 a$

Under the assumption $Q \in Y$, i.e. $Q=T$, we have

$$
B=(K \backslash \Sigma) \cup\{Y\}
$$

and the size of B is given by

$$
\begin{equation*}
|B|=|K \backslash \Sigma|+1=q^{n-1}(|\bar{B}|-1)+1 \tag{5}
\end{equation*}
$$

By next proposition the line intersection numbers of B can be determined.

Proposition 3.4. Let S_{n} be a line of Π other than \mathcal{S}. If S_{n} contains Y and ℓ is the line $S_{n} \cap \Gamma^{\prime}$, then

$$
\begin{equation*}
\left|B \cap S_{n}\right|=q^{n-1}|(\ell \cap \bar{B}) \backslash\{Q\}|+1 \tag{6}
\end{equation*}
$$

If S_{n} does not contain Y and $S_{n}^{\prime}=\left\langle S_{n}, \Omega\right\rangle \cap \Gamma^{\prime}$, then

$$
\begin{equation*}
\left|B \cap S_{n}\right|=\left|\bar{B} \cap S_{n}^{\prime}\right| \tag{7}
\end{equation*}
$$

Moreover, Equality (7) holds for any hyperplane S_{n}^{\prime} of Γ^{\prime} not through Q and for each of the q^{n-1} lines S_{n} of Π contained in $\left\langle\Omega, S_{n}^{\prime}\right\rangle$.

Proof: Equality (6) is straightforward; so assume S_{n} is not on Y. Then

$$
B \cap S_{n}=(K \backslash \Sigma) \cap S_{n}=\bigcup_{\bar{P} \in \bar{B}}\left(\langle\bar{P}, \Omega\rangle \cap S_{n}\right)=\bigcup_{\bar{P} \in \bar{B} \cap S_{n}^{\prime}}\left(\langle\bar{P}, \Omega\rangle \cap S_{n}\right)
$$

where $S_{n}^{\prime}=\left\langle S_{n}, \Omega\right\rangle \cap \Gamma^{\prime}$. Since $\langle\bar{P}, \Omega\rangle \cap\left\langle\bar{P}^{\prime}, \Omega\right\rangle=\Omega$ for any distinct points $\bar{P}, \bar{P}^{\prime} \in$ \bar{B} and $\operatorname{dim}\left(\langle\bar{P}, \Omega\rangle \cap S_{n}\right)=0$ if $\bar{P} \in \bar{B} \cap S_{n}^{\prime}$, we obtain (7). Now assume S_{n}^{\prime} is a hyperplane of Γ^{\prime} not through Q and consider the ($2 n-2$)-subspace $H=\left\langle S_{n}^{\prime} \cap\right.$ $\Sigma, \Omega\rangle$. Since H is a hyperplane of Σ, there exists a unique element $X \in \mathcal{S}, X \neq Y$, contained in H. If S_{n} is one of the q^{n-1} lines of Π on X contained in $\left\langle S_{n}^{\prime}, \Omega\right\rangle$, then $\left\langle S_{n}, \Omega\right\rangle=\left\langle S_{n}^{\prime}, \Omega\right\rangle,\left\langle S_{n}, \Omega\right\rangle \cap \Gamma^{\prime}=S_{n}^{\prime}$ and Equality (7) follows.

The above proposition allows us to prove the minimality of B.
Proposition 3.5. B is a minimal blocking set of Π.
Proof: The line \mathcal{S} is a tangent to B at the point Y, so Y is an essential point of B. Let P be an affine point of B, i.e. $P \in K \backslash \Sigma$ and let \bar{P} be the unique point of \bar{B} such that $P \in\langle\bar{P}, \Omega\rangle$. Since \bar{B} is a minimal blocking set of Γ^{\prime}, an n dimensional subspace S_{n}^{\prime} of Γ^{\prime} exists such that $S_{n}^{\prime} \cap \bar{B}=\{\bar{P}\}$. Then, by Proposition
3.4, $\left|B \cap S_{n}\right|=1$ for each line of Π contained in $\left\langle\Omega, S_{n}^{\prime}\right\rangle$. Note that $\left\langle\Omega, S_{n}^{\prime}\right\rangle$ contains some lines of Π, since $\left\langle\Omega, S_{n}^{\prime}\right\rangle \cap \Sigma$ is a hyperplane of Σ and consequently it contains an element of the spread \mathcal{S}. On the other hand, as $P \in\left\langle\Omega, S_{n}^{\prime}\right\rangle$, there exists one line of Π through P contained in $\left\langle\Omega, S_{n}^{\prime}\right\rangle$, hence P is an essential point of B.

Construction $1 a$ generalizes the following already known constructions:

- If the base \bar{B} of the cone K is an ovoid in a 3-dimensional space contained in Γ^{\prime}, then we get the ovoidal cone construction [14], also described in [30, Section 3.4]. Note that when $n=2$, this is exactly the well known construction for the Buekenhout-Metz unitals [13].
- If the base \bar{B} of the cone K is a planar blocking set of Γ^{\prime}, then we get a construction equivalent to the Construction 2.12 as described in the comment after Proposition 3.24 of [30]. Indeed, following the notation of [30], consider the blocking set $B^{*}=B^{\prime \prime}$ obtained by Construction 2.12 in the above mentioned comment. This blocking set can be seen as a sort of "cone" in $\pi=P G\left(2, q^{h}\right)$ with vertex \bar{V}^{\prime} (a $(h-2)$-dimensional projective subspace over $G F(q)$, projection of V^{\prime} from P onto π) contained in a point \bar{R} of π (projection of the subspace R from P onto $\pi)$ and with base a minimal blocking set \bar{B} of a subplane $P G(2, q)$ of π such that $\bar{R} \cap P G(2, q)=\bar{R} \cap \bar{B}$ is a point over $G F(q)$ not belonging to \bar{V}^{\prime}. This is exactly the representation in $P G\left(2, q^{h}\right)$ of a minimal blocking set obtained by Construction $1 a$ with $n=h$, choosing as base of the cone K a minimal planar blocking set.

Moreover, the linearity is preserved, in the sense of the next proposition.
Proposition 3.6. The blocking set B is linear in $P G\left(2, q^{n}\right)$ if, and only if, \bar{B} is a linear blocking set in Γ^{\prime}.

Proof: Throughout the proof we represent $\Sigma^{\prime}, \Gamma^{\prime}$ and Ω as the projective spaces associated with the $G F(q)$-vector spaces V, U and L, respectively. Assume \bar{B} is a $G F\left(q^{\prime}\right)$-linear blocking set of Γ^{\prime}, where $G F\left(q^{\prime}\right)$ is a subfield of $G F(q)$ and $q=q^{\prime h}$. This means that the points of \bar{B} are defined by the non zero vectors of an h-dimensional vector subspace W of U over $G F\left(q^{\prime}\right)$; i.e. $\bar{B}=\{\bar{P}=\langle\mathbf{w}\rangle: \mathbf{w} \in W \backslash\{\mathbf{0}\}\}$. Now, if $P=\langle\mathbf{v}\rangle$ is a point in $K \backslash \Omega$ and $\bar{P}=\langle\mathbf{w}\rangle$ is the unique point of \bar{B} such that $P \in\langle\bar{P}, \Omega\rangle$, then we can write $\mathbf{v}=\mathbf{u}+\alpha \mathbf{w}$, with $\mathbf{u} \in L, \mathbf{w} \in W$ and $\alpha \in G F(q) \backslash\{0\}$. This implies that $P=\left\langle\alpha^{-1} \mathbf{v}\right\rangle$, where $\alpha^{-1} \mathbf{v} \in\langle L, W\rangle_{G F\left(q^{\prime}\right)}$, i.e. the points of K, and hence the points of B, are defined by the non zero vectors of the $G F\left(q^{\prime}\right)$-vector subspace $\langle L, W\rangle_{G F\left(q^{\prime}\right)}$ of V, which has dimension $n h$. Then B is a $G F\left(q^{\prime}\right)$-linear blocking set of Π. Conversely, it is easy to see that the linearity of B implies that of \bar{B}.

