Irreducible Representations of Wreath Products of Association Schemes

AKIHIDE HANAKI hanaki@math.shinshu-u.ac.jp Department of Mathematical Sciences, Faculty of Science, Shinshu University, Matsumoto 390-8621, Japan

KAORU HIROTSUKA

Department of Mathematical Sciences, Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan

Received November 30, 2001; Revised November 13, 2002

Abstract. The wreath product of finite association schemes is a natural generalization of the notion of the wreath product of finite permutation groups. We determine all irreducible representations (the Jacobson radical) of a wreath product of two finite association schemes over an algebraically closed field in terms of the irreducible representations (Jacobson radicals) of the two factors involved.

Keywords: association scheme, irreducible representation, wreath product

1. Introduction

In general, representation theory is a valuable tool for the study of association schemes. In this article, we consider the representations of the wreath product of association schemes. We consider the association scheme as defined in [1], but we do not assume the commutativity of it. Historically, this is also called a homogeneous coherent configuration. Here we will consider irreducible representations of wreath products of association schemes.

Let \mathfrak{X} and \mathfrak{Y} be association schemes. Then we can define the wreath product $\mathfrak{X} \wr \mathfrak{Y}$ of \mathfrak{X} and \mathfrak{Y} . Let *F* be an algebraically closed field, and let $F\mathfrak{X}, F\mathfrak{Y}$, and $F(\mathfrak{X} \wr \mathfrak{Y})$ be the adjacency algebras of $\mathfrak{X}, \mathfrak{Y}$, and $\mathfrak{X} \wr \mathfrak{Y}$ over *F*, respectively. We define representations of $F(\mathfrak{X} \wr \mathfrak{Y})$ in terms of irreducible representations of $F\mathfrak{X}$ and $F\mathfrak{Y}$. They are also irreducible with some exceptions. Next we determine the Jacobson radical of $F(\mathfrak{X} \wr \mathfrak{Y})$ and its dimension. Then we can conclude that every irreducible representation of $F(\mathfrak{X} \wr \mathfrak{Y})$ is defined from an irreducible representation of $F\mathfrak{X}$ or $F\mathfrak{Y}$. Also we will describe all irreducible characters of the wreath product. In K. See and S. Y. Song [5], they wrote that they can calculate the character table of the wreath product of association schemes. But they assume the commutativity of association schemes. In the non-commutative case, there are some difficulties.

2. Preliminaries

Let \mathfrak{X} and \mathfrak{Y} be association schemes, in the sense of [1], with adjacency matrices $\{A_0, \ldots, A_d\}$ and $\{B_0, \ldots, B_h\}$, respectively. We suppose that A_0 and B_0 are the identity matrices.

We denote by *n* and *n'* the sizes of matrices A_i and B_j , respectively. We keep these notations throughout this paper. In [5], the wreath product $\mathfrak{X} \wr \mathfrak{Y}$ of \mathfrak{X} and \mathfrak{Y} is defined as follows. (Some notations differ from [5], but they are essentially the same.) We consider the set of matrices

$$\{A_0 \otimes B_0, \ldots, A_d \otimes B_0, J_n \otimes B_1, \ldots, J_n \otimes B_h\},\$$

where J_n is the all one matrix of degree n. Then the wreath product $\mathfrak{X} \wr \mathfrak{Y}$ of \mathfrak{X} and \mathfrak{Y} is defined by the above matrices as adjacency matrices. It is easy to verify that it satisfies the definition of an association scheme. This can be considered as a generalization of the wreath product of transitive finite permutation groups. Let G and H be transitive finite permutation groups on the sets X and Y, respectively. Then we can define association schemes $\mathfrak{X}(G, X)$ and $\mathfrak{X}(H, Y)$ by [1, II, Example 2.1]. Also we can define the wreath product $G \wr H$ of Gand H [4, Section 1.2]. The group $G \wr H$ is transitive on the set $X \times Y$, and the association scheme $\mathfrak{X}(G \wr H, X \times Y)$ is isomorphic to $\mathfrak{X}(G, X) \wr \mathfrak{X}(H, Y)$.

Let *F* be a field. We define the adjacency algebra $F \mathfrak{X}$ of \mathfrak{X} over *F* by

$$F\mathfrak{X} = \bigoplus_{i=0}^{d} FA_i$$

as a matrix algebra over F. Since A_i is a 01-matrix, this definition has meaning. Clearly the dimension of $F\mathfrak{X}$ is d + 1. A representation of $F\mathfrak{X}$ is a matrix representation of $F\mathfrak{X}$, namely an algebra homomorphism from $F\mathfrak{X}$ to the full matrix ring of some degree over F. A representation of $F\mathfrak{X}$ is irreducible if the corresponding right $F\mathfrak{X}$ -module has no proper submodule.

