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Abstract. We prove a q-analogue of the row and column removal theorems for homomorphisms between Specht
modules proved by Fayers and the first author [16]. These results can be considered as complements to James
and Donkin’s row and column removal theorems for decomposition numbers of the symmetric and general linear
groups. In this paper we consider homomorphisms between the Specht modules of the Hecke algebras of type A
and between the Weyl modules of the q-Schur algebra.
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1. Introduction

In his classic book on the representation theory of the symmetric groups James [22] conjec-
tured that the decomposition numbers of the symmetric group should be invariant under a
certain “column removal” operation. In a series of papers, James [23–25] and Donkin [9,13]
proved a more general version of this result, together with a “row removal” analogue, not
only for the symmetric groups, but also for the Schur algebras, the Iwahori–Hecke algebras
of type A and, finally, for the q-Schur algebras.

Quite recently, Fayers and the first author [16] showed that homomorphisms between
Specht modules also satisfy these row and column removal theorems. In this paper we prove
q-analogues of the row and column removal theorems for homomorphisms between Specht
modules of the Hecke algebras of type A and homomorphisms between Weyl modules of
the q-Schur algebra. We also discuss recent generalizations of these results to Ext-groups
and to “crystallized” decomposition numbers.

In order to state these results precisely, fix a positive integer n ≥ 1 and let Sn be the
symmetric group of degree n. We also fix an integral domain R and an invertible element q
in R. We define e > 1 to be minimal such that 1+q +· · ·+qe−1 = 0. Let n = R,q (Sn)
be the Hecke algebra of Sn; that is, n is the unital associative R-algebra with generators
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T1, T2, . . . , Tn−1 and relations

(Ti − q)(Ti + 1) = 0, for i = 1, 2, . . . , n − 1,

Ti Tj = Tj Ti , for 1 ≤ i < j − 1 ≤ n − 2,

Ti+1Ti Ti+1 = Ti Ti+1Ti , for i = 1, 2, . . . , n − 2.

Set si to be the transposition (i, i + 1) ∈ Sn . Then {s1, . . . , sn−1} generate Sn so that if
w ∈ Sn then w = si1 si2 . . . sik for some i1, . . . , ik . If k is minimal, we set Tw = Ti1 . . . Tik .
For k minimal, Tw is independent of the choice of expression si1 . . . sik for w and we say
that w has length k = �(w). In fact, n is free as an R-module with basis {Tw | w ∈ Sn};
see, for example, [33, Theorem 1.13].

Recall that a partition of n is a weakly decreasing sequence λ = (λ1 ≥ λ2 ≥ . . . ) of
non-negative numbers which sum to n. We write |λ| = n. For each partition λ of n there
is a right n-module S(λ), called a Specht module; we will recall its construction in more
detail in the next section. The Specht modules are important because they give a complete
set of pairwise non-isomorphic irreducible n-modules when n is semisimple. If n

is not semisimple then the irreducible n-modules are precisely the heads of the Specht
modules S(λ), where λ runs over the e-restricted partitions of n. (A partition is e-restricted
if λi − λi+1 < e, for i ≥ 1.) See [13, 33] for details.

We need one more piece of notation before we can state the row removal homomorphism
theorem for Specht modules. For the rest of this paper we also fix an integer s with 1 ≤ s < n.
For each partition λ we define the following partitions:

λt = (λ1, . . . , λs) λb = (λs+1, λs+2, . . . ).

The superscripts stand for “top” and “bottom” respectively. Notice that rather than removing
a single row, we are really cutting the partition into two pieces; Donkin calls this operation
a horizontal s-cut.

Pictorially, the partitions λt and λb may be viewed as follows:

λ
λt

λb

Theorem 1.1 Let λ and µ be partitions of n and assume that q �= −1 or that µt is
2-restricted. Suppose that λ1 + · · · + λs = µ1 + · · · + µs . Then

Hom n (S(µ), S(λ)) ∼= Hom n−m (S(µt), S(λt)) ⊗ Hom m (S(µb), S(λb)).

where m = |λb|.
As with most of the results in this introduction, there is also an equivalent result describing

homomorphisms under vertical s-cuts, or column removal; see Corollary 3.2 for details.
For brevity we will consider only the “row removal” theorems in this introduction.
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In order to state the corresponding result for the q-Schur algebras recall that a composition
of n is a sequence µ = (µ1, µ2, . . . ) of non-negative numbers which sum to n. For each
composition µ = (µ1, . . . , µk) of n we have a Young subgroup Sµ = Sµ1 × · · · × Sµk of
Sn . Define M(µ) to be the right n-module M(µ) = mµ n , where mµ = ∑

w∈Sµ
Tw.

Fix a non–negative integer d and let �(d, n) be the set of compositions of n with at most
d non–zero parts. Let �+(d, n) be the set of partitions contained in �(d, n). Dipper and
James [7] defined the q-Schur algebra to be the endomorphism algebra

Sq (d, n) = End
n

( ⊕
µ∈�(d,n)

M(µ)

)
.

For each partition λ ∈ �+(d, n) there is a rightSq (d, n)-module �(λ), called a Weyl mod-
ule, or standard module. The head L(λ) of �(λ) is irreducible and {L(λ) | λ ∈ �+(d, n)}
is a complete set of pairwise non-isomorphic irreducible Sq (d, n)-modules. See, for exam-
ple, [8, 13, 33].

We will deduce Theorem 1.1 from the following theorem for Weyl modules.

Theorem 1.2 Assume that λ, µ ∈ �+(d, n). Suppose that λ1 +· · ·+λs = µ1 +· · ·+µs .
Then

HomSq(d,n)(�(µ), �(λ))
∼= HomSq (d ′,n−m)(�(µt), �(λt)) ⊗ HomSq (d ′′,m)(�(µb), �(λb)).

where m = |λb| and d ′, d ′′ > 0 satisfy µt, λt ∈ �+(d ′, n − m) and µb, λb ∈ �+(d ′′, m).

We prove Theorems 1.1 and 1.2 by giving explicit combinatorially defined bijections
between the two Hom-spaces involved.

For the moment consider the special case when d = n. Then the identity map ϕω : n →
n on n can be considered as an element of Sq (n, n). By a standard argument, n

∼=
ϕωSq (n, n)ϕω. Hence, there is a functor, known as the Schur functor, from the category of
right Sq (n, n)-modules to the category of right n-modules which is given by

α : Mod-Sq (n, n)→Mod- n ; M 	→ Mϕω.

Furthermore, the Schur functor is exact because ϕω is an idempotent, so ϕωSq (d, n) is
projective.

It is easy to see that the Schur functor maps Weyl modules to Specht modules. Conse-
quently, one might expect that Theorem 1.1 follows from Theorem 1.2 simply by applying
the Schur functor. In fact this is not the case. The problem is that the inverse Schur functor

β : Mod- n →Mod-Sq (n, n) ; N 	→ N ⊗
n
Sq (n, n)

does not, in general, send Specht modules to Weyl modules. Consequently, the homo-
morphism HomSq (n,n)(�(µ), �(λ)) → Hom n (S(µ), S(λ)) given by the Schur functor is
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not necessarily surjective. Nevertheless, generalizing a famous classical result of Carter
and Lusztig [2], Dipper and James [8, Corollary 5.6] proved that if q �= −1, or if µ is
2-restricted, then

HomSq (n,n) (�(µ), �(λ)) ∼= Hom n (S(µ), S(λ)). (1.3)

Hence, Theorem 1.1 follows from Theorem 1.2. Dipper and James’ proof of this result is
quite long, so we give a short proof of (1.3) in the next section.

Theorems 1.1 and 1.2 have well-known counterparts for decomposition numbers. If � is
a Sq (d, n)-module and L is an irreducible Sq (d, n)-module, let [� : L] be the composition
multiplicity of L in �.

Theorem 1.4 (James [25] and Donkin [13]) Suppose that R is a field and that λ, µ ∈
�+(d, n). Suppose that λ1 + · · · + λs = µ1 + · · · + µs . Then

[�(µ) : L(λ)] = [�(µt) : L(λt)] × [�(µb) : L(λb)].

where m = |λb| and the two right hand decomposition multiplicities are computed in
suitable q-Schur algebras Sq (d ′, n − m) and Sq (d ′′, m).

Unlike the results concerning homomorphisms, the Schur functor can be applied directly
here to deduce the analogous results for the decomposition numbers of n . Specifically,
if S is an n-module and D is a simple n-module let [S : D] be the decomposition
multiplicity of D in S. If λ is an e-restricted partition, let D(λ) = S(λ)/rad S(λ) be the
corresponding simple n-module (see, for example, [33]). Then, under the assumptions of
Theorem 1.1, if λ, λt and λb are e-restricted then

[S(µ) : D(λ)] = [S(µt) : D(λt)] × [S(µb) : D(λb)].