Our aim is to find new families of minimal blocking sets in $P G\left(2, q^{n}\right)$ choosing as base of the cone K some suitable minimal blocking sets of Γ^{\prime}. To this end, among some classes of non planar blocking sets of $P G(3, q)$ constructed by G. Tallini in [31], we selected the following five examples \bar{B}_{i}, that are minimal:

$$
\bar{B}_{1}=(r \backslash \pi) \cup T \text { with }\left|\bar{B}_{1}\right|=2 q+1,
$$

where r is a line, π is a plane not containing r and T is a set of $(q+1)$ non collinear points of π having the point $\pi \cap r$ as a nucleus;

$$
\bar{B}_{2}=\left(r \backslash\left\{N_{1}, N_{2}\right\}\right) \cup\left(K_{1} \cup K_{2}\right) \text { with }\left|\bar{B}_{2}\right|=3 q+1,
$$

where r and r^{\prime} are skew lines, $q>2, N_{1}$ and N_{2} are distinct points on r and K_{i} $(i=1,2)$ is a $(q+1)$-set in the plane $\pi_{i}=\left\langle N_{i}, r^{\prime}\right\rangle$, disjoint from r^{\prime}, having N_{i} as a nucleus and satisfying the following property: (\star) every point of r^{\prime} is on at least one line of π_{i} different from r^{\prime} and disjoint from K_{i};

$$
\bar{B}_{3}=\left(r \backslash\left\{N_{1}, N_{2}, N_{3}\right\}\right) \cup K_{1} \cup K_{2} \cup K_{3} \text { with }|\bar{B}|=4 q+1
$$

where r and r^{\prime} are skew lines, $q>2$ is even, N_{1}, N_{2} and N_{3} are three distinct points on r, K_{1} is a $(q+1)$-set in the plane $\pi_{1}=\left\langle N_{1}, r^{\prime}\right\rangle$ disjoint from r^{\prime}, having N_{1} as a nucleus and satisfying property $(\star), K_{i}(i=2,3)$ is the projection of K_{1} on the plane $\pi_{i}=\left\langle N_{i}, r^{\prime}\right\rangle$ from the point N_{j}, where $\{i, j\}=\{2,3\}$;

$$
\bar{B}_{4}=\left(\ell_{1} \cup \ell_{2} \cup \ell_{3}\right) \backslash\left(r_{1} \cup r_{2}\right) \cup\left\{P_{1}, P_{2}\right\} \text { with }|\bar{B}|=3 q-1
$$

where $\ell_{1}, \ell_{2}, \ell_{3}$ are distinct lines of a regulus of a hyperbolic quadric, $q>2, r_{1}, r_{2}$ are two distinct lines of the opposite regulus, P_{i} is a point on $r_{i}(i=1,2)$ such that $P_{i} \notin \cup_{j=1}^{3} \ell_{j} ;$

$$
\bar{B}_{5}=\left(\mathcal{O} \backslash\left\{\cup_{i=1}^{h} C_{i}\right\}\right) \cup\left\{\cup_{i=1}^{h} N_{i}\right\} \text { with }|\bar{B}|=q(q-h)+1
$$

where \mathcal{O} is an ovoid of $P G(3, q), q$ is even, $\pi_{1}, \ldots, \pi_{h}(1 \leq h \leq q-2)$ are distinct planes through an external line r to \mathcal{O} intersecting \mathcal{O} in the $(q+1)$-arcs C_{1}, \ldots, C_{h} with nuclei N_{1}, \ldots, N_{h} respectively.

Now, let S_{3} be a 3-dimensional subspace of Γ^{\prime} and let \bar{B}_{i} be one of the previous examples of blocking sets of S_{3} with $\Gamma \cap Y \cap \bar{B}_{i}=\{Q\}$ and having $S_{3} \cap \Gamma$ as a tangent plane. Then, via the cone K having \bar{B}_{i} as base, we get minimal blocking sets B_{i} of $P G\left(2, q^{n}\right)(n \geq 2)$ of the following sizes:

$$
\begin{gathered}
\left|B_{1}\right|=2 q^{n}+1(n \geq 2), \quad\left|B_{2}\right|=3 q^{n}+1(q>2, n \geq 2), \\
\left|B_{3}\right|=4 q^{n}+1(q>2 \text { even, } n \geq 2), \quad\left|B_{4}\right|=3 q^{n}-2 q^{n-1}+1(q>2), \\
\left|B_{5}\right|=k q^{n}+1(q \text { even, } 2 \leq k \leq q-1) .
\end{gathered}
$$

The sizes of B_{2} (if q is even) and B_{3} (if $q>4$) seem to be new in the spectrum of known cardinalities of minimal blocking sets of $P G\left(2, q^{n}\right)$ (see [30]), even compared with the interval of Result 1.4 (ii). Also the sizes of the blocking sets B_{5} should be new when either n is odd and $k \geq 3$ or n is even and $3 \leq k<4 n \log q$. Computing the intersection numbers with respect to lines one can verify that B_{1} and B_{4} are not contained in the union of four lines, hence they are not isomorphic to the examples of the same size obtained by the so-called IMI construction (see [18, 19, 30]). Similarly, it is possible to prove that B_{2} (q odd) is not contained in the union of three conics
through a point, then it cannot be obtained by the parabola construction described in [28]. Some of the above remarks can be summarized in the following result.

Proposition 3.7. In $P G\left(2, q^{n}\right), n \geq 2$, there existminimal blocking sets of sizes $k q^{n}+$ $1, q$ even and $3 \leq k \leq q-1$.

The next proposition gives some further sizes for minimal blocking sets in $P G\left(2, q^{n}\right)$.

Proposition 3.8. In $P G\left(2, q^{n}\right)$, for every $d=3,4, \ldots, n+1$, there exist minimal blocking sets B of size: $|B|=(d-1) q^{n}-(d-3) q^{n} / p+1$, if $q=p^{h}$ and $h>2$, and $|B|=(d-1) q^{n}-(d-3) \frac{(q+1)}{2} q^{n-1}+d-1$, if q is an odd prime.

Proof: By (5), it is enough to use as base of the cone K a blocking set \bar{B} of type described in Result 1.5.

