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Abstract. The main question of this paper is: What happens to the sparse (toric) resultant under vanishing
coefficients? More precisely, let f1, . . . , fn be sparse Laurent polynomials with supportsA1, . . . ,An and let Ã1 ⊃
A1. Naturally a question arises: Is the sparse resultant of f1, f2, . . . , fn with respect to the supports Ã1,A2, . . . ,An

in any way related to the sparse resultant of f1, f2, . . . , fn with respect to the supports A1,A2, . . . ,An? The main
contribution of this paper is to provide an answer. The answer is important for applications with perturbed data
where very small coefficients arise as well as when one computes resultants with respect to some fixed supports,
not necessarily the supports of the fi ’s, in order to speed up computations. This work extends some work by
Sturmfels on sparse resultant under vanishing coefficients. We also state a corollary on the sparse resultant under
powering of variables which generalizes a theorem for Dixon resultant by Kapur and Saxena. We also state a
lemma of independent interest generalizing Pedersen’s and Sturmfels’ Poisson-type product formula.
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1. Introduction

Resultants are of fundamental importance for solving systems of polynomial equations and
therefore have been extensively studied (cf. [1, 3, 5, 6, 9, 10, 13, 16, 18–20, 22]). Recent
research has focused on utilizing structure, naturally occurring in real life problems, of
polynomials, for example, composition (cf. [7, 14, 15, 17, 21]) and sparsity (in the frame
of toric algebra) (cf. [2, 4, 8, 11, 12, 23, 24]).

We ask: What happens to the sparse (toric) resultant under vanishing coefficients? That
is, what is the sparse resultant of sparse Laurent polynomials f1, . . . , fn assuming that
some of the coefficients of f1 are zero? More precisely, let f1, . . . , fn be sparse Laurent
polynomials with the supports A1, . . . ,An and let Ã1 ⊃ A1. Naturally a question arises:
Is the sparse resultant of f1, f2, . . . , fn with respect to the supports Ã1,A2, . . . ,An in
any way related to the sparse resultant of f1, f2, . . . , fn with respect to the supports
A1,A2, . . . ,An? The main contribution of this paper is to provide an answer: The sparse
resultant of f1, f2, . . . , fn with respect to the supports Ã1,A2, . . . ,An is some power of
the sparse resultant of f1, f2, . . . , fn with respect to the supports A1,A2, . . . ,An times a
product of powers of sparse resultants of some parts of the fi ’s. We also state a corollary (cf.
Corollary 5) about the sparse resultant under powering of variables which is a generalization
of a theorem for Dixon resultant shown by Kapur and Saxena using different techniques (cf.
[17]). We also state a lemma (cf. Lemma 13) of independent interest generalizing Pedersen’s
and Sturmfels’ Poisson-type product formula.
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This result is important for applications where perturbed data with very small coeffi-
cients arise and these coefficients may tend to zero. For such cases, the main theorem,
Theorem 1, gives information about the stability of the resultant. Furthermore, this re-
sult is important when one computes resultants with respect to some fixed supports, not
necessarily the supports of the fi ’s. This is sometimes done because for certain supports
there are very efficient algorithms for resultant computation, consider for example the
Dixon resultant (cf. e.g. [17]). Furthermore, we were motivated to work on sparse resul-
tant under vanishing coefficients because we wanted to give an irreducible factorization of
formula of [14]. For this purpose we used the main theorem, Theorem 1, of the present
paper.

Theorem 1 extends a corollary by Sturmfels (cf. Corollary 4.2 of [25]) which essentially
states that the sparse resultant of the Laurent polynomials f1, . . . , fn with respect to their
precise supports divides the sparse resultant of f1, . . . , fn with respect to larger supports.
This result, Theorem 1, also generalizes a lemma of [21], Lemma 9, for Macaulay resultant
of dense polynomials under vanishing of leading forms.

We assume that the reader is familiar with the notions of sparse (toric) resultant, essential,
integer lattice, fundamental simplex of an integer lattice, Newton polytope, primitive vector
(i.e. a vector with integer coordinates whose gcd is one, cf. [8]), inward normal vector (cf.
[8]), mixed volume (cf. [8, 12, 23, 25]). We let ResA1,...,An (·) stand for sparse resultant with
respect to the supports A1, . . . ,An ⊆ Zn−1, we let L(A1, . . . ,An) stand for the integer
sublattice of Zn−1 affinely generated by A1, . . . ,An (in detail: the Z-submodule of Zn−1

generated by the set of vectors of the form vi , for i = 1, . . . , n, where vi is any difference of
two points in Ai ), we let [L1 : L2] (where L2 ⊆ L1) stand for the quotient of the volumes
of the fundamental simplices of the integer lattice L2 and L1 and we let Aω ⊆ A stand for
the set of vectors that lie in the face, with inward normal vector ω, of the convex hull of the
bounded set A. (In this definition the vector ω needs not to be primitive. However, in the
following sections the vector ω will always be primitive.)