One way to prove Theorem 1.4 is to view the Weyl modules as modules for the quantum
general linear group G(d). As is well known [13, Section 0.21], Mod-Sq (d, n) is the full
subcategory of Mod-G(d) consisting of the homogeneous polynomial representations of
degree n. Let 	 be a set of simple roots for G(d) and let G
(d) be a Levi quantum subgroup
of G(d) corresponding to a subset 
 ⊆ 	. Let X be the set of weights for G(d) and X+ be
the set of dominant weights. Similarly, let X
 and X+


 be the weights and dominant weights
for G
(d). Finally, write �
(µ), and L
(µ) for the Weyl modules (or standard modules),
and the simple modules, respectively, of G
(d); see, for example, [13, Section 4.2].

Recall that, as an R-module, every Sq (d, n)-module M decomposes into a direct sum
of weight spaces: M = ⊕µ∈�(d,n) Mµ, where Mµ = Mϕµ and ϕµ : M(µ) → M(µ) is the
identity map. For each weight λ ∈ X+


 , define the “truncation functor”

Trλ
 : Mod-G(d)→Mod-G
(d); M 	→
⊕
µ∈X

λ−µ∈Z


Mµ.
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These functors are implicit in Green’s classic book [18] and James [23] essentially used a
special case of them (corresponding to s = 1) in his proof of Theorem 1.4 for the symmetric
groups (q = 1). The functors were introduced by Donkin [10, 11] who used them to study
not only representations of the Schur algebras but also a more general class of Schur algebras
associated with arbitrary algebraic groups; see [26].

Donkin [13, Section 4.2(4)] shows that if µ ∈ X+ and λ − µ ∈ Z
 then Trλ
�(µ) ∼=
�
(µ) and Trλ
 L(µ) ∼= L
(µ). Write 	 = {α1, . . . , αd−1} for the simple roots of G(d)
where, as usual, αi = εi −εi+1. Now let 
 = 	\{αs}. Then G
(d) ∼= G(s)×G(d −s) and
�
(ν) ∼= �(ν t) ⊗�(νb), for all ν ∈ X+


 . The condition that λ1 + · · ·+λs = µ1 + · · ·+µs

is equivalent to the requirement that λ − µ ∈ Z
. It follows that

[�(µ) : L(λ)] = [
Trλ
�(µ) : Trλ
 L(λ)

]
= [�
(µ) : L
(λ)]

= [�(µt) ⊗ �(µb) : L(λt) ⊗ L(λb)]

= [�(µt) : L(λt)] × [�(µb) : L(λb)].

We have just sketched a proof of Theorem 1.4.
In Section 3 we prove Theorem 1.2 by constructing an explicit isomorphism between the

two Hom-spaces whenever R is an integral domain. Our proof relies upon a combinatorial
description of the Hom-spaces HomSq (d,n)(ϕµSq (d, n), �(λ)). Observe that ϕµSq (d, n) is
projective, so the sequence ϕµSq (d, n) → �(µ) can be extended to a projective resolution
of �(µ). It might be possible to compute higher Ext-groups using our combinatorial meth-
ods if we had explicit projective resolutions of the Weyl modules; unfortunately, no such
resolutions are known in general.

Using algebraic group techniques, however, Theorems 1.1 and 1.2 can be generalized to
compute higher Ext-groups. To discuss these results we use the following (new) theorem
of Donkin, which simultaneously generalizes Theorem 1.2, [5, Corollary 10] and [13,
Section 4.2(17)]. With Donkin’s permission, we include a proof of this result in Section 4.

We write λ ≥ µ if λ−µ ∈ N0 X+. When we identify weights and partitions, this ordering
coincides with the usual dominance ordering on partitions.

Theorem 1.5 (Donkin) Suppose that R is a field, 
 ⊂ 	 and let λ and µ be dominant
weights with λ − µ ∈ Z
. Assume that V is a finite dimensional G(d)-module such that
Vν �= 0 only if λ ≥ ν. Then

ExtkG(d)(�(µ), V ) ∼= ExtkG
 (d)

(
�
(µ), Trλ
V

)
,

for all k ≥ 0.

In particular, putting V = �(λ) in Theorem 1.5 shows that

ExtkG(d)(�(µ), �(λ)) ∼= ExtkG
 (d)(�
(µ), �
(λ))

= ExtkG(s)×G(d−s)(�(µt) ⊗ �(µb), �(λt) ⊗ �(λb)).
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Now, if U and V areSq (d, n)-modules then ExtkG(d)(U, V ) ∼= ExtkSq(d,n)(U, V), for k ≥ 0 [12,
Section 4]. Hence, in the special case when 
 = 	 \ {αs}, the Künneth formula now gives
the following.

Corollary 1.6 (Donkin [13, Section 4.2(17)]) Assume that R is a field, λ, µ ∈ �+(d, n)
and that k ≥ 0. Suppose that λ1 + · · · + λs = µ1 + · · · + µs . Then

ExtkSq(d,n)(�(µ), �(λ))

∼=
⊕

i+ j=k

ExtiSq (d ′,n−m)(�(µt), �(λt)) ⊗ Ext j
Sq (d ′′,m)(�(µb), �(λb)),

where m = |λb| and d ′, d ′′ > 0 satisfy µt, λt ∈ �+(d ′, n − m) and µb, λb ∈ �+(d ′′, m).

Notice that if k = 0 then Corollary 1.6 becomes Theorem 1.2, except that 1.2 allows R
to be an arbitrary integral domain. Notice that if f ∈ HomSq(d,n)(�(µ), �(λ)) then Trλ
 f is
just the restriction of f to Trλ
�(µ) ∼= �(µt) ⊗ �(µb). So, in principle, when k = 0 the
functor Trλ
 induces a bijection f 	→ Trλ
 f 	→ f t ⊗ f b between the two Hom–spaces in
the Corollary. Our proof of Theorem 1.6 describes such a bijection explicitly in terms of
semistandard homomorphisms. Using Proposition 2.10 it is possible to show that these two
bijections coincide.

Once again, we cannot simply apply the Schur functor to Corollary 1.6 to produce an anal-
ogous result for the Ext-groups of the Specht modules. The inverse Schur functor β is only
right exact; by studying its left derived functors Donkin [14, Proposition 10.2] shows that

Extk
n
(α�(µ), S(λ)) ∼= ExtkSq(n,n)(�(µ), βS(λ)), whenever 0 ≤ k < e − 2. (1.7)

(Note that Donkin uses the Dipper–James Specht modules [6] which are dual to ours.)
The main point is that these Ext-groups can be computed using a Grothendieck spectral
sequence. (This sequence collapses because if I is an injective Sq (n, n)-module then α I is
a summand of M(ν), for some ν, and Extk

n
(M(ν), S(λ)) = 0 by [14, Proposition 10.1].)

Hemmer and Nakano [21] have shown that Specht filtration multiplicities are uniquely
determined for the symmetric groups in characteristic p > 3. Donkin establishes a q-
analogue of this result and uses it to prove that β maps Specht modules to Weyl modules
whenever e > 3. These results, together with Corollary 1.6, imply the following.

Corollary 1.8 (Donkin [14, Proposition 10.4]) Assume that R is a field, q �= −1, λ, µ ∈
�+(d, n) and that 0 ≤ k < e − 2. Suppose that λ1 + · · · + λs = µ1 + · · · + µs . Then

Extk
n
(S(µ), S(λ)) ∼=

⊕
i+ j=k

Exti
n−m

(S(µt), S(λt)) ⊗ Ext j

m
(S(µb), S(λb)),

where m = |λb|.

Notice that the last step in Donkin’s proof of Corollary 1.8, as sketched above, required
e > 3. However, if e = 3 then the restrictions on k force k = 0. So Corollary 1.8 becomes
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a special case of Theorem 1.1 when e = 3. We do not know how sharp the restrictions on k
are in Corollary 1.8; they are not exact, however, because if e = 2 then Corollary 1.8 also
holds when k = 0. The restrictions on k come from (1.7); some restriction is needed here
because Sq (d, n) has finite global dimension (since Sq (d, n) is quasi–hereditary) whereas

n does not ( n is self-injective).
We next want to relate these Ext-group calculations to decomposition numbers. Taking

V = L(λ) in Theorem 1.5 we obtain the following.

Corollary 1.9 (Cline, Parshall and Scott [5, Corollary 10]) Suppose that R is a field,


 ⊂ 	 and let λ and µ be dominant weights with λ − µ ∈ Z
. Then

ExtkG(d)(�(µ), L(λ)) ∼= ExtkG
 (d)(�
(µ), L
(λ)),

for all k ≥ 0.

Once again, suppose that 
 = 	\{αs} and that λ1 +· · ·+λs = µ1 +· · ·+µs . Applying
the Künneth formula to the right hand side of the last equation we find

ExtkSq(d,n)(�(µ), L(λ)) ∼=
⊕
i+j=k

ExtiSq (d′,n−m)(�(µt), L(λt)) ⊗ ExtjSq(d′′,m)(�(µb), L(λb)),

(1.10)

where m, d ′ and d ′′ are as above. For the cases s = 1 and s = max { l | λl > 0 }, see [5,
Theorem 13].