Now, let O be an ovoid of the parabolic quadric $Q(2 r, q)(r=2,3)$ of $P G(2 r, q)$ and, if $r=2$, assume that O is non classical, i.e. O is not an elliptic quadric of $P G(3, q)$. By Result 1.3 , the ovoid O is a minimal blocking set of $P G(2 r, q)$ of size $q^{r}+1$. If $n \geq 2 r-1, P G(2 r, q)$ can be embedded as a subspace in Γ^{\prime} in such a way that $\Gamma \cap Y \cap O=\Gamma \cap O=\{Q\}$ and we can consider the minimal blocking set B_{O} of $P G\left(2, q^{n}\right)$ obtained via the cone K with O as a base. Then

$$
\begin{equation*}
\left|B_{O}\right|=q^{n+r-1}+1, \tag{8}
\end{equation*}
$$

where $n \geq 3$ if $r=2$ and $n \geq 5$ if $r=3$.
Proposition 3.9. (i) In $P G\left(2, q^{n}\right), n \geq 3$, with either $q=p^{h}$ with p an odd prime and $h>1$ or $q=2^{2 e+1}$ with $e \geq 1$, there exist minimal blocking sets of size $q^{n+1}+1$, not obtained via the ovoidal cone construction [14].
(ii) In $P G\left(2, q^{n}\right), n \geq 5$ and $q=3^{h}$ with $h \geq 1$, there exist minimal blocking sets of size $q^{n+2}+1$.

Proof: Examples of non classical ovoids of $Q(4, q)$ are known only for $q=p^{h}$, $h>1, p$ an odd prime (Kantor ovoids), for $q=3^{h}, h>2$, (Thas-Payne ovoids), for $q=3^{2 h+1}, h>0$ (Ree-Tits slice ovoids), for $q=3^{5}$ (Penttila-Williams ovoid) and for $q=2^{2 e+1}, e>1$ (Tits ovoids) (see for instance [20, 32]). The known ovoids of $Q(6, q)$ are the Thas-Kantor ovoids of $Q(6, q)$ with $q=3^{h}$ and $h \geq 1$ and the Ree-Tits ovoids of $Q(6, q)$ with $q=3^{2 h+1}, h>0$ (see for instance [20, 32]). Then by (8), (i) and (ii) follow from these two remarks, respectively.

3.2. Construction $1 b$

Suppose that $Q \notin Y$ and let Z be the unique element of \mathcal{S} such that $Q \in Z$. Moreover, recall the notation $\Gamma \cap Y=\{T\}$. By (4) the size of B is given by

$$
|B|=q^{n-1}(|\bar{B}|-1)+q^{n-1}+1=q^{n-1}|\bar{B}|+1
$$

and the line intersection numbers of B can be determined as in Construction $1 a$.

Proposition 3.10. Let S_{n} be a line of Π other than \mathcal{S}. If S_{n} contains Y and ℓ is the line $S_{n} \cap \Gamma^{\prime}$, then

$$
\begin{equation*}
\left|B \cap S_{n}\right|=q^{n-1}|\ell \cap \bar{B}|+1 \tag{9}
\end{equation*}
$$

If S_{n} does not contain Y and $S_{n}^{\prime}=\left\langle S_{n}, \Omega\right\rangle \cap \Gamma^{\prime}$, then

$$
\begin{equation*}
\left|B \cap S_{n}\right|=\left|\bar{B} \cap S_{n}^{\prime}\right| \tag{10}
\end{equation*}
$$

Moreover, Equality (10) holds for any hyperplane S_{n}^{\prime} of Γ^{\prime} not through T and for each of the q^{n-1} lines S_{n} of Π contained in $\left\langle\Omega, S_{n}^{\prime}\right\rangle$.

Remark 3.11. Note that, if S_{n} is a line of Π passing through a point of $B \cap \mathcal{S}$ different from Y, then $Q \in S_{n}^{\prime}=\left\langle S_{n}, \Omega\right\rangle \cap \Gamma^{\prime}$.

Proposition 3.12. Let P be an affine point of B and let $\bar{P}=\langle P, \Omega\rangle \cap \Gamma^{\prime}$. Then P is an essential point of B if and only if there exists in Γ^{\prime} a tangent hyperplane to \bar{B} at the point \bar{P} not through T.

Proof: If S_{n} is a line of Π tangent to B at the point P, then $S_{n}^{\prime}=\left\langle S_{n}, \Omega\right\rangle \cap \Gamma^{\prime}$ is a hyperplane of Γ^{\prime} not through T tangent to \bar{B} at the point \bar{P}, and conversely.

The above proposition shows that the minimality of B does not automatically follow from the minimality of \bar{B}, as in Construction $1 a$; to this end we need some extra conditions on \bar{B}. We say that \bar{B} satisfies Condition (*) with respect to the point T if:
(*) for each point $\bar{P} \in \bar{B} \backslash\{Q\}$ there exists a tangent hyperplane to \bar{B} passing through \bar{P} not containing T.

Corollary 3.13. The affine points of B are essential points of B if, and only, if \bar{B} satisfies Condition (*) w.r.t. the point T.

Remark 3.14. If \bar{B} is a minimal blocking set of Γ^{\prime} contained in an h-dimensional subspace S_{h} of Γ^{\prime} with $h \leq n$ and $T \notin S_{h}$, then \bar{B} satisfies Condition (*) w.r.t. the point T.

Now, let X be a point of $B \cap \mathcal{S}$ different from Y and let $S_{n-1}=\langle X, \Omega\rangle \cap \Gamma$. Then the intersection numbers of B with respect to the lines of Π through X, different from \mathcal{S}, are determined by the intersection numbers of \bar{B} with respect to the hyperplanes of Γ^{\prime}, different from Γ, containing S_{n-1}. Conversely, if S_{n-1} is a hyperplane of Γ passing through Q and not containing T, then the intersection numbers of \bar{B} with respect to the hyperplanes of Γ^{\prime}, different from Γ, containing S_{n-1}, determine the intersection numbers of B with respect to the lines of Π through the unique element X of \mathcal{S} contained in $\left\langle S_{n-1}, \Omega\right\rangle \cap \Gamma$ (see Prop.3.10). Hence, we have:

Proposition 3.15. Let $X \in B \cap \mathcal{S}$, with $X \neq Y$. Then X is an essential point of B if and only if there exists a hyperplane S_{n}^{\prime} of Γ^{\prime}, different from Γ, tangent to \bar{B} and containing the subspace $\langle X, \Omega\rangle \cap \Gamma$. Also, the number of essential points of B on $\mathcal{S} \backslash\{Y\}$ is equal to the number of hyperplanes of Γ passing through Q, not containing T and contained in a tangent hyperplane to \bar{B} different from Γ.

If B^{\prime} is a minimal blocking set of Π contained in B, by the previous results, we get
Corollary 3.16. If \bar{B} satisfies Condition (*) w.r.t. the point T, then

$$
\left|B^{\prime}\right|=q^{n-1}(|\bar{B}|-1)+t_{Q}+1
$$

where t_{Q} is the number of hyperplanes of Γ passing through Q not containing T and contained in a tangent hyperplane to \bar{B} different from Γ.

Proof: By Corollary 3.13 and Proposition 3.15, we only have to check that Y is an essential point of B. If Y is not an essential point of B, then each line of Γ^{\prime} passing through T and not contained in Γ contains a point of \bar{B} different from Q, i.e. $|\bar{B}| \geq q^{n}+1$. Since $|\bar{B}| \leq q^{\frac{n+2}{2}}+1$ (see Result 1.2), we have that $n=2,|\bar{B}|=q^{2}+1$ and hence \bar{B} is an ovoid of Γ^{\prime}. But, in this case, \bar{B} does not satisfy Condition (*) with respect to the point T, contradicting our assumption.