We state here some facts about finite dimensional algebras. From here, we always assume that the field F is algebraically closed. Let A be a finite dimensional algebra over F. The Jacobson radical Rad(A) of A is the intersection of all maximal right ideals of A.

Proposition 2.1 ([2, Proposition 3.1.9]) *The Jacobson radical* Rad(*A*) *of A is a nilpotent* (*two-sided*) *ideal containing all nilpotent right and left ideals.*

The right socle Soc(A) is the sum of all irreducible right A-submodules of A. Then, for any $x \in Soc(A)$ and $y \in Rad(A)$, we have xy = 0.

It is well known that A/Rad(A) is semisimple. Since F is algebraically closed, we have

$$A/\operatorname{Rad}(A) \cong \bigoplus_{i=1}^r M_{d_i}(F),$$

where d_i 's are the degrees of irreducible representations of A. So we have the following.

Proposition 2.2 Let S_1, \ldots, S_r be all non-equivalent irreducible representations of A. Then $\dim_F A = \sum_{i=1}^r (\deg S_i)^2 + \dim_F \operatorname{Rad}(A).$

3. Irreducible representations

The adjacency algebra $F(\mathfrak{X} \wr \mathfrak{Y})$ of the wreath product $\mathfrak{X} \wr \mathfrak{Y}$ has a basis

$$\{A_0 \otimes B_0, \ldots, A_d \otimes B_0, J_n \otimes B_1, \ldots, J_n \otimes B_h\}.$$

So dim_{*F*} $F(\mathfrak{X} \wr \mathfrak{Y}) = d + h + 1$. In this section, we determine all irreducible representations of $F(\mathfrak{X} \wr \mathfrak{Y})$ in terms of irreducible representations of $F\mathfrak{X}$ and $F\mathfrak{Y}$. Let S_1, \ldots, S_r be all non-equivalent irreducible representations of $F\mathfrak{X}$, and let T_1, \ldots, T_s be all non-equivalent irreducible representations of $F\mathfrak{Y}$. We denote by k_i the valency of A_i , and denote by k'_j the valency of B_j . The map $A_i \mapsto k_i$ defines a representation of $F\mathfrak{X}$ of degree 1. We assume that S_1 is this representation, and also assume that $T_1 : B_j \mapsto k'_j$. Note that $J_n = \sum_{i=0}^d A_i$ and FJ_n is a one-dimensional $F\mathfrak{X}$ -module affording the representation S_1 . So $S_{\mu}(J_n) = 0$ for $\mu \neq 1$.

For $\mu \neq 1$, we put

$$\begin{cases} \tilde{S}_{\mu}(A_i \otimes B_0) = S_{\mu}(A_i) \\ \tilde{S}_{\mu}(J_n \otimes B_j) = 0, \end{cases}$$

and extend this linearly. Note that the definition of $\tilde{S}_{\mu}(J_n \otimes B_0) = \sum_{i=0}^d \tilde{S}_{\mu}(A_i \otimes B_0)$ is duplicated. But, since $\mu \neq 1$, we have $\sum_{i=0}^d \tilde{S}_{\mu}(A_i \otimes B_0) = S_{\mu}(J_n) = 0$. So \tilde{S}_{μ} is well-defined. Also we define

$$\begin{cases} \tilde{T}_{\nu}(A_i \otimes B_0) = k_i E\\ \tilde{T}_{\nu}(J_n \otimes B_j) = n T_{\nu}(B_j) \end{cases}$$

where *E* is the identity matrix of degree deg T_{ν} . In this case, $\sum_{i=0}^{d} \tilde{T}_{\nu}(A_i \otimes B_0) = nE = nT_{\nu}(B_0)$.

Lemma 3.1 The maps \tilde{S}_{μ} ($\mu \neq 1$) and \tilde{T}_{ν} defined above are representations of $F(\mathfrak{X} \wr \mathfrak{Y})$.

Proof: By direct calculations, we have the result.

Lemma 3.2 The representations \tilde{S}_{μ} ($\mu \neq 1$) and \tilde{T}_{1} are irreducible. If char $F \nmid n$ or char F = 0, then \tilde{T}_{ν} is irreducible. Moreover they are non-equivalent to each other. (Note that, if char $F \mid n$, then \tilde{T}_{ν} ($\nu \neq 1$) is reducible.)

Proof: Since S_{μ} is irreducible over an algebraically closed field F, we have $\text{Im}S_{\mu} = M_{\ell}(F)$, where $\ell = \deg S_{\mu}$. Now $\text{Im}\tilde{S}_{\mu} \supseteq \text{Im}S_{\mu}$, so we have $\text{Im}\tilde{S}_{\mu} = M_{\ell}(F)$. This means that \tilde{S}_{μ} is irreducible. The representation \tilde{T}_{1} has the degree one, so it is irreducible.