Given an Sq (d, n)-module M let ch M = ∑
µ(dim Mϕµ)eµ be its (formal) character. If

µ is a dominant weight then ch �(µ) is given explicitly by the Weyl character formula. By
definition, we also have ch �(µ) = ∑

λ[�(µ) : L(λ)] ch L(λ). In contrast, by Delorme’s
theorem [26, Section II.6.21(6)], we know that

ch L(λ) =
∑

µ

{ ∑
k≥0

(−1)k dim ExtkSq(d,n)(�(µ), L(λ))

}
ch �(µ). (1.11)

Thus, the spaces ExtkSq(d,n)(�(µ), L(λ)) determine the (inverse) decomposition matrix of
Sq (d, n).

In order to exploit (1.11) we follow [4] and define polynomials Qµλ(t) ∈ N0[t] by

Qµλ(t) =
∑
k≥0

dim ExtkSq(d,n)(�(µ), L(λ)) tk.

It follows from Kempf’s vanishing theorem that: (1) this sum is finite; (2) Qλλ(t) = 1; (3)
if µ �= λ then Qµλ ∈ tN0[t]; and (4) Qµλ �= 0 only if λ ≥ µ. (See [26, Section II.4.13
Remark 2], for the classical case; using the q-analogue of Kempf’s vanishing theorem the
same argument works in general.) Note also that ch L(λ) = ∑

µ Qµλ(−1)ch �(µ) by (1.11).
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We want to utilize the polynomials Qµλ(t) in the special case when R = C and q is an eth

root of unity. In this case, work of Varagnolo and Vasserot [35] and Leclerc and Thibon [32]
gives an algorithm for computing the decomposition numbers of Sq (d, n). This algorithm
amounts to computing a certain basis {Bλ} of the combinatorial Fock space F which, as a
Q[t, t−1]-module, is free with a basis given by the set of all partitions of all non-negative
integers. If λ ∈ �+(d, n) then the basis element Bλ can be characterized as the unique
element of F which is (1) invariant under a certain “bar involution”, and (2) of the form

Bλ =
∑

µ∈�+(d,n)

dµλ(t) µ,

where dλλ = 1 and dµλ(t) ∈ t2Z[t2] if λ �= µ. In fact, Bλ is an element of the “canonical
basis” of F when it is considered as a module for an affine quantum group; see [32, 35].

The Lusztig conjecture for quantum groups at a complex root of unity was established
by Kazhdan and Lusztig [28] and Kashiwara and Tanisaki [27]. Building on this work,
Varagnolo and Vasserot [35] proved that the polynomials dµλ(t) are parabolic Kazhdan–
Lusztig polynomials for the affine Weyl group Ŝd and, moreover, that dµλ(1) = [�(µ) :
L(λ)].

Let Dd,n(t) = (dλµ(t))λ,µ∈�+(d,n). Then Dd,n(1) is the decomposition matrix of Sq (d, n)
by Varagnolo and Vasserot’s theorem. Also, by the remarks above, Dd,n(t) is a unitriangular
matrix with non-diagonal entries in t2Z[t2], so Dd,n(t) is invertible over Z[t2, t−2]. Let
Cd,n(t) = (cµλ(t))λ,µ∈�+(d,n) be in the inverse of Dd,n(t). Then Cd,n(1) is in the inverse
decomposition matrix of Sq (d, n), cµλ(t) ∈ Z[t2, t−2], and cµλ(1) = Qµλ(−1) by (1.11).
In fact, more is true. Since the dµλ(t) are parabolic Kazhdan–Lusztig polynomials, the
cµλ(t) are inverse Kazhdan–Lusztig polynomials. Therefore, via the work of Varagnolo and
Vasserot, the Lusztig conjecture implies that

cµλ(t) = t�(λ)−�(µ)
∑
k≥0

dim ExtkSq(d,n)(�(µ), L(λ)) t−k,

for a suitable length function � : �+(d, n) → N0; see [26, Section C2] or [4, Section 3.8].
In other words, q�(λ)−�(µ) Qµλ(t−1) = cµλ(t) is a renormalized parabolic Kazhdan–Lusztig
polynomial.

Let us now apply these results in the case where λ and µ admit a horizontal s-cut; that is,
when λ1+· · ·+λs = µ1+· · ·+µs . By (1.10) we know that Qµλ = Qµtλt Qµbλb . Therefore, it
follows from (1.10) that cµλ(t) = cµtλt (t)cµbλb (t) — one can check that �(λ) = �(λt)+�(λb),
and similarly for �(µ). Consequently, because Dd,n(t) = Cd,n(t)−1, we obtain the following.
(Note that taking horizontal s-cuts is compatible with the dominance ordering.)

Corollary 1.12 (Chuang, Miyachi and Tan [3]) Suppose λ1 + · · · + λs = µ1 + · · · + µs .

Then dµλ(t) = dµtλt (t)dµbλb (t).

In particular, by setting t = 1 and applying Varagnolo and Vasserot’s theorem [35], we
recover Theorem 1.4.
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Chuang, Miyachi and Tan give a more elementary proof of this corollary using an inner
product on the Fock space and the uniqueness of the canonical basis. Using a result of
Leclerc [31], they also prove the column removal version of this result.

The last Corollary is interesting because, conjecturally [30, 32], the coefficients of the
polynomials dµλ(t) should describe the composition factors of the Jantzen filtrations of the
two modules �(µ) and S(λ). Thus Corollary 1.12 suggests that, at least when q ∈ C is a
root of unity, the Jantzen filtrations may also be invariant under row and column removal.

Corollary 1.12 can be viewed as a result for both the Hecke algebras and the q-Schur
algebras. The astute reader will have noticed that we have not given a counterpart of
(1.10) for Hecke algebras; that is, we have not given a row removal theorem for com-
puting Ext (S(µ), D(λ)). Although we have tried quite hard to prove this, we do not know
whether or not the obvious analogue of (1.10) holds for Hecke algebras. We cannot repeat
the argument used to prove Corollary 1.8 because (1.7), and more generally [14, Proposi-
tion 10.2], does not apply.

Finally we remark that some interesting additional results for the symmetric groups in
characteristic p > 0 have been proved by Hemmer [19, 20]. Hemmer fixes a positive integer
m < n and considers the functor Fm which sends an Sn-module M to its Sm fixed points;
so Fm(M) is naturally a Sn−m-module. Hemmer proves that if λ is a partition of n with
λ1 = m then Fm(S(λ)) ∼= S(λ2, λ3, . . . ); that is, Fm(S(λ)) ∼= S(λb) using the notation
of Theorem 1.1 (with s = 1). Hemmer also considers the effects of Fm on permutation
modules and Young modules and he establishes row removal theorems for these modules
as well.

Hemmer’s work was motivated by trying to understand and prove Theorem 1 when
s = 1 for the symmetric groups using only the representation theory of the symmetric
groups. In fact, Hemmer’s functor is closely related to Donkin’s truncation functor because
Hemmer [19, Theorem 2.1] shows that Fm = α ◦ Trλ
 ◦ β, for suitable Schur functors and
inverse Schur functor with 
 = {α2, . . . , αn−1}.

One of Hemmer’s most interesting results is that when λ1 = µ1 = m < p there is an
injection

Ext1
RSn

(D(λ), D(µ)) ↪→ Ext1
RSn−m

(D(λb), D(µb)),

where R is a field of characteristic p. The assumption that m < p means that the functor
Fm can be realized by multiplying by an idempotent in RSn . Hemmer also uses results
of Kleshchev and Sheth [29] on the cohomology of the symmetric groups. His argument
would generalize to the Hecke algebras when m < e if q-analogues of Kleshchev and
Sheth’s results were available.

2. Definitions and preliminary results

We begin by establishing some definitions. The notation used will be that of [33]. Recall
the definitions of the Hecke algebra = n and the Schur algebra S = Sq (d, n) from the
introduction.
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Let λ and µ be compositions of n. Say that λ dominates µ and write λ �µ if

k∑
i=1

λi ≥
k∑

i=1

µi

for all k. If λ �µ and λ �= µ, we write λ �µ.
Let λ = (λ1, λ2, . . . ) be a composition of some integer n. The diagram of λ is the set

{(i, j) | 1 ≤ i and 1 ≤ j ≤ λi }

regarded as an array of nodes in the plane. A λ-tableau is obtained from the diagram of λ

by replacing each node with one of the integers 1, 2, . . . , n, allowing no repeats. If t is a
λ-tableau we write Shape (t) = λ. A λ-tableau t is row standard if its entries increase along
the rows; and is standard if λ is a partition and the entries of t increase across the rows and
down the columns. If λ is a partition, define Std (λ) to be the set of standard λ-tableaux.
The symmetric group Sn acts from the right in a natural way on the set of tableaux.