Denote by S_{h}^{\prime} the h-dimensional space spanned by \bar{B} and let $S_{h-1}=S_{h}^{\prime} \cap \Gamma$. Since \bar{B} is contained in S_{h}^{\prime}, it is a blocking set of S_{h}^{\prime} with respect to the hyperplanes.

Proposition 3.17. (1) If $h \leq n$ and $T \notin S_{h}$, then

$$
\left|B^{\prime}\right|=q^{n-1}(|\bar{B}|-1)+q^{n-h}+l_{Q}\left(q^{n-h+1}-q^{n-h}\right)+1
$$

where l_{Q} is the number of hyperplanes of S_{h-1} passing through Q contained in a hyperplane of S_{h}^{\prime} tangent to \bar{B} different from S_{h-1}; in particular $0 \leq l_{Q} \leq q^{h-2}+$ $\cdots+q+1$.
(2) If $h \leq n, T \in S_{h}$ and \bar{B} satisfies Condition (*) w.r.t. the point T, then

$$
\left|B^{\prime}\right|=q^{n-1}(|\bar{B}|-1)+s_{Q} q^{n-h+1}+1,
$$

where s_{Q} is the number of hyperplanes of S_{h-1} passing through Q, not containing T and contained in a hyperplane of S_{h}^{\prime} tangent to \bar{B} different from S_{h-1}; in particular $0 \leq s_{Q} \leq q^{h-2}$.

Proof: Suppose that $h \leq n$ and that $T \notin S_{h}$. By Remark $3.14 \bar{B}$ satisfies Condition $(*)$ w.r.t. the point T and hence all the affine points of B are essential points. Then, to determine the size of B^{\prime}, by Corollary 3.16, we have to determine the number t_{Q} of hyperplanes of Γ through Q, not containing T and contained in a tangent hyperplane to \bar{B} different from Γ. It is easy to see that each hyperplane of Γ containing S_{h-1} and not containing T is contained in a tangent hyperplane to \bar{B} different from Γ, hence such hyperplanes determine q^{n-h} essential points of B on the line \mathcal{S}. Now, suppose that © Springer
S_{n-1} is a hyperplane of Γ passing through Q, not passing through T and not containing S_{h-1}, then $\operatorname{dim}\left(S_{h-1} \cap S_{n-1}\right)=h-2$. In this case S_{n-1} determines an essential point of $B \cap \mathcal{S}$ if and only if there exists a hyperplane of S_{h}^{\prime} tangent to \bar{B}, different from S_{h-1}, containing $S_{h-1} \cap S_{n-1}$. Since through each ($h-2$)-dimensional subspace of S_{h-1} through Q there pass $q^{n-h+1}-q^{n-h}$ hyperplanes of Γ not containing T, we get $t_{Q}=q^{n-h}+l_{Q}\left(q^{n-h+1}-q^{n-h}\right)$, where l_{Q} is the number of $(h-2)$-dimensional subspaces of S_{h-1} passing through Q contained in a hyperplane of S_{h}^{\prime} tangent to \bar{B} different from S_{h-1}. In a similar way it is possible to prove (2).

If \bar{B} is a blocking set of Γ^{\prime} contained in a plane π and $T \in \pi$, then it is possible to verify that our construction is equivalent to Construction 2.12 described in [30, Proposition 3.24 Case 1]. Also, if \bar{B} is an ovoid of a 3-dimensional space S_{3} and $T \notin S_{3}$, then we get the examples constructed in [14, Theorem 2.8].

Corollary 3.18. If \bar{B} is a planar blocking set and $T \notin\langle\bar{B}\rangle=\pi$, then

$$
\left|B^{\prime}\right|=q^{n-1}(|\bar{B}|-1)+q^{n-2}+1,
$$

if $\Gamma \cap \pi$ is the unique tangent line to \bar{B} passing through Q in π, and

$$
|B|=\left|B^{\prime}\right|=q^{n-1}|\bar{B}|+1,
$$

if there exist at least two tangent lines to \bar{B} in π passing through Q. In particular, if q is a square and \bar{B} is a unital of π, we get minimal blocking sets in $P G\left(2, q^{n}\right)$ of size $q^{n} \sqrt{q}+q^{n-2}+1$.

Corollary 3.19. In $P G\left(2, q^{n}\right)$, q even, there exist minimal blocking sets of size $k q^{n}+$ $q^{n-1}+1$, with $2 \leq k \leq q-1$.

Proof: If \bar{B} is one of examples \bar{B}_{5} of Section 3.1 contained in a 3-dimensional subspace S_{3} of Γ^{\prime}, with $Q=N_{i}$ for some i, and $T \notin S_{3}(n \geq 3)$, then $l_{Q}=q+1$ and hence $|B|=\left|B^{\prime}\right|=k q^{n}+q^{n-1}+1(2 \leq k \leq q-1)$.

Finally, let $\bar{B}=O$ be a non classical ovoid of the parabolic quadric $Q(2 r, q)$, $r=2,3$ (see Result 1.3). Since $\operatorname{dim}\langle O\rangle=2 r$, if $n \geq 2 r$, we can choose $T \notin\langle O\rangle$ and, by Proposition 3.17 (1), we get from O a minimal blocking set B_{O} of $P G\left(2, q^{n}\right)$. If $r=2$ and $n \geq 4$, we have

$$
\left|B_{O}\right|=q^{n+1}+q^{n-4}+l_{Q}\left(q^{n-3}-q^{n-4}\right)+1,
$$

where $0 \leq l_{Q} \leq q^{2}+q+1$. If $r=3$ and $n \geq 6$, we have

$$
\left|B_{O}\right|=q^{n+2}+q^{n-6}+l_{Q}\left(q^{n-5}-q^{n-6}\right)+1,
$$

where $0 \leq l_{Q} \leq q^{4}+q^{3}+q^{2}+q+1$. Applying this construction to the known examples of ovoids of $Q(4, q)$ and $Q(6, q)$ (see for instance [20, 32]), we obtain the following existence results.

Proposition 3.20. (i) In $P G\left(2, q^{n}\right)$, $n \geq 4$ with either $q=p^{h}$, p odd prime, and $h>1$ or $q=2^{2 e+1}$ with $e \geq 1$, there exist minimal blocking sets of size $q^{n+1}+q^{n-4}+$ $l_{Q}\left(q^{n-3}-q^{n-4}\right)+1$, for some positive integer $l_{Q} \leq q^{2}+q+1$.
(ii) In $P G\left(2, q^{n}\right), n \geq 6$ and $q=3^{h}$ with $h \geq 1$, there exist minimal blocking sets of size $q^{n+2}+q^{n-6}+l_{Q}\left(q^{n-5}-q^{n-6}\right)+1$ for some positive integer $l_{Q} \leq q^{4}+q^{3}+$ $q^{2}+q+1$.