2. Main result

Let f1, . . . , fn be sparse Laurent polynomials in the variables x1, . . . , xn−1 with non-empty
supports A1, . . . ,An and, for the sake of a simple presentation, with distinct symbolic
coefficients.

Let Ã1 be a finite set with A1 ⊆ Ã1 ⊂ Zn−1 and let (Ã1,A2, . . . ,An) have a unique
essential subset, not necessarily equal to {1, . . . , n}. We furthermore assume that this unique
essential subset contains the index 1 (cf. Remarks 2 and 3).

Let f A stand for the part, whose support is contained in the set A, of the Laurent
polynomial f and let aA(ω) stand for −minv(〈ω, v〉), where 〈ω, v〉 denotes the usual
Euclidean inner product and v ranges over the convex hull of A. Furthermore let Hω stand
for the lattice of all integer points contained in the (unique) hyperplane, passing through
the origin, with normal vector ω. (So, throughout this paper, H is a constant symbol of a
unary function. The symbol H does not stand for the unique hyperplane, passing through
the origin, with normal vector ω.)

Now we are ready to state the main theorem.
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Theorem 1 (Main theorem) We have

ResÃ1,A2,...,An
( f1, f2, . . . , fn)

= ResA1,A2,...,An ( f1, f2, . . . , fn)[L(Ã1,A2,...,An ):L(A1,...,An )]

×
∏
ω

ResAω
2 ,...,Aω

n

(
f
Aω

2
2 , . . . , f

Aω
n

n
)(a(ω)

Ã1
−a(ω)

A1
)

[Hω :L(Aω
2 ,...,Aω

n )]

[Zn−1:L(Ã1 ,A2 ,...,An )] ,

where ω ranges over the primitive inward normal vectors of the facets of the convex hull of
A2 + · · · + An. Furthermore this factorization is irreducible.

Remark 2 For the convenience of the reader we state the general definition of “essential”
and explain how it is utilized in this paper.

Definition 4.1 of [24]: Suppose C := (Ck)k∈K is a #K -tuple of polytopes in Rn or a
#K -tuple of finite subsets of Rn , where K is a finite set and #K is the number of elements
of K . We will allow any Ck to be empty and say that a nonempty subset J ⊆ K is essential
for C (or C has essential subset J ) iff C j �= ∅ for all j ∈ J , dim(

∑
j∈J C j ) = #J − 1 and

dim(
∑

j∈J ′ C j ) ≥ #J ′ for all nonempty proper subsets J ′ of J . (Note that K is {1, . . . , n}
in [24]. We have replaced {1, . . . , n} by K because we want to allow any sets of indices.)

Throughout this paper the sets C j will be nonempty finite sets, that is, supports of some
Laurent polynomials or supersets of their supports. Furthermore, it is easy to see that, for
this special case, one can replace dim(

∑
j∈J C j ) in the definition of essential by the rank

of L((C j ) j∈J ) (as in [25]).

Remark 3 It is important to point out that in a particular degenerate case the definition
of the sparse resultant in the main theorem is slightly different from the usual one. For
degenerate cases where a strict subset {i1, . . . , im} of {1, . . . , n} is uniquely essential for
(A1, . . . ,An), we define

ResA1,...,An ( f1, . . . , fn) := ResAi1 ,...,Aim

(
fi1 , . . . , fim

)eA1 ,...,An ,

where the exponent eA1,...,An is defined in the following paragraph, whereas usually one
defines

ResA1,...,An ( f1, . . . , fn) := ResAi1 ,...,Aim

(
fi1 , . . . , fim

)
.

The first definition allows us to handle the degenerate cases in a uniform and elegant way,
whereas the second definition seems not to allow this.

In the following, we define the exponent eA1,...,An , where {1, . . . , n} has a unique (not
necessarily strict) subset {i1, . . . , im} essential for (A1, . . . ,An). If m = n then we define
eA1,...,An := 1. Otherwise, let L be an integer lattice such that the integer lattice affinely
generated byA1, . . . ,An is the direct sum, as Z-modules, of L and the integer lattice affinely
generated by Ai1 , . . . ,Aim . Let π denote the projection onto L , which we naturally extend
to the Laurent polynomials fi . Then eA1,...,An is defined to be the quotient of the mixed
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volume of the Newton polytopes of π ( fim+1 ), . . . , π( fin ) and the volume of the fundamental
parallelotope of L . It is easy to see that eA1,...,An is well defined.

Note that this remark generalizes Remark 4 of [21].

Example 4 We illustrate Theorem 1 and Remark 3. Let

f1 := a100 + a120 x2
1 ,

f2 := a200 + a220 x2
1 + a201 x2 + a221 x2

1 x2,

f3 := a300 + a340 x4
1 + a321 x2

1 x2 + a302 x2
2

and let

Ã1 := {(0, 0), (2, 0), (5, 0)}.