Let λ and µ be compositions of n. A λ-tableau of type µ is obtained by replacing each
node in the diagram of λ with one of the integers 1, 2, . . . such that the number i occurs
µi times. A λ-tableau T (of type µ) is semistandard if λ is a partition, and the entries
of T are non-decreasing across the rows and strictly increasing down the columns. Let
T0(λ, µ) denote the set of semistandard λ-tableaux of type µ, and let T λ denote the unique
semistandard λ-tableau of type λ.

Let λ be a composition of n. Define tλ to be the standard λ-tableau in which the integers
1, 2, . . . , n are entered in increasing order along its rows, and Sλ to be the row stabilizer
of tλ. Set

mλ =
∑

ω∈Sλ

Tω.

We define the permutation module M(λ) to be the right -module M(λ) = mλ .

Definition 2.1 Suppose that λ is a composition of n and that t is a row standard λ-
tableau. Define d(t) ∈ Sn to be such that t = tλd(t). Now define ∗ to be the R-linear
anti-automorphism of determined by T ∗

i = Ti . If s, t are row standard λ-tableaux, define
mst ∈ by

mst = T ∗
d(s)mλTd(t).

Murphy [34] has shown that {mst | s, t ∈ Std (λ) for some partition λ of n} is a cellular
basis of in the sense of Graham and Lehrer [17]. Further, if µ is any composition of n
and s, t are row standard µ-tableaux then mst can be written as a R-linear combination of
muv where u, v ∈ Std (λ), and λ is a partition of n such that λ �µ.

Let λ, µ be compositions of n and let t be a λ-tableau. Define µ(t) to be the λ-tableau of
type µ obtained by replacing each entry in t with its row index in tµ.
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Definition 2.2 Suppose that S is a semistandard λ-tableau of type µ and t is a standard
λ-tableau. Define

mSt =
∑

s

{mst | s ∈ Std (λ) and µ(s) = S}.

As proved in [34], M(µ) is free as an R-module with basis

{mSt | S ∈ T0(λ, µ), t ∈ Std (λ) for some partition λ of n}.

Definition 2.3 Let λ be a partition of n. Define λ to be the R-submodule of with
basis

{mst | s, t ∈ Std (ν) where ν � λ}

and let ˇ λ be the R-submodule of with basis

{mst | s, t ∈ Std (ν) where ν � λ}.

We define the Specht module S(λ) to be the right R-module ( ˇ λ + mλ) .

It is shown in [33,34] that λ and ˇ λ are both two-sided ideals of . It follows that S(λ)
is a right -module which is free as an R-module with basis { ˇ λ + m

t
λ
t
| t ∈ Std (λ)}.

We now consider the q-Schur algebrasS = Sq (d, n) which we defined in the introduction.
Fix a non-negative integer d and for λ ∈ �+(d, n), set T0(λ) = ⋃

µ∈�(d,n) T0(λ, µ).

Definition 2.4 Let λ, µ ∈ �(d, n), ν ∈ �+(d, n) and suppose S ∈ T0(ν, λ), T ∈
T0(ν, µ). If τ ∈ �(d, n), define ϕST ∈ S by

ϕST (mτ h) = δτµ

∑
s,t

{mst h | s, t ∈ Std (ν) and λ(s) = S, µ(t) = T} ∈ M(λ)

for all h ∈ . In fact {ϕST | ν ∈ �+(d, n) and S, T ∈ T0(ν)} is a cellular basis of S
by [33, Theorem 4.13].

Definition 2.5 Let λ ∈ �+(d, n), µ ∈ �(d, n) and T ∈ T0(λ, µ). Define the map

ϕT :
⊕

τ∈�(d,n)

M(τ ) → S(λ)

by

ϕT (mτ h) = δτµ

∑
t

{
ˇ λ + mλTd(t)h | t ∈ Std (λ) and µ(t) = T

}
for all h ∈ .



162 LYLE AND MATHAS

By restriction, we will consider ϕT to be an element of Hom (M(µ), S(λ)).
Dipper and James [8, Corollary 8.7] have proved the next result for the family of Specht

modules which are dual to the S(λ). Our lemma is equivalent to the Dipper–James result.

Lemma 2.6 Let λ and µ be partitions of n and suppose that q �= −1 or that µ is
2-restricted. Then Hom (M(µ), S(λ)) is free as an R-module with basis {ϕT | T ∈
T0(λ, µ)}.

Proof: First observe that if φ ∈ Hom (M(µ), S(λ)) then φ(mµh) = φ(mµ)h, for all
h ∈ , so φ is completely determined by the value of φ(mµ). In particular, the maps ϕT

are linearly independent because {ϕT (mµ) | T ∈ T0(λ, µ)} is linearly independent by the
remark after Definition 2.3.

It remains to show that the set {ϕT | T ∈ T0(λ, µ)} spans Hom (Mµ, Sλ). Let φ ∈
Hom (Mµ, Sλ) and write φ(mµ) = { ˇ λ + ∑

rt mtλt | t ∈ Std (λ)}, for some rt ∈ R. Fix a
tableau s such that rs �= 0 and rt = 0 whenever s � t . We claim that µ(s) is a semistandard
tableau. If not, then there exist integers i < j which are in the same column of s such that
(i, j) ∈ Sµ. Now, ( j − 1, j) ∈ Sµ so mµTj = qmµ. Therefore

ˇ λ +
∑

rt mtλt = φ(mµ) = q−1φ(mµTj−1) = q−1φ(mµ)Tj−1

= ˇ λ +
∑

q−1rt mtλt Tj−1. (†)

Let s ′ = s( j − 1, j). If i < j − 1 then s ′ is a standard tableau and s dominates s ′, so
mtλs Tj−1 = mtλs ′ , and rs ′ = 0 by the choice of s. However, now (†) and [33, Corollary 3.9]
show that mtλs ′ appears with non-zero coefficient in φ(mµ), so this is a contradiction and
we must have i = j − 1. Therefore, j − 1 and j are in the same column of s and so there
exist av ∈ R such that

ˇ λ + mtλs Tj−1 = ˇ λ + −mtλs, +
∑

{avmtλv | v � s},

by [33, Corollary 3.21]. Hence, comparing the coefficient of mtλs on both sides of (†) shows
that rs = −q−1rs . Since q �= −1 we again have a contradiction. Hence, µ(s) is semistandard
as claimed.

To complete the proof it is enough to show that rt = rt ′ whenever µ(t) = µ(t ′). The
proof of this is similar to [33, Proposition 3.18] and is left as an exercise for the reader.

Let µ ∈ �(d, n). Then ϕT µT µ ∈ S restricts to the identity map ϕµ on M(µ), and ϕT µT µ

is zero on M(τ ) when τ �= µ. Abusing notation slightly, we write ϕµ = ϕT µT µ .
Set M(µ) to be the right S-module

M(µ) = ϕµS.

Then M(µ) has a basis given by {ϕST | S ∈ T0(λ, µ), T ∈ T0(λ) where λ ∈ �+(d, n)}.
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Definition 2.7 For λ ∈ �+(d, n), we define Sλ to be the two-sided ideal of S given by

Sλ = {ϕST | S, T ∈ T0(ν) where ν ∈ �+(d, n) and ν � λ}

and Šλ to be the two-sided ideal of S given by

Šλ = {ϕST | S, T ∈ T0(ν) where ν ∈ �+(d, n) and ν � λ}.

We define the Weyl module �(λ) to be the right S-module

�(λ) = (Šλ + ϕλ)S.

Then �(λ) is free as an R-module with basis

{Šλ + ϕT λT | T ∈ T0(λ)}. (2.8)

In fact, we may identify Šλ + ϕT λT with the map ϕT ∈ Hom (⊕τ M(τ ), S(λ)) of
Definition 2.5. Then �(λ) is isomorphic to the S-submodule of Hom (⊕τ M(τ ), S(λ)) with
basis {ϕT | T ∈ T0(λ)}. (Note that if q �= −1 this is actually a basis of Hom (⊕τ M(τ ),
S(λ)) by Lemma 2.6.)

Definition 2.9 Let λ ∈ �+(d, n), µ ∈ �(d, n) and T ∈ T0(λ, µ). Define θT ∈
HomS (M(µ), �(λ)) by

θT (ϕµ f ) = ϕT f

for all f ∈ S.

Lemma 2.10 Suppose that λ ∈ �+(d, n) and µ ∈ �(d, n). Then {θT | T ∈ T0(λ, µ)} is
a basis of HomS (M(µ), �(λ)).

Proof: Following the proof of Lemma 2.6, it is easy to show that if θ ∈ HomS (M(µ),
�(λ)), then θ is completely determined by the value of θ (ϕµ), and that the maps {θT | T ∈
T0(λ, µ)} are linearly independent. In order to show that they span HomS (M(µ), �(λ)),
consider θ ∈ HomS (M(µ), �(λ)) such that θ (ϕµ) = {Šλ + ∑

rT ϕT λT | T ∈ T0(λ)} for
some rT ∈ R. Now note that ϕµϕν = 0 for ν �= µ. Hence for ν �= µ we have that

0 = θ (ϕµϕν) =
{
Šλ +

∑
rT ϕT λT | T ∈ T0(λ, ν)

}
so that rT = 0 for T ∈ T0(λ, ν). This concludes the proof.