4. Construction 2

In this section we give a generalization of Construction 1a. More precisely, under the assumption $\operatorname{dim} \Omega \leq n-2$, we investigate when a slight variation of a construction of type $1 a$ still produces a blocking set of Π. To do this, we need some more notation.

Let Y and Ω be a fixed element of \mathcal{S} and an s-dimensional subspace of Y, respectively, with $0 \leq s \leq n-2$. Let Γ be a $(2 n-s-2)$-dimensional subspace of Σ disjoint from Ω and put $\Theta=Y \cap \Gamma$. For every spread element X other than Y, let $I_{n-1}(X)$ be the $(n-1)$-dimensional subspace $\langle\Omega, X\rangle \cap \Gamma$. Note that $I_{n-1}(X)$ is disjoint from Θ, for any $X \in \mathcal{S} \backslash\{Y\}$.

Now let Γ^{\prime} be a $(2 n-s-1)$-dimensional subspace of Σ^{\prime} disjoint from Ω such that $\Gamma=\Gamma^{\prime} \cap \Sigma$ and denote by $\mathcal{F}=\mathcal{F}(\mathcal{S}, \Omega)$ the family of n-dimensional subspaces of Γ^{\prime} containing an $(n-1)$-dimensional subspace of type $I_{n-1}(X)$. Let \bar{B} be an \mathcal{F}-blocking set of Γ^{\prime}, i.e. a blocking set of Γ^{\prime} with respect to the n-dimensional subspaces belonging to \mathcal{F}, such that $\bar{B} \cap \Gamma=\Theta$. Finally, define K and B by (1) and (2), respectively, and note that under our assumption:

$$
B=(K \backslash \Sigma) \cup\{Y\}
$$

Proposition 4.1. B is a blocking set of the plane Π of size

$$
|B|=q^{s+1}\left[|\bar{B}|-\left(q^{n-s-2}+\cdots+q+1\right)\right]+1 .
$$

Proof: Let S_{n} be an n-dimensional subspace of Σ^{\prime} defining a line of Π not passing through Y. Then $\operatorname{dim}\left\langle S_{n}, \Omega\right\rangle=n+s+1$, hence $\operatorname{dim}\left(\left\langle S_{n}, \Omega\right\rangle \cap \Gamma^{\prime}\right)=n, \quad$ and $\quad I_{n}=\left\langle S_{n}, \Omega\right\rangle \cap \Gamma^{\prime} \quad$ is \quad an element of \mathcal{F}. This implies that there exists a point $\bar{P} \in \bar{B} \cap I_{n}$ and $S_{n} \cap\langle\bar{P}, \Omega\rangle \neq \emptyset$. It follows that the cone K blocks all the n-dimensional subspaces of Σ^{\prime} defining a line of Π not passing through Y and hence B is a blocking set of Π.

As in the case of Construction $1 a$, the line intersection numbers of B can be easily determined.

[^1]Proposition 4.2. If S_{n} is a line of Π passing through Y, then

$$
\begin{equation*}
\left|B \cap S_{n}\right|=q^{s+1}\left|\left(\bar{B} \cap \Gamma_{n-s-1}^{\prime}\right) \backslash \Theta\right|+1, \tag{11}
\end{equation*}
$$

where $\Gamma_{n-s-1}^{\prime}=S_{n} \cap \Gamma^{\prime}$.
If S_{n} is a line of Π not passing through Y, then

$$
\left|B \cap S_{n}\right|=\left|\bar{B} \cap I_{n}\right|,
$$

where $I_{n}=\left(\left\langle\Omega, S_{n}\right\rangle \cap \Gamma^{\prime}\right) \in \mathcal{F}$. Also, if $I_{n} \in \mathcal{F}$ and $I_{n} \not \subset \Gamma$, then

$$
\left|B \cap S_{n}\right|=\left|\bar{B} \cap I_{n}\right|,
$$

for each of the q^{s+1} lines S_{n} of Π contained in $\left\langle\Omega, I_{n}\right\rangle$.
Proof: If S_{n} is a line of Π passing through Y, then

$$
S_{n} \cap B=\left(S_{n} \cap(K \backslash \Omega)\right) \cup\{Y\}=\left(\bigcup_{\bar{P} \in(\bar{B} \backslash \Theta) \cap \Gamma_{n-s-1}^{\prime}}\left(\langle\Omega, \bar{P}\rangle \cap S_{n}\right)\right) \cup\{Y\}
$$

where $\Gamma_{n-s-1}^{\prime}=S_{n} \cap \Gamma^{\prime}$, hence (11) follows.
Let S_{n} be a line of Π not passing through Y and let $X \in S_{n} \cap$ \mathcal{S}. As in the proof of Proposition 3.4, we have that $\left|B \cap S_{n}\right|=\mid \bar{B} \cap$ $I_{n} \mid$, where $I_{n}=\left\langle\Omega, S_{n}\right\rangle \cap \Gamma^{\prime}$ and $I_{n} \in \mathcal{F}$. Now, let $I_{n} \in \mathcal{F}, I_{n}$ not contained in Γ, then there exists $X \in \mathcal{S}, \quad X \neq Y$, such that $\left\langle\Omega, I_{n}\right\rangle \cap \Gamma=$ $\langle\Omega, X\rangle \cap \Gamma$. Hence $\left\langle\Omega, I_{n}\right\rangle$ contains q^{s+1} lines S_{n} of Π such that $\left|B \cap S_{n}\right|=$ $\left|\bar{B} \cap I_{n}\right|$.

By Proposition 4.2, the minimality of B as a blocking set easily follows from that of \bar{B}.

Corollary 4.3. If \bar{B} is a minimal \mathcal{F}-blocking set of Γ^{\prime}, then B is a minimal blocking set of Π.

Remark 4.4. If $\operatorname{dim} \Omega=n-2$, then \mathcal{F} is the family of all n-dimensional subspaces of Γ^{\prime}; in this case Construction 2 exactly comes from Construction $1 a$.

It seems natural at this point to investigate when a blocking set obtained by Construction $1 a$ can be also achieved by Construction 2 , with $\operatorname{dim} \Omega<n-2$. To do this, let us give some more preliminaries.

Under the assumption $n=m t, 1<t<n$, a unique normal ($m-1$)-spread \mathcal{S}^{*} of $\Sigma=P G(2 m t-1, q)$ can be associated with the regular $(n-1)$-spread \mathcal{S} of Σ so that \mathcal{S}^{*} induces on each element $X \in \mathcal{S}$ a normal ($m-1$)-spread $\mathcal{S}^{*}(X)$ [24, 25]. We define an \mathcal{S}^{*}-subspace of Σ as a subspace T of Σ which is union of elements of \mathcal{S}^{*}. As a consequence, an \mathcal{S}^{*}-subspace T, other than a spread element of \mathcal{S}^{*}, has dimension of type $d m-1$, with $2 \leq d \leq 2 t$. The spread \mathcal{S}^{*}, together with the \mathcal{S}^{*}-subspaces,
is an incidence structure $P G\left(\mathcal{S}^{*}\right)$ isomorphic to $P G\left(2 t-1, q^{m}\right)$. Here, the $(d-1)-$ dimensional subspaces, $0<d-1<2 t-1$, are the $(m-1)$-spreads $\mathcal{S}^{*}(T)$ induced by \mathcal{S}^{*} on the \mathcal{S}^{*}-subspaces T of dimension $d m-1$ of Σ. Finally, an incidence structure $P G^{+}\left(\mathcal{S}^{*}\right)$ isomorphic to $P G\left(2 t, q^{m}\right)$ can be defined in the following way: (i) the points are the points of $\Sigma^{\prime} \backslash \Sigma$ and the elements of \mathcal{S}^{*}, (ii) the d-dimensional subspaces, $0<d<2 t$, are the $d m$-dimensional subspaces of Σ^{\prime} which intersect Σ in an \mathcal{S}^{*}-subspace of dimension $d m-1$ and the d-dimensional subspaces of $P G\left(\mathcal{S}^{*}\right)$, (iii) the incidences are inherited from the inclusion relation.