If char $F \nmid n$ or char F = 0, then $n \neq 0$ in F. So \tilde{T}_{ν} is irreducible by the similar argument as above.

In the rest of this section, we will show that irreducible representations in Lemma 3.2 are all irreducible representations.

Lemma 3.3 Assume that char $F \nmid n$ or char F = 0, and put

 $I = \operatorname{Rad}(F\mathfrak{X}) \otimes B_0 + J_n \otimes \operatorname{Rad}(F\mathfrak{Y}).$

Then the set I is a nilpotent ideal of $F(\mathfrak{X} \wr \mathfrak{Y})$ and $\dim_F I = \dim_F \operatorname{Rad}(F\mathfrak{X}) + \dim_F \operatorname{Rad}(F\mathfrak{Y})$. (In fact, I is the Jacobson radical of $F(\mathfrak{X} \wr \mathfrak{Y})$). This will be shown in the Proof of Theorem 3.4.)

Proof: Firstly, we note that $A_i \otimes B_0$ commutes with $J_n \otimes B_i$ for any *i* and *j*.

For $\alpha \in \operatorname{Rad}(F\mathfrak{X})$, we have $(\alpha \otimes B_0)(J_n \otimes B_j) = 0$, since J_n is in the socle of $F\mathfrak{X}$. Also, for $\beta \in \operatorname{Rad}(F\mathfrak{Y})$, we have $(A_i \otimes B_0)(J_n \otimes \beta) = k_i J_n \otimes \beta \in I$. Thus I is an ideal of $F(\mathfrak{X} \wr \mathfrak{Y})$.

If $\operatorname{Rad}(F\mathfrak{X})^{\ell} = 0$ and $\operatorname{Rad}(F\mathfrak{Y})^m = 0$, then

$$I^{\ell+m} = \sum_{i=0}^{\ell+m} (\operatorname{Rad}(F\mathfrak{X})^i \otimes B_0) (J_n \otimes \operatorname{Rad}(F\mathfrak{Y})^{\ell+m-i}) = 0.$$

So I is nilpotent.

Since dim_{*F*} Rad($F\mathfrak{X}$) = dim_{*F*} Rad($F\mathfrak{X}$) \otimes B_0 , dim_{*F*} Rad($F\mathfrak{Y}$) = dim_{*F*} $J_n \otimes \text{Rad}(F\mathfrak{Y})$, and Rad($F\mathfrak{X}$) \otimes $B_0 \cap J_n \otimes \text{Rad}(F\mathfrak{Y}) = 0$, we have dim_{*F*} $I = \text{dim}_F \text{Rad}(F\mathfrak{X}) + \text{dim}_F \text{Rad}(F\mathfrak{Y})$.

Theorem 3.4 Suppose that char $F \nmid n$ or char F = 0. Then $\tilde{S}_2, \ldots, \tilde{S}_r, \tilde{T}_1, \ldots, \tilde{T}_s$ are all non-equivalent irreducible representations of $F(\mathfrak{X} \wr \mathfrak{Y})$.

Proof: We use Propositions 2.1 and 2.2. By Lemma 3.3, we have

$$\dim_F F(\mathfrak{X} \wr \mathfrak{Y}) \ge \sum_{\mu=2}^{r} (\deg \tilde{S}_{\mu})^2 + \sum_{\nu=1}^{s} (\deg \tilde{T}_{\nu})^2 + \dim_F \operatorname{Rad}(F(\mathfrak{X} \wr \mathfrak{Y})))$$
$$\ge \sum_{\mu=2}^{r} (\deg \tilde{S}_{\mu})^2 + \sum_{\nu=1}^{s} (\deg \tilde{T}_{\nu})^2 + \dim_F I$$
$$= (\dim_F F\mathfrak{X} - \dim_F \operatorname{Rad}(F\mathfrak{X}) - 1) + (\dim_F F\mathfrak{Y} - \dim_F \operatorname{Rad}(F\mathfrak{Y})))$$
$$+ (\dim_F \operatorname{Rad}(F\mathfrak{X}) + \dim_F \operatorname{Rad}(F\mathfrak{Y}))$$
$$= \dim_F F\mathfrak{X} + \dim_F F\mathfrak{Y} - 1 = \dim_F F(\mathfrak{X} \wr \mathfrak{Y}).$$

This completes the proof. (Also we can conclude that $I = \text{Rad}(F(\mathfrak{X} \wr \mathfrak{Y}))$.)

Lemma 3.5 Assume that char $F \mid n$, and put $I = \operatorname{Rad}(F\mathfrak{X}) \otimes B_0 + J_n \otimes F\mathfrak{Y}$. Then the set I is a nilpotent ideal of $F(\mathfrak{X} \wr \mathfrak{Y})$ and $\dim_F I = \dim_F \operatorname{Rad}(F\mathfrak{X}) + \dim_F F\mathfrak{Y} - 1$. (In fact, I is the Jacobson radical of $F(\mathfrak{X} \wr \mathfrak{Y})$.)