Classically, the next Proposition is a famous result of Carter and Lusztig [2]. The quantum
analogue was first proved by Dipper and James [8]. The Dipper–James proof of this result is
quite hard because they have to simultaneously construct a semistandard basis of the Weyl
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modules using what is essentially a Garnier relation argument. In contrast, from a cellular
algebra perspective the Weyl modules come equipped with a semistandard basis, and this
allows us to give a short bijective proof of this result.

Proposition 2.11 Let λ and µ be partitions of n and suppose that q �= −1 or that µ is
2-restricted. Then

HomS (�(µ), �(λ)) ∼= Hom (S(µ), S(λ))

as R-modules.

Proof: Suppose that θ ∈ HomS (�(µ), �(λ)). Let πµ :M(µ) → �(µ) be the natural
projection map. Then θ ◦ πµ ∈ HomS (M(µ), �(λ)) so we may write

θ ◦ πµ =
∑

T ∈T0(λ,µ)

rT θT ,

for some rT ∈ R. Let φθ = ∑
T rT ϕT . Then φθ ∈ Hom (M(µ), S(λ)) by Lemma 2.6. It

is easy to see that φθ (mµh) = 0 whenever mµh ∈ ˇ µ, so we have a well-defined map
θ̇ : S(µ)→ S(λ) given by θ̇ [( ˇ µ + mµ)h] = φθ (mµh) for all h ∈ .

Conversely, suppose that φ ∈ Hom (S(µ), S(λ)). Let pµ : M(µ) → S(µ) be the natural
projection map. Then pµ◦φ ∈ Hom (M(µ), S(λ)). We can reverse the steps in the previous
paragraph to define a map φ̇ ∈ HomS (�(µ), �(λ)).

As the two maps defined are mutually inverse bijections, the Proposition follows.

3. A bijective proof of Theorem 1.2

Recall that we have fixed a positive integer s. If λ is a partition then the conjugate partition
to λ is the partition obtained by swapping the rows and columns of λ. Recall the definition
of the partition λt and λb from the introduction. Using conjugation, we define analogous
partition λl and λr as follows:

λl = (min(λ1, s), min(λ2, s) . . . , ) λr = (max(λ1 − s, 0), max(λ2 − s, 0) . . . , )

We recall the pictorial description of the partitions λt, λb, λl and λr :

λ
λt

λb

λr

λl

.

We can now state a stronger version of Theorem 1.2.
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Theorem 3.1 We fix positive integers n and d, a commutative ring R and an invertible
element q of R. For λ, µ ∈ �+(d, n), we have the following results.

(i) Suppose that λ1 + · · · + λs = µ1 + · · · + µs . Then

HomSq (d,n)(�(µ), �(λ))
∼= HomSq(d′,n−m)(�(µt), �(λt)) ⊗ HomSq(d′′,m)(�(µb), �(λb)).

where m = |λb| and d ′, d ′′ > 0 satisfy µt, λt ∈ �+(d ′, n − m) and µb, λb ∈ �+(d ′′,
m).

(ii) Suppose that λ′
1 + · · · + λ′

s = µ′
1 + · · · + µ′

s . Then

HomSq(d,n)(�(λ), �(µ))
∼= HomSq (d ′,n−m)(�(λl), �(µl)) ⊗ HomSq (d ′′,m)(�(λr ), �(µr )),

where m = |λr | and d ′, d ′′ > 0 satisfy µl , λl ∈ �+(d ′, n−m) and µr , λr ∈ �+(d ′′, m).

Using a Ringel duality argument we will show below that both parts of the theorem are
equivalent. We will prove part (i) by constructing explicit bijections between the two spaces
of homomorphisms using the combinatorics of a cellular basis of Sq (d, n).

Applying (1.3) we immediately obtain the following more general version of Theorem 1.1.

Corollary 3.2 Let λ and µ be partitions of n. Assume that q �= −1 or that µ is 2-restricted.

(i) Suppose that λ1 +· · ·+λs = µ1 +· · ·+µs . If q = −1, assume that µt is 2-restricted.

Then

Hom n (S(µ), S(λ)) ∼= Hom n−m (S(µt), S(λt)) ⊗ Hom m (i(µb), S(λb)).

where m = |λb|.
(ii) Suppose that λ′

1 + · · · + λ′
s = µ′

1 + · · · + µ′
s . Then

Hom n (S(λ), S(µ)) ∼= Hom n−m (S(λl), S(µl)) ⊗ Hom m (S(λr), S(µr)),

where m = |λr |.

Note that if q = −1 then Theorem 3.2 does not generally hold unless all partitions
derived from µ are 2-restricted. For example, if q = −1 and R is a field of characteristic 2
(so n

∼= RSn) then

Hom 2 (S(1, 1), S(1, 1)) ∼= R ∼= Hom 2 (S(2), S(1, 1)),

but Hom 4 (S(3, 1), S(2, 2)) = 0.
We remark that it is possible to obtain an explicit bijection for the isomorphisms of

Theorem 3.2(i) by mimicking the proof of Theorem 3.1(i) below.
We will first prove that parts (i) and (ii) of Theorem 3.1 are equivalent. The next lemma

shows that we can reduce to the case where d ≥ n, d ′ ≥ n − l and d ′′ ≥ l.
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Lemma 3.3 Suppose that λ, µ ∈ �+(d, n). Then

HomSq(d,n)(�(λ), �(µ)) ∼= HomSq(d+1,n)(�(λ), �(µ)).

Proof: This follows from the general theory of Schur functors, as can be found in [1,
Section 3.1]. To see this let ϕd = ∑{ϕα | α ∈ �(d, n)} ∈ Sq (d + 1, n). Then ϕd is an
idempotent so P = ϕdSq (d + 1, n) is a projective Sq (d + 1, n)-module. Since Sq (d, n) ∼=
ϕdSq (d + 1, n)ϕd we can define a functor

α : Mod-Sq (d + 1, n) → Mod-Sq (d, n) by α = HomSq(d+1,n)(P, ).

If λ, µ ∈ �+(d, n) then every composition factor of the Sq (d + 1, n)-modules �(λ) and
�(µ) are contained in the head of P , so HomSq(d+1,n)(�(λ), �(µ)) ∼= HomSq(d,n)(α(�(λ)),
α(�(µ))) by [1, Corollary 3.1c]. It is easy to see that if ν ∈ �(d, n) then α(�(ν)) ∼= �(ν),
as Sq (d, n)-modules, so this completes the proof.

To show that parts (i) and (ii) of Theorem 3.1 are equivalent we need some more notation.
Fix an integer d ≥ n and for λ ∈ �(d, n) define

nλ =
∑

w∈Sλ

(−q)−�(w)Tw.

Set N (λ) = nλ and let SR = SR(d, n) be the endomorphism algebra

SR = End

( ⊕
µ∈�(d,n)

N(µ)

)
.

Let # : → be the R-linear map determined by T #
w = (−q)−�(w)T −1

w−1 , for all w ∈ Sn .
Then it is easy to see that # is an algebra automorphism of and that n#

µ = mµ, for all
µ ∈ �(d, n); see, for example, [6]. Therefore, N (µ) = (M(µ))# and Hom (M(µ), M(λ)) ∼=
Hom (N(µ), N(λ)). Consequently, # induces a canonical algebra isomorphism
F : Sq (d, n)

�→SR(d, n); explicitly, F(φ)(h) = (φ(h#))#, for all φ ∈ Sq (d, n) and all
h ∈ . For λ ∈ �+(d, n) define �(λ)R = F(�(λ)). Then �(λ)R is an analogue of a Weyl
module for the algebra SR(d, n).

Donkin has shown that if d ≥ n then SR(d, n) is the Ringel dual of the q-Schur algebra
Sq (d, n) [13]. Consequently, we have a contravariant functor G which sends Sq (d, n)-
modules to SR(d, n)-modules. Further, if ν ∈ �(d, n) then G(�(ν)) ∼= �R(ν ′)�, where
�R(ν ′)� is the contragredient dual of �R(ν ′). Proofs and further explanations of these
results can be found in [13, Sections 4.1 and A4].

Lemma 3.4 Suppose that d ≥ n and λ, µ ∈ �+(d, n) Then

HomSq(d,n)(�(µ), �(λ)) ∼= HomSq(d,n)(�(λ′), �(µ′)).
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Proof: Since d ≥ n, SR(d, n) is the Ringel dual of Sq(d, n). Therefore, using the functors
above, we have

HomSq(d,n)(�(µ), �(λ)) ∼= HomSR(d,n)(�R(µ), �R(λ)), by applying F,

∼= HomSR(d,n)(�R(λ)�, �R(µ)�), by duality,

∼= HomSq(d,n)(�(λ′), �(µ′)),

where the last line follows by using G.