Note that $P G\left(\mathcal{S}^{*}\right)$ is a hyperplane of $P G^{+}\left(\mathcal{S}^{*}\right)$ and $\mathcal{S}^{\prime}=\left\{\mathcal{S}^{*}(X): X \in \mathcal{S}\right\}$ turns out to be a regular $(m-1)$-spread of $P G\left(\mathcal{S}^{*}\right)$. It follows that we can work at the same time with two André, Bruck-Bose representations of $P G\left(2, q^{n}\right)$: the usual one in $P G(2 n, q)$ and a second one in $P G^{+}\left(\mathcal{S}^{*}\right) \cong P G\left(2 t, q^{m}\right)$.

Now let B be a blocking set of $P G\left(2, q^{n}\right)$ obtained by Construction $1 a$ in $P G^{+}\left(\mathcal{S}^{*}\right)$ $\cong P G\left(2 t, q^{m}\right)$, i.e. B is associated with a cone K in $P G^{+}\left(\mathcal{S}^{*}\right)$ of vertex a $(t-2)$ dimensional subspace $\mathcal{S}^{*}(\Omega)$ of $P G\left(\mathcal{S}^{*}\right)$ contained in an element $\mathcal{S}^{*}(Y)$ of \mathcal{S}^{\prime} and having as base a minimal blocking set \bar{B} of a $(t+1)$-dimensional subspace Γ^{\prime} of $P G^{+}\left(\mathcal{S}^{*}\right)$ disjoint from $\mathcal{S}^{*}(\Omega)$. Note that, under our assumptions, the blocking set B of $P G\left(2, q^{n}\right)$ is defined in $P G(2 n, q)$ by a cone K^{*} of vertex Ω, with $\Omega \subset Y \in \mathcal{S}$. Moreover, since K is union of $(t-1)$-dimensional subspaces of $P G^{+}\left(\mathcal{S}^{*}\right), K^{*}$ is union of $(t-1) m$-dimensional subspaces of $P G(2 n, q)$ and, if $\bar{B}^{*}=K^{*} \cap \Gamma^{*}$, we get

$$
K^{*}=\bigcup_{\bar{P} \in \bar{B}^{*}}\langle\Omega, \bar{P}\rangle
$$

The last equality proves that \bar{B}^{*} is an \mathcal{F}-blocking set in Γ^{*}, where $\mathcal{F}=\mathcal{F}(\Omega, \mathcal{S})$ and B is the blocking set of $P G(2 n, q)$ associated with Ω and \bar{B}^{*} by Construction 2.

The above remark shows how and why Construction 2 always works when n is not a prime and the vertex Ω of the cone is an \mathcal{S}^{*}-subspace of $P G(2 n-1, q)$: the central point is the existence of the \mathcal{F}-blocking set \bar{B}^{*} in Γ^{*}. In this case, of course, we do not obtain new examples, since we simply construct the same blocking set in different André, Bruck-Bose representations of the plane $P G\left(2, q^{n}\right)$. So, to try to get some new examples of blocking sets by Construction $2, \Omega$ should not be chosen as an \mathcal{S}^{*}-subspace of Σ and, under such assumption, the problem reduces to finding a minimal $\mathcal{F}(\Omega, \mathcal{S})$-blocking set of Γ^{\prime}.

For example, we can apply our considerations to state the following characterization of Buekenhout-Metz unitals in $P G\left(2, q^{4}\right)$.

Proposition 4.5. Let \mathcal{U} be a unital in the representation of $\Pi=P G\left(2, q^{4}\right)$ in $\Sigma^{\prime}=$ $P G(8, q)$ obtained by Construction 2 using:

- a line Ω of an element Y of the regular 3-spread \mathcal{S} of $\Sigma=P G(7, q)$;
- a 6-dimensional subspace Γ^{\prime} of Σ^{\prime} not contained in Σ and meeting Y in a line $\Theta \in \mathcal{S}^{*}(Y)$ disjoint from Ω, where \mathcal{S}^{*} is the $1-$ spread induced on Σ by \mathcal{S};
- the family $\mathcal{F}=\mathcal{F}(\Omega, \mathcal{S})$ of 4 -dimensional subspaces of Γ^{\prime} associated with Ω and \mathcal{S};
- a minimal \mathcal{F}-blocking set \bar{B} of Γ^{\prime} of size $q^{4}+q+1$ intersecting Y in the line Θ.

Then \mathcal{U} is a Buekenhout-Metz unital if, and only if, Ω is a spread element of \mathcal{S}^{*}.

Proof: If Ω is a spread element of \mathcal{S}^{*}, we can get \mathcal{U} also by Construction 1, using the representation of Π in $P G^{+}\left(\mathcal{S}^{*}\right)=P G\left(4, q^{2}\right)$. In this way \mathcal{U} is associated with a cone K in $P G^{+}\left(\mathcal{S}^{*}\right)$ of vertex $\Omega \in \mathcal{S}^{*}(Y) \subset P G\left(\mathcal{S}^{*}\right)$ and having as base a minimal blocking set \bar{B}^{*} of size $q^{4}+1$ of Γ^{\prime}; here Γ^{\prime} is considered as a 3-dimensional subspace $P G\left(3, q^{2}\right)$ of $P G^{+}\left(\mathcal{S}^{*}\right)$. Then, by Result $1.2, \bar{B}^{*}$ is an ovoid of Γ^{\prime} and \mathcal{U} turns out to be a Buekenhout-Metz unital.

Now note that to every plane π of Σ^{\prime}, with $\pi \cap \Sigma$ a line ℓ contained in a spread element X of \mathcal{S}, there corresponds a set X_{π} of $q^{2}+1$ collinear points in the representation of Π in Σ^{\prime}. Actually, X_{π} is a Baer subline if, and only if, ℓ is an element of the induced spread $\mathcal{S}^{*}[4,24]$. It turns out that X_{π} is not a Baer subline of Π when ℓ is not an element of the induced spread \mathcal{S}^{*}. So, assuming that Ω is not a spread element of \mathcal{S}^{*}, there exists no line of Π through the point corresponding to Ω and meeting \mathcal{U} in a Baer subline. This proves that \mathcal{U} is not a Buekenhout-Metz unital, since it is well known that through every point of such a unital there exists at least one line meeting the unital in a Baer subline.

Remark 4.6. Last proposition shows how the existence of a non Buekenhout-Metz unital in $P G\left(2, q^{4}\right)$ depends on that of a minimal $\mathcal{F}(\Omega, \mathcal{S})-$ blocking set \bar{B} of Γ^{\prime} of size $q^{4}+q+1$ and intersecting Y in the line Θ, when the line Ω is not a spread element of \mathcal{S}^{*}.