Proof: We note that $(J_n)^2 = 0$, in this case. It is easy to verify that *I* is a nilpotent ideal of $F(\mathfrak{X} \wr \mathfrak{Y})$. Since $\operatorname{Rad}(F\mathfrak{X}) \otimes B_0 \cap J_n \otimes F\mathfrak{Y} = F(J_n \otimes B_0)$, we have the result. \Box

Theorem 3.6 Suppose that char $F \mid n$. Then $\tilde{S}_2, \ldots, \tilde{S}_r, \tilde{T}_1$ are all non-equivalent irreducible representations of $F(\mathfrak{X} \wr \mathfrak{Y})$.

Proof: The proof is similar to the proof of Theorem 3.4.

As a consequence of Theorem 3.4 and 3.6, we have the following corollary. (We note that a general criterion of the semisimplicity of an adjacency algebra is discussed in [3, Theorem 4.2].)

Corollary 3.7 The algebra $F(\mathfrak{X} \wr \mathfrak{Y})$ is semisimple if and only if both $F\mathfrak{X}$ and $F\mathfrak{Y}$ are semisimple.

Proof: If char $F \mid n$, then both $F\mathfrak{X}$ and $F(\mathfrak{X} \wr \mathfrak{Y})$ are not semisimple. If char $F \nmid n$, then the assertion holds by Theorem 3.4 and its proof.

4. Irreducible characters

In this section, we describe all irreducible characters of $\mathfrak{X} \wr \mathfrak{Y}$ over the complex number field \mathbb{C} . The character means the trace function of a representation. Since the adjacency algebra of an association scheme over \mathbb{C} is always semisimple, this is easy by Theorem 3.4.

Let χ_1, \ldots, χ_r be all irreducible characters of $\mathbb{C}\mathfrak{X}$, and let $\varphi_1, \ldots, \varphi_s$ be all irreducible characters of $\mathbb{C}\mathfrak{Y}$. Suppose $\chi_1(A_i) = k_i$ and $\varphi_1(B_j) = k'_j$. We define

$$\begin{cases} \tilde{\chi}_{\mu}(A_i \otimes B_0) = \chi_{\mu}(A_i) \\ \tilde{\chi}_{\mu}(J_n \otimes B_j) = 0, \end{cases}$$

for $\mu \neq 1$ and

$$\begin{cases} \tilde{\varphi}_{\nu}(A_i \otimes B_0) = k_i \varphi_{\nu}(B_0) \\ \tilde{\varphi}_{\nu}(J_n \otimes B_j) = n \varphi_{\nu}(B_j). \end{cases}$$

Then we have the following.

Theorem 4.1 In the above notations, $\tilde{\chi}_2, \ldots, \tilde{\chi}_r, \tilde{\varphi}_1, \ldots, \tilde{\varphi}_s$ are all irreducible characters of $\mathbb{C}(\mathfrak{X} \wr \mathfrak{Y})$.

Appendix

Professor A. Munemasa pointed out that the result in this article holds for more general situations. Let *F* be an algebraically closed field, and let *A* and *B* be finite dimensional *F*-algebras. Suppose *A* has a central element *e* such that *Fe* is a two-sided ideal of *A*, and that $e^2 = e$ or $e^2 = 0$. Put $C = A \otimes 1 + e \otimes B \subset A \otimes_F B$. If $e^2 = e$, then *A* is a direct sum of two-sided ideals A(1 - e) and Ae = Fe. In this case, we have $C \cong A(1 - e) \oplus B$. If $e^2 = 0$,

HANAKI AND HIROTSUKA

then $e \otimes B$ is contained in the Jacobson radical of *C*, so the irreducible representations of *C* are the same as those of *A*. Our main results Theorem 3.4 and 3.6 are easy consequences of these facts.

References

- 1. E. Bannai and T. Ito, *Algebraic Combinatorics I: Association Schemes*, Benjamin-Cummings, Menlo Park, CA, 1984.
- 2. Yu. A. Drozd and V.V. Kirichenko, Finite Dimensional Algebras, Springer-Verlag, Berlin/New York, 1994.
- 3. A. Hanaki, "Semisimplicity of adjacency algebras of association schemes," *Journal of Algebra* **225** (2000), 124–129.
- 4. D.S. Passman, Permutation Groups, Benjamin, New York, 1968.
- 5. K. See and S.Y. Song, "Association schemes of small order," *Journal of Statistical Planning and Inference* **73** (1998), 225–271.
- 6. P.-H. Zieschang, An Algebraic Approach to Association Schemes, Springer-Verlag, Berlin/New York, 1996.