Remark If X and Y are Sq (d, n)-modules which both have a ∇-filtration then ExtkSq(d,n)

(X, Y) ∼= ExtkSR(d,n)(G(X), G(Y)) by [13, Section A2.2]. Hence, ExtkSq(d,n)(�(µ), �(λ)) ∼=
ExtkSq (d,n)(�(λ′), �(µ′)), for all k ≥ 0 by the argument above. This result is due to Donkin
[13, 4.1.5].

Proposition 3.5 Theorem 3.1(i) holds if and only if Theorem 3.1(ii) holds.

Proof: By Lemma 3.3 we may assume that d, d ′, d ′′ are all large enough so that we can
apply Lemma 3.4.

If λ and µ satisfy the conditions of Theorem 3.1(i), then λ′ and µ′ satisfy the conditions
of Theorem 3.1(ii), with r = s, l = m and with

(λ′)l = (λt)′, (λ′)r = (λb)′,
(µ′)l = (µt)′, (µ′)r = (µb)′.

By Lemma 3.4 we have HomSq(d,n)(�(µ), �(λ)) ∼= HomSq(d,n)(�(λ′), �(µ′)) and

HomSq(d′,n−m)(�(µt), �(λt)) ⊗ HomSq(d′′,m)(�(µb), �(λb))
∼= HomSq(d′,n−m)(�((λ′)l), �((µ′)l)) ⊗ HomSq(d′′,m)(�((λ′)r), �((µ′)r)).

The proof of the converse is similar.

We now prove Theorem 3.1. Fix integers n, m, d, d ′ and d ′′ as in the statement of the
theorem and fix partitions λ, µ ∈ �+(d, n) such that

λ1 + · · · + λs = µ1 + · · · + µs = n − m,

and λt, µt ∈ �+(d ′, n − m), and λb, µb ∈ �+(d ′′, m).
We need to define Schur algebras corresponding to the partitions λt and λb. First, recall

that = n is the Hecke algebra of Sn . It is the algebra generated by T1, T2, . . . , Tn−1

subject to the relations given in the introduction. Define t ∼= n−m to be the quantum
subgroup of generated by

T1, T2, . . . , Tn−m−1.
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Similarly, define b ∼= m to be the quantum subgroup of generated by

Tn−m+1, Tn−m+2, . . . , Tn−1.

Note that if ht ∈ t and hb ∈ b then hthb = hbht.
By definition, Sn−m is the full group of permutations acting on the set {1, 2, . . . , n −m}.

Similarly, define S
b
m to be the permutation group acting on {n − m + 1, n − m + 2, . . . , n}.

Then t ∼= R,q (Sn−m) and b ∼= R,q (Sb
m).

Suppose that ν is any partition of n such that ν1 + ν2 + · · · + νs = n − m. Then tν t

is the standard ν t-tableau with entries 1, 2, . . . , n − m increasing in order along the rows.
Similarly, define tνb

to be the standard νb-tableau with entries n −m +1, n −m +2, . . . , n
increasing in order along the rows. Then we also have corresponding subgroupsSν t ⊆ Sn−m

and S
b
νb ⊆ S

b
m which are the row stabilizers of the tableaux tν t

and tνb
respectively. Now

define

mν t =
∑

ω∈Sνt

Tω ∈ t and mνb =
∑

ω∈Sb
νb

Tω ∈ b.

Note that mν = mν t mνb = mνb mν t in . Then we have

M(ν t) = mν t
t and M(νb) = mνb

b.

Since t ∼= n−m and b ∼= m we can use Definition 2.1 to define cellular bases of t

and b in the obvious way. So, the tableaux indexing the cellular basis of t contain as
entries the numbers 1, . . . , n − m, whereas the tableaux indexing the basis of b contain

n − m + 1, . . . , n. Using these bases we define ideals ˇ ν t

and S(ν t ) of t and ideals ˇ νb

and S(νb) of b.
Recall that S = End (⊕τ∈�(d,n)M(τ )). We similarly define

S t = End t

( ⊕
τ∈�(d′,n−m)

M(τ )

)
and Sb = End b

( ⊕
τ∈�(d′′,m)

M(τ )

)
.

Then S t ∼= Sq (d ′, n − m) and Sb ∼= Sq (d ′′, m). Consequently, we have natural cellular
algebras for both of these algebras and analogous modules Šν t

, �(ν t) and so on.
Recall from Lemma 2.10 that HomS (M(µ), �(λ)) has basis { θA | A ∈ T0(λ, µ) }, where

θA is the map θA(ϕµ f ) = ϕA f , for all f ∈ S. We have similar bases for HomS t (M(µt),
�(λt)) and HomSb (M(µb), �(λb)).

Before we can begin the proof of Theorem 3.1 we need the following combinatorial
definition.

Definition 3.6 Let At ∈ T0(λt, µt) and Ab ∈ T0(λb, µb) be two semistandard tableaux
and suppose that At ∈ T0(λt, µt) has entry xi

j in position i of row j and Ab ∈ T0(λb, µb)
has entry yi

j in position i of row j . Define (At, Ab) to be the λ-tableau of type µ with entry
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zi
j in position i of row j , where

zi
j =

{
xi

j ( j ≤ s)

yi
j + s ( j > s)

.

For example, if

At =
1 1 1 1 1 2

2 2 2 3

3 3 3

, Ab =
1 1 2

2 3

3

,

then

(At, Ab) =

1 1 1 1 1 2

2 2 2 3

3 3 3

4 4 5

5 6

6

.

Lemma 3.7
(i) Suppose that At ∈ T0(λt, µt) and Ab ∈ T0(λb, µb). Then (At, Ab) is a semistandard

λ-tableau of type µ.

(ii) T0(λ, µ) = { (At, Ab) | At ∈ T0(λt, µt) and Ab ∈ T0(λb, µb) } .

Proof: The first statement is clear. For (ii), suppose that A is a semistandard λ-tableau of
type µ with entry zi

j in position i of row j . Then the entries of A strictly increase down the
columns, so that for j > s we have that zi

j > s. Since the number, n − m, of entries less
than or equal to s equals the number of positions in rows 1, . . . , s, it also is also true that
zi

j ≤ s for j � s. So the top s rows of A constitute a λt-tableau of type µt (which is clearly
semistandard), and a similar statement holds for the lower rows.

Recall our convention from above that the standard νb-tableaux contain the numbers
n − m + 1, . . . , n as entries. As an immediate corollary we obtain the following.

Corollary 3.8 Suppose that A ∈ T0(ν, µ). Then

{a | a ∈ Std (ν) and µ(a) = A}
= {(at, ab) | at ∈ Std (ν t) and µt(at) = At, ab ∈ Std (νb) and µb(ab) = Ab}.
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The key definition that we need to prove Theorem 3.1 is the following.

Definition 3.9 Suppose that θ t ∈ HomS t (M(µt), �(λt)) and θb ∈ HomSb (M(µb),
�(λb)), where

θ t =
∑

At

{γAtθAt | At ∈ T0(λt, µt)} ∈ HomS t (M(µt), �(λt))

and

θb =
∑

Ab

{γAbθAb | Ab ∈ T0(λb, µb)} ∈ HomSb (M(µb), �(λb)).

Define the map θ = (θ t, θb) : M(µ) → �(λ) by θ = ∑
At

∑
Ab γAtγAbθ(At,Ab).

Note that by Lemma 2.10, this defines a bijection

HomS t (M(µt), �(λt)) ⊗ HomSb (M(µb), �(λb)) → HomS (M(µ), �(λ)).

We need two simple lemmas before we can exploit this observation.

Lemma 3.10 Suppose that λ � ν �µ. Then ν1 + · · · + νs = n − m and either ν t �µt or
νb �µb.

Proof: The proof follows directly from the definition of � .

Lemma 3.11 Suppose that ν �µ and that S ∈ T0(ν, µ). Let

m =
∑

s

{
T ∗

d(s)mν

∣∣ s ∈ Std (ν) and µ(s) = S
}
.

Then m = mµhthb for some ht, hb such that ht ∈ t and hb ∈ b and either mµt ht ∈ ˇ µt

or mµb hb ∈ ˇ µb

.

Proof: Define

mt =
∑

st

{
T ∗

d(st)mν t

∣∣ st ∈ Std (ν t) and µt(st) = St
}
.

Then mt ∈ M(µt) and so mt = mµt ht for some ht ∈ t. Similarly, we can define

mb =
∑

sb

{
T ∗

d(sb)mνb

∣∣ sb ∈ Std (νb) and µb(sb) = Sb
}
.
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so that mb = mµb hb for some hb ∈ b. If ν t �µt then mµt ht ∈ ˇ µt

; otherwise, by

Lemma 3.10, νb �µb and mµb hb ∈ ˇ µb

. Then

m =
∑

s

{
T ∗

d(s)mν

∣∣ s ∈ Std (ν) and µ(s) = S
}

=
∑

st

∑
sb

{
T ∗

d(st)T
∗

d(sb)mν t mνb

∣∣ st ∈ Std (ν t) and µt(st)

= St, sb ∈ Std (νb) and µb(sb) = Sb
}

by Lemma 3.8. Therefore, m = mt mb = mµt htmµb hb = mµhthb, completing the proof.