We note that the proof of Proposition 4.5 can be suitably modified to obtain the following more general result.

Proposition 4.7. Let k be a positive integer. Let \mathcal{U} be a unital in the representation of $\Pi=P G\left(2, q^{2 k}\right)$ in $\Sigma^{\prime}=P G(4 k, q)$ obtained by Construction 2 using:

- a $k-1$-dimensional subspace Ω of an element Y of the regular $(2 k-1)$-spread \mathcal{S} of $\Sigma=P G(4 k-1, q)$;
- a $3 k$-dimensional subspace Γ^{\prime} of Σ^{\prime} not contained in Σ and meeting Y in a $(k-1)$-dimensional subspace $\Theta \in \mathcal{S}^{*}(Y)$ disjoint from Ω, where \mathcal{S}^{*} is the ($k-1$)-spread induced on Σ by \mathcal{S};
- the family $\mathcal{F}=\mathcal{F}(\Omega, \mathcal{S})$ of $(2 k+1)$-dimensional subspaces of Γ^{\prime} associated with Ω and \mathcal{S};
- a minimal \mathcal{F}-blocking set \bar{B} of Γ^{\prime} of size $q^{2 k}+q^{k-1}+q^{k-2}+\cdots+q+1$ intersecting Y in the subspace Θ.

Then \mathcal{U} is a Buekenhout-Metz unital if, and only if, Ω is a spread element of \mathcal{S}^{*}.

Finally, we explicitly remark that Proposition 4.5 is a slight variation of the result contained in Sect.3.4 of [4] and Proposition 4.7 is a generalization of Theorem 3.4 of [4].

5. Construction 3

The present section deals with a second variation of Construction $1 a$, which essentially is a way of looking at Construction 2.7 of [30] in the André, Bruck-Bose representation of $P G\left(2, q^{n}\right)$ in $P G(2 n, q)$. As usual, we start from a fixed spread element Y of \mathcal{S} and a subspace Ω of Y; let $n-s$ be the dimension of $\Omega, 2 \leq s \leq n+1$. Now let Γ_{s}^{\prime} be an s-dimensional subspace of Σ^{\prime} not contained in Σ, such that $\Gamma_{s}^{\prime} \cap Y$ is an $(s-2)$ dimensional subspace disjoint from Ω, and denote by Γ_{s-2} and Γ_{s-1} the subspaces $\Gamma_{s}^{\prime} \cap Y$ and $\Gamma_{s}^{\prime} \cap \Sigma$, respectively. Moreover, let \bar{B} be a blocking set with respect to the set of all lines of Γ_{s}^{\prime} and define K and B by (1) and (2), respectively. Since $\operatorname{dim}\left(\left\langle Y, \Gamma_{s-1} \cap X\right\rangle\right)=-1,0$, for every element X of \mathcal{S}, the size of B is given by

$$
|B|=|K \backslash \Omega|+1=q^{n-s+1}\left|\bar{B} \backslash \Gamma_{s-2}\right|+1
$$

and, using the same arguments as in Propositions 3.2 and 3.4, the following can be proved.

Proposition 5.1. B is a blocking set of Π. Moreover, denoted by S_{n} a line of Π other than \mathcal{S}, we have :

- if $Y \notin S_{n}$ and $S_{n} \cap \Sigma \cap K=\emptyset$, then

$$
\left|B \cap S_{n}\right|=|\bar{B} \cap \ell|,
$$

where ℓ is the line $\left\langle S_{n}, \Omega\right\rangle \cap \Gamma_{s}^{\prime}$;

- if $Y \notin S_{n}$ and $S_{n} \cap \Sigma \cap K \neq \emptyset$, then

$$
\left|B \cap S_{n}\right|=|(\bar{B} \cap \ell) \backslash \Sigma|+1,
$$

where ℓ is the line $\left\langle S_{n}, \Omega\right\rangle \cap \Gamma_{s}^{\prime}$;

- if $Y \in S_{n}$, then

$$
\left|B \cap S_{n}\right|=q^{n-s+1}\left|\left(S_{n} \cap \Gamma_{s}^{\prime} \cap \bar{B}\right) \backslash \Sigma\right|+1 .
$$

As in the case of Construction $1 b$, the minimality of B does not automatically follow from that of \bar{B}. Next proposition and its two corollaries correspond to Proposition 2.8 and Theorem 2.9 of [30]; for sake of completeness we give here a proof of them in our context.

Proposition 5.2. Let P be an affine point of B, i.e. $P \in B \backslash \Sigma$, and let \bar{P} be the unique point of $\bar{B} \cap\langle\bar{P}, \Omega\rangle$. Then P is an essential point of B if, and only if, there exists a line ℓ of Γ_{s}^{\prime} through \bar{P} which is tangent to \bar{B} and disjoint from Γ_{s-2}.

Proof: From the line intersection numbers we get that there exists in Π a tangent line S_{n} to B through P if, and only if, $\ell=\left\langle S_{n}, \Omega\right\rangle \cap \Gamma_{s}^{\prime}$ is a tangent line of \bar{B} through \bar{P} and $\ell \cap \Gamma_{s-2}=\emptyset$; this concludes the proof.

The next corollaries point out two special cases in which the minimality of \bar{B} gives some strong information about B.

Corollary 5.3. If $\bar{B} \cap \Sigma=\Gamma_{s-2}$, then

$$
|B|=q^{n-s+1}\left(|\bar{B}|-\left(q^{s-2}+q^{s-3}+\cdots+q+1\right)\right)+1
$$

and B is a minimal blocking set of Π.

Proof: It is enough to remark that, under our assumption, the condition of Proposition 5.2 is satisfied for all affine points of B and $B \cap \mathcal{S}=\{Y\}$.

Corollary 5.4. If $|\bar{B}|<2 q^{s-1}$, then all the affine points of B are essential.

Proof: Firstly remark that, if for each $\bar{P} \in \bar{B}$ the number $\tau_{\bar{P}}$ of tangent lines of \bar{B} in Γ_{s}^{\prime} through \bar{P} is greater than $q^{s-2}+q^{s-3}+\cdots+q+1$, then the condition of Proposition 5.2 is satisfied by the affine points of B that all turn out essential. On the other hand, by Lemma 2.11 of [30], if $|\bar{B}|<2 q^{s-1}$, then $\tau_{\bar{P}}>q^{s-2}+q^{s-3}+\cdots+q+1$ for each point of \bar{B}; so our assertion follows.

Proposition 5.5. Let X be a point of $B \cap \mathcal{S}$. If $X \neq Y$, then a unique point $\bar{P} \in \bar{B} \cap \Sigma$ exists such that $X \cap\langle\bar{P}, \Omega\rangle \neq \emptyset$. Moreover, X is an essential point of B if, and only if, either $X=Y$ or $X \neq Y$ and there exists in Γ_{s}^{\prime} a tangent line of \bar{B} through \bar{P} and not contained in Σ.