Proposition 3.12 Let ν ∈ �+(d, n) and τ ∈ �(d, n) be partitions such that λ � ν �µ.

Suppose that U ∈ T0(ν, µ), V ∈ T0(ν, τ ) and A ∈ T0(λ, µ). Then θA(ϕU V ) = 0.

Proof: Define θT λ A ∈ HomS (M(µ),M(λ)) by θT λ A(ϕµ f ) = ϕT λ A f , for all f ∈ S. Then
θT λ A is a well defined S-homomorphism and θA = π ◦ θT λ A where π : M(λ) → �(λ) is
the natural projection. Note that ϕU V = ϕµϕU V . Then

θT λ A(ϕU V ) = (θT λ A(ϕµ))ϕU V = ϕT λ AϕU V .

Now ϕT λ A ∈Sλ and ϕU V ∈Sν . So, since λ�ν, we have that ϕT λ AϕU V ∈ Šλ. Hence
θA(ϕU V ) = π (ϕT λ AϕU V ) = 0.

Proposition 3.13 Let ν and τ be partitions in �+(d, n) with λ � ν �µ. Suppose that

θ t ∈ HomS t (M(µt), �(λt)) and θb ∈ HomSb (M(µb), �(λb))

are two maps such that

θ t(ϕµt f ) = 0 whenever f ∈ S tand ϕµt f ∈ Šµt

and

θb(ϕµb f ) = 0 whenever f ∈ Sb and ϕµb f ∈ Šµb
.

Let θ = (θ t, θb) as in Definition 3.9 and suppose that U ∈ T0(ν, µ) and V ∈ T0(ν, τ ). Then

θ (ϕU V ) = 0.

Proof: Write

θ t =
∑

At

{γAtθAt | At ∈ T0(λt, µt)} and θb =
∑

Ab

{γAbθAb | Ab ∈ T0(λb, µb)}.
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Note that ϕU V = ϕµϕU V . Then

θ (ϕU V ) =
∑

At

∑
Ab

γAtγAbθ(At,Ab)(ϕµ)ϕU V

=
∑

At

∑
Ab

γAtγAbϕ(At,Ab)ϕU V ∈ Hom (M(τ ), S(λ)).

Then, using the notation of Lemma 3.11, there exist ht ∈ t, hb ∈ b such that

[θ (ϕU V )](mτ ) =
∑

At

∑
Ab

γAtγAbϕ(At,Ab) (ϕU V (mτ ))

=
∑

At

∑
Ab

γAtγAbϕ(At,Ab)

×
( ∑

u

∑
v

{
T ∗

d(u)mνTd(v) | u, v ∈ Std (ν), µ(u) = U, τ (v) = V
})

=
∑

At

∑
Ab

γAtγAbϕ(At,Ab)

(
mµhthb

∑
v

Td(v)

)

= ˇ λ +
∑

At

∑
Ab

∑
at

∑
ab

{
γAtγAb mλt mλb Td(at)Td(ab)h

thb
∑

v

Td(v)∣∣∣∣∣ at ∈ Std (λt), ab ∈ Std (λb), µt(at) = At, µb(ab) = At

}

wthere either ν t �µt and mµt ht ∈ ˇ µt

or νb �µb and mµb hb ∈ ˇ µb

. Without loss of gener-

ality, assume mµt ht ∈ ˇ µt

. Consider ϕU t T νt ∈ Hom (M(ν t), M(µt)). Then θ t(ϕU t T νt ) = 0
by assumption and hence∑

At

∑
at

γAt mλt Td(at)h
t = [θ t(ϕAt T νt )](mν t ) ∈ ˇ λt

.

Also, ∑
At

∑
ab

γAt mλb Td(ab)h
b ∈ M(λb).

Hence we can write

[θ (ϕU V )](mτ ) = ˇ λ +
( ∑

xt,yt

{δxt yt mxt yt | xt, yt ∈ Std (τ t) where τ t � λt}
)

×
( ∑

xb,yb

{δxb yb mxb yb | xb, yb ∈ Std (τ b) where τ b � λb}
)

Td(t)
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for some δxt yt , δxb yb ∈ R. Now for any such mxt yt , mxb yb we may write

mxt yt mxb yb = T ∗
d(xt)mτ t Td(yt)T

∗
d(xb)mτ b Td(yb)

= T ∗
d(xt)T

∗
d(xb)mτ t mτ b Td(yt)Td(yb)

= T ∗
d(xt,xb)mτ Td(yt,yb)

where τ = (τ t
1, τ

t
2, . . . , τ b

1 , τ b
2 , . . . ) is a composition of n such that τ � λ and (xt, xb),

(yt, yb) are row standard τ -tableaux. By Definition 2.1, this can be written as an R-linear
combination of terms muv where u, v ∈ Std (τ ′) and τ ′ � τ � λ. Hence mxt yt mxb yb ∈ ˇ λ

.

Since ˇ λ is a right ideal, it follows that mxt yt mxb yb Td(t) ∈ ˇ λ and so [θ (ϕU V )](mτ ) = 0 as
required.

Proposition 3.14 Suppose that θ t ∈ HomS t (M(µt), �(λt)), and θb ∈ HomSb (M(µb),
�(λb)) are such that

θ t(ϕµt f ) = 0 whenever f ∈ S t and ϕµt f ∈ Šµt

and

θb(ϕµb f ) = 0 whenever f ∈ Sb and ϕµb f ∈ Šµb
.

Define the map θ = (θ t, θb) as in Definition 3.9, and define the map θ̂ : �(µ) → �(λ) by

θ̂ [(Šµ + ϕµ) f ] = [θ (ϕµ)] f for all f ∈ S.

Then θ̂ is a well defined S-homomorphism.

Proof: It is sufficient to show that if f ∈ S is such that ϕµ f ∈ Šµ then [θ (ϕµ)] f =
θ (ϕµ f ) = 0. Suppose f satisfies these conditions. Then ϕµ f is an R-linear combination of
terms of the form ϕU V where U ∈ T0(ν, µ) and V ∈ T0(ν, τ ) for some ν ∈ �+(d, n), τ ∈
�(d, n) such that ν �µ. Choose such an ϕU V . If λ�ν then θ (ϕU V ) = 0 by Proposition 3.12.
If λ � ν then θ (ϕU V ) = 0 by Proposition 3.13. Hence θ (ϕµ f ) = 0 as required.

Definition 3.15 Suppose that

θ̂ t ∈ HomS t (�(µt), �(λt)), and θ̂b ∈ HomSb (�(µb), �(λb)).

Define

θ t ∈ HomS t (M(µt), �(λt)), and θb ∈ HomSb (M(µb), �(λb)).

in the obvious manner; that is, θ t = θ̂ t ◦ π t and θb = θ̂b ◦ πb where πT and πB are the
projections onto �(µt) and �(µb) respectively. Note that θ t and θb satisfy the conditions
of Proposition 3.14. Hence define

θ̂ = (θ̂ t, θ̂b) ∈ HomS (�(µ), �(λ))

as in Proposition 3.14.
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Proposition 3.16 Let θ ∈ HomS (M(µ), �(λ)) be such that

θ (ϕµ f ) = 0 whenever f ∈ S and ϕµ f ∈ Šµ.

Then by Lemma 3.7 there exist γAt Ab ∈ R such that

θ =
∑
At,Ab

{
γAt Abθ(At,Ab) | At ∈ T0(λt, µt), Ab ∈ T0(λb, µb)

}
.

Fix Ab and consider θ t = ∑
At γAt AbθAt ∈ HomS t (M(µt), �(λt)). Then

θ t(ϕµt f ) = 0 whenever f ∈ S t and ϕµt f ∈ Šµt
.

Proof: Suppose we have the conditions of Proposition 3.16. By Proposition 3.12 and
Proposition 3.14, it is sufficient to show that θ t(ϕU V ) = 0 for any U ∈ T0(ν t, µt), V = T ν t

such that ν t ∈ �+(d, n) and λt � ν t �µt. We have∑
u

{
T ∗

d(u)mν t

∣∣ u ∈ Std (ν t) and µt(u) = U
} = mµt ht

for some ht ∈ t. Then θ t(ϕU V ) = 0 if and only if∑
At

γAt Ab

∑
at

{
mλt Td(at)h

t
∣∣ at ∈ Std (λt) and µt(at) = At

} ∈ ˇ λt

.