Proof: If $X \in B \cap \mathcal{S}$, with $X \neq Y$, then $X \cap K \neq \emptyset$ and a point $\bar{P} \in \bar{B} \cap \Sigma$ exists such that $X \cap\langle\bar{P}, \Omega\rangle \neq \emptyset$. Moreover, as X and Y are disjoint, \bar{P} is unique and $\mid X \cap$ $\langle\bar{P}, \Omega\rangle \mid=1$.

If S_{n} is a line through X other than \mathcal{S}, then $\ell=\left\langle S_{n}, \Omega\right\rangle \cap \Gamma_{s}^{\prime}$ is a line through \bar{P} not contained in Σ and $\left|S_{n} \cap B\right|=|(\ell \backslash\{\bar{P}\}) \cap \bar{B}|+1$.

Finally, if S_{n} is a line through Y, then $\left|B \cap S_{n}\right|=q^{n-s+1}\left|\left(S_{n} \cap \Gamma_{s}^{\prime} \cap \bar{B}\right) \backslash \Sigma\right|+1$ and, by an easy counting argument, one can see that there exists a line S_{n} through Y such that $S_{n} \cap \Gamma_{s}^{\prime}=\Gamma_{s-2}$. It follows that $\left|B \cap S_{n}\right|=1$, i.e. Y is an essential point of B. This finishes the proof.

Corollary 5.6. The blocking set B is minimal if, and only if, all points of \bar{B} verify the conditions of Propositions 5.2 and 5.5. If B verifies the conditions of Proposition 5.2, then B contains a minimal blocking set B^{\prime} of Π such that

$$
q^{n-s+1}|\bar{B} \backslash \Sigma|+1 \leq\left|B^{\prime}\right| \leq q^{n-s+1}\left|\bar{B} \backslash \Gamma_{s-2}\right|+1
$$

Final remark. We plan to show in a forthcoming paper how some of our constructions can be generalized in order to achieve new minimal blocking sets in $P G\left(m, q^{n}\right)$, $m>2$.

Acknowledgements This research was supported by Italian national research project Strutture geometriche, combinatoria e loro applicazioni (COFIN 2003), by Mathematics Department of the Seconda Università degli Studi di Napoli and by GNSAGA of the Italian Istituto Nazionale di Alta Matematica.

References

1. J. André: Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe, Math. Z., 60 (1954), 156-186.
2. S. Ball: On ovoids of $O(5, q)$, Adv. Geom., 4 n. 1 (2004), 1-7.
3. S. Ball, P. Govaerts and L. Storme: On ovoids of parabolic quadrics, Des. Codes Cryptogr., to appear.
4. S. G. Barwick, L. R. A. Casse and C. T. Quinn: The André/Bruck and Bose representation in $P G(2 h, q)$: unitals and Baer subplanes, Bull. Belg. Math. Soc. Simon Stevin, 7 (2000) no.2, 173197.
5. L. Berardi and F. Eugeni: Blocking sets e teoria dei giochi: origini e problematiche, Atti Sem. Mat. Fis. Univ. Modena, 34 (1988), 165-196.
6. A. Beutelspacher: Blocking sets and partial spreads in finite projective spaces, Geom. Dedicata, 9 (1980), 425-449.
7. A. Blokhuis: On the size of a blocking set in $P G(2, p)$, Combinatorica, 14 (1994), 273276.
8. A. Blokhuis: Blocking sets in Desarguesian planes, in Paul Erdös is Eighty, Volume 2, Bolyai Soc. Math. Studies 2, Bolyai Society, Budapest, (1996), 133-155.
9. R. H. Bruck and R. C. Bose: The construction of translation planes from projective spaces, J. Algebra, 1 (1964), 85-102.
10. R. H. Bruck and R. C. Bose: Linear representations of projective planes in projective spaces, J. Algebra, 4 (1966), 117-172.
11. A. A. Bruen: Baer subplanes and blocking sets, Bull. Amer. Math. Soc., 76 (1970), 342344.
12. A. A. Bruen and J. A. Thas: Hyperplane Coverings and Blocking Sets, Math. Z., 181 (1982), 407409.
13. F. Buekenhout: Existence of unitals in finite translation planes of order q^{2} with a kernel of order q, Geom. Dedicata, 5 (1976), 189-194.
14. A. Cossidente, A. Gács, C. Mengyán, A. Siciliano, T. Szőnyi and Zs. Weiner: On large minimal blocking sets in $P G(2, q)$, J. Combin. Des., 13 n. 1 82005, 25-41.
15. A. Gunawardena and G. E. Moorhouse: The non-existence of ovoids in $O_{9}(q)$, European J. Combin., 18 (1997), 171-173.
16. U. Heim: Proper blocking sets in projective spaces, Discrete Math., 174 (1997), 167-176.
17. J. W. P. Hirschfeld: Projective geometries over finite fields, Clarendon Press, Oxford, 1979, 2nd Edition, 1998.
18. T. Illès, T. Szőnyi and F. Wettl: Blocking sets and maximal strong representative systems in finite projective planes, Mitt. Math. Sem. Giessen, 201 (1991), 97-107.
19. S. Innamorati and A. Maturo: On irreducible blocking sets in projective planes, Ratio Math., 208/209 (1991), 151-155.
20. W. M. Kantor: Ovoids and translation planes, Canad. J. Math., 34 (1982), 1195-1207.
21. G. Lunardon: Normal spreads, Geom. Dedicata, 75 (1999), 245-261.
22. G. Lunardon: Linear k-blocking sets, Combinatorica, 21(4) (2001), 571-581.
23. G. Lunardon and O. Polverino: Linear blocking sets: a survey, Finite fields and applications, Springer, 2001, 356-362.
24. O. Polverino: On normal spreads, Preprint (2003).
25. B. Segre: Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane, Ann. Mat. Pura Appl., 64 (1964), 1-76.
26. L. Storme and Zs. Weiner: Minimal blocking sets in $P G(n, q), n \geq 3$., Designs, Codes and Cryptography, 21 (2000), 235-251.
27. P. Sziklai and T. Szőnyi: Blocking sets and algebraic curves, Rend. Circ. Mat. Palermo, 51 (1998), 71-86.
28. T. Szőnyi: Note on the existence of large minimal blocking sets in Galois planes, Combinatorica, 12 (1992), 227-235.
(4) Springer
29. T. Szőnyi: Blocking sets in finite planes and spaces, Ratio Math., 5 (1992), 93-106.
30. T. Szőnyi, A. Gács and Zs. Weiner: On the spectrum of minimal blocking sets in $P G(2, q)$, J. Geom., 76 n. 112 (2003), 256-281.
31. G. Tallini: Blocking sets with respect to planes in $P G(3, q)$ and maximal spreads of an non singular quadric in $P G(4, q)$, Mitt. Math. Sem. Giessen, 201 (1991), 97-107.
32. J. A. Thas: Ovoids and spreads of finite classical polar spaces, Geom. Dedicata, 174 (1981), 135-143.
33. J. Tits: Ovoides et groupes de Suzuki, Arch. Math., 13 (1962), 187-198.

[^0]: Francesco Mazzocca • Olga Polverino ($\boxed{\text { }}$)
 Seconda Università degli Studi di Napoli Dipartimento di Matematica via Vivaldi 43, I-81100 Caserta, Italy
 e-mail: francesco.mazzocca@unina2.it, olga.polverino@unina2.it - opolveri@unina.it

[^1]: \#
 Springer