Now fix ν = (ν t, νb), X = (U t, T νb
), Y = T ν . By assumption, θ (ϕXY ) = 0. Hence∑

At,Ab

γAt Ab

∑
at

∑
ab

{
mλt mλb Td(at)Td(ab)h

t
∣∣ ab ∈ Std (λb) and µb(ab) = Ab

} ∈ ˇ λ

and so∑
At

γAt Ab

∑
at

mλt Td(at)h
t ∈ ˇ λt

as required.

Definition 3.17 Suppose θ ∈ Hom (M(µ), �(λ)) is such that θ (ϕµ f ) = 0 for all f ∈ S
such that ϕµ f ∈ Šµ. Define θ̂ ∈ HomS (�(µ), �(λ)) by setting

θ̂ (ϕT µ f ) = θ (ϕµ) f, for all f ∈ S.
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Similarly, if θ̂ ∈ HomS (�(µ), �(λ)), define θ ∈ HomS (M(µ), �(λ)) by θ = θ̂ ◦ π

where π : M(µ) → �(µ) is the natural projection. We use analogous notation for the
corresponding S t and Sb homomorphisms.

We can now prove Theorem 3.1.

Proof of Theorem 3.1: We have to show that

HomS (�(µ), �(λ)) ∼= HomS t (�(µt), �(λt)) ⊗ HomSb (�(µb), �(λb)).

Let θ̂ t ∈ Hom t (�(µt), �(λt)) and θ̂b ∈ HomSb (�(µb), �(λb)). Then there is an R-linear
mapping from HomS t (�(µt), �(λt)) ⊗ HomSb (�(µb), �(λb)) into HomS (�(µ), �(λ))
given by sending

θ̂ t ⊗ θ̂b 	→ (θ̂ t, θ̂b)

and extending linearly. By construction, this mapping is injective. It remains only to show
that it is surjective.

Let θ̂ ∈ HomS (�(µ), �(λ)). Form θ = θ̂ ◦ π ∈ HomS (M(µ), �(λ)) so that θ satisfies
the conditions of Proposition 3.16. Suppose

θ =
∑
At,Ab

{
γAt Abθ(At,Ab) | At ∈ T0(λt, µt), Ab ∈ T0(λb, µb)

}
for some γAt Ab ∈ R. Fix Ab. By Proposition 3.16, the map

θ t =
∑

At

γAt AbθAt

is such that the corresponding map θ̂ t : �(µt) → �(λt) is well defined. Suppose that
{ψ̂i | i ∈ I } is a basis of HomS t (�(µt), �(λt)). So we can write

θ̂ t =
∑

i

βi,Abψ̂i

and so

θ =
∑
i,Ab

βi,Ab (ψi , θAb ).

A similar argument for fixed ψi shows that in fact

θ =
∑
i, j

αi j
(
ψ t

i , ψ
b
j

)
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where ψ̂ t
i ∈ HomS t (�(µt), �(λt)) and ψ̂b

j ∈ HomSb (�(µb), �(λb)); thus under our map-

ping, θ̂ appears as the image of∑
i, j

αi j
(
ψ̂ t

i ⊗ ψ̂b
j

) ∈ HomS t (�(λt), �(µt)) ⊗ HomSb (�(λb), �(µb)).

4. The proof of Theorem 1.5

In this section we give Donkin’s proof of Theorem 1.5. In fact the argument is a general-
ization of Donkin’s proof of Corollary 1.6 in the classical case; see [15, Section 4]. See
also [13, Section 4.2(16) and (17)] and compare with [5, Remark 11(b)].

Throughout this section we assume that R is a field and we use the notation and termi-
nology from Donkin’s book [13], especially from section 4.2. Although we have tried to
make our exposition self-contained, we refer the reader to [13] for further explanation of
the notation and concepts used below.

Recall from the introduction that G(d) is the quantum general linear group, 	 is a set of
simple roots for G(d) and G
(d) is the Levi quantum subgroup corresponding to 
 ⊂ 	.
Let P
(d) be the corresponding parabolic quantum subgroup of G(d). Let X be the set
of weights for G(d) and X+ the set of dominant weights, and let X
 and X+


 be the
corresponding weights for G
(d). Recall that for each λ ∈ X+ we have the exact functor

Trλ
 : Mod-G(d)→Mod-G
(d); V 	→
⊕
µ ∈ X

λ − µ ∈ Z


Vµ.

Observe that we can regard any G
(d)-module as a P
(d)-module via inflation using the
natural homomorphism P
(d) → G
(d); in particular, we can think of Trλ
V as a P
(d)-
module.

Now fix λ ∈ X+ and suppose that V = ⊕Vτ is a G(d)-module such that Vτ is non–zero
only if λ ≥ τ . Set V0 = ⊕λ−τ �∈Z
Vτ . Then V0 is a P
(d) submodule of V and it is easy to
see that Trλ
V ∼= V/V0 as P
(d)-modules.

Rather than prove the version of Theorem 1.5 stated in the introduction we prove the
equivalent statement for the induced modules ∇(µ) ∼= �(−w0µ)∗, where µ ∈ X+ and w0

is the element of longest length in the Weyl group Sn .
Let G be one of the quantum groups (Hopf algebras) G(d), G
(d) or P
(d). Recall that

if W and V are finite dimensional G-modules then ExtkG
(
V, W

) = Hk
(
G, V∗ ⊗ W

)
, where

H k(G, ) is the kth right derived functor of the fixed point functor from Mod-G to R-vector
spaces.

We will also need the following result. Suppose that V and W are finite dimensional
G
(d)-modules such τ − σ ∈ Z
 whenever Vτ �= 0 and Wσ �= 0. Then, by [13, Sec-
tion 4.2(16)],

ExtkG
 (d)(V, W) = Hk(G
(d), V∗ ⊗ W) ∼= Hk(P
(d), V∗ ⊗ W) = ExtkP
 (d)(V, W).

(4.1)
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We can now give the proof of Donkin’s result.

Theorem 4.2 (Donkin) Let R be a field, 
 ⊂ 	 and let λ and µ be dominant weights
such that λ − µ ∈ Z
. Suppose that V = ⊕Vτ is a finite dimensional G(d)-module such
that Vτ �= 0 only if λ ≥ τ. Then

ExtkG(d)(V, ∇(µ)) ∼= ExtkG
 (d)

(
Trλ
V, ∇
(µ)

)
,

for all k ≥ 0.

Proof: If ExtkG
 (d)(Trλ
V, ∇
(µ)) �= 0 then ExtkG
 (d)(L
(τ ), ∇
(µ)) �= 0 for some com-
position factor L
(τ ) of Trλ
V . Therefore, τ ≥ µ and, as λ ≥ τ , we also have λ ≥ µ.
Applying this to the case 
 = 	 we find, in particular, that λ ≥ µ if ExtkG(d)(V, ∇(µ)) �= 0.
Hence we may assume, in proving the Theorem, that λ ≥ µ.

By definition, if τ is a weight of Trλ
V then λ − τ ∈ Z
. On the other hand, if σ is a
weight of ∇
(µ) then µ − σ ∈ Z
 by the remarks after [13, Section 4.2(1)]. As λ − µ ∈
Z
 it follows that Trλ
V and W = ∇
(µ) satisfy the hypothesis of (4.1); consequently,
ExtkG
 (d)(Trλ
V, ∇
(µ)) ∼= ExtkP
 (d)(Trλ
V, ∇
(µ)). On the other hand, ExtkG(d)(V, ∇(µ)) ∼=
ExtkP
 (d)(V, ∇
(µ)) by a corollary of Kempf’s vanishing theorem (see [26, Section II.4.6(a)]
or [10, 2.1.3]). So it remains to prove that ExtkP
 (d)(V, ∇
(µ)) ∼= ExtkP
 (d)(Trλ
V, ∇
(µ)).

As remarked above, Trλ
V ∼= V/V0 as a P
(d)-module, so we have a short exact sequence
of P
(d)-modules 0 → V0 → V → Trλ
V → 0. Therefore, by the induced long exact
sequence, it suffices to prove that ExtkP
 (d)(V0, ∇
(µ)) = 0, for k ≥ 0. Thus, by another
long exact sequence argument, we are reduced to showing that ExtkP
 (d)(L
(τ ), ∇
(µ)) = 0
for each P
(d) composition factor L
(τ ) of V0. Suppose, if possible, that ExtkP
 (d)(L
(τ ),
∇
(µ)) �= 0. Then τ ≥ µ, so τ − µ is a sum of positive roots. We trivially have λ − µ =
(λ−τ )+ (τ −µ); however, notice that both λ−τ and τ −µ are sums of positive roots, so no
cancellation can occur in this sum. Consequently, we have λ − τ ∈ Z
 since λ − µ ∈ Z
.
However, this contradicts the definition of V0 and so completes the proof.

Remark The proof of Theorem 4.2 relies, ultimately, on Kempf’s vanishing theorem. The
argument is equally valid for any reductive algebraic group G (compare [5, Corollary 10]),
and for any quantized enveloping algebra for which a version of Kempf’s vanishing theorem
holds.
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