Observe that n = 3,

A1 = {(0, 0), (2, 0)} ,

A2 = {(0, 0), (2, 0), (0, 1), (2, 1)},
A3 = {(0, 0), (4, 0), (2, 1), (0, 2)},
[L(Ã1,A2,A3) : L(A1,A2,A3)] = 2,

eA1,A2,A3 = 1 (because {1, 2, 3} is essential for (A1,A2,A3)),

and

A2 + A3 = {(0, 0), (4, 0), (2, 1), (0, 2),

(2, 0), (6, 0), (4, 1), (2, 2),

(0, 1), (4, 1), (2, 2), (0, 3),

(2, 1), (6, 1), (4, 2), (2, 3)}.

The convex hull of A2 + A3 is shown in figure 1. It has five facets (edges) with primitive
inward normal vectors

ω1 = (0, 1),

ω2 = (0, −1),

ω3 = (1, 0),

ω4 = (−1, 0),

ω5 = (−1, −2).
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Figure 1. Convex hull of A2 + A3.

Observe that

aÃ1
(ω1) = 0, aA1 (ω1) = 0,

aÃ1
(ω2) = 0, aA1 (ω2) = 0,

aÃ1
(ω3) = 0, aA1 (ω3) = 0,

aÃ1
(ω4) = 5, aA1 (ω4) = 2,

aÃ1
(ω5) = 5, aA1 (ω5) = 2,

Aω4
2 = {(2, 0), (2, 1)},

Aω4
3 = {(4, 0)},

Aω5
2 = {(2, 1)},

Aω5
3 = {(4, 0), (2, 1), (0, 2)},

Furthermore observe that eAω4
2 ,Aω4

3
= 1, eAω5

2 ,Aω5
3

= 2. In order to compute eAω4
2 ,Aω4

3
and

eAω5
2 ,Aω5

3
one proceeds very similarly. For the convenience of the reader we describe in derail

how to compute eAω5
2 ,Aω5

3
: The subset of {2, 3} essential for {Aω5

2 ,Aω5
3 } is {2}, L(Aω5

2 ) =
{0} and L(Aω5

2 ,Aω5
3 ) = Z. Therefore L = Z and L(Aω5

2 ,Aω5
3 ) will be decomposed as

Z⊕{0}. Therefore we let π map f ω5
3 to a340 x2 +a321 x +a320 which implies that the mixed

volume of π ( f ω5
3 ) is 2. Since the volume of the fundamental parallelotope of Z is 1, we get

eAω5
2 ,Aω5

3
= 2

1 = 2.
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Finally observe that

[
Hω4 : L

(
Aω4

2 ,Aω4
3

)] = 1,[
Hω5 : L

(
Aω5

2 ,Aω5
3

)] = 1

and

[Z2 : L(Ã1,A2,A3)] = 1.

Thus

ResÃ1,A2,A3
( f1, f2, f3) = ResA1,A2,A3 ( f2, f2, f3)2

× ResAω3
2 ,Aω3

3

(
f ω3
2 , f ω3

3

)(5−2)·1

× ResAω4
2 ,Aω4

3

(
f ω4
2 , f ω4

3

)(5−2)·1
.

In the following corollary we prove a formula for the sparse resultant under powering of
variables. This corollary generalizes a theorem for Dixon resultant, shown by Kapur and
Saxena (cf. [17]) using different techniques.

Corollary 5 Let f̃ i be obtained from fi by replacing the variable x j by x
d j

j , where d j ∈ Z,

for j = 1, . . . , n − 1, and let Ãi be the set of all integer points contained in the Newton
polytope of f̃ i . Then

ResÃ1,...,Ãn
( f̃ 1, . . . , f̃ n) = ResA1,...,An ( f1, . . . , fn)|d1···dn−1| [L(Ã1,...,Ãn ):L(A1,...,An )].

Example 6 Let

f1 := a100 + a124 x2
1 x4

2 ,

f2 := a200 + a266 x6
1 x6

2 ,

f3 := a300 + a342 x4
1 x2

2

and f̃ i be obtained from fi by replacing x1 by x2
1 and x2 by x3

2 .
Observe that d1 = 2, d2 = 3 and

f̃ 1 = a100 + a124 x4
1 x12

2 ,

f̃ 2 = a200 + a266 x12
1 x18

2 ,

f̃ 3 = a300 + a342 x8
1 x6

2 .

Furthermore, observe that

A1 = {(0, 0), (2, 4)},
A2 = {(0, 0), (6, 6)},
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A3 = {(0, 0), (4, 2)},
Ã1 = {(0, 0), (1, 3), (2, 6), (4, 12)},
Ã2 = {(0, 0), (2, 3), (4, 6), (6, 9), (8, 12), (10, 15), (12, 18)},
Ã3 = {(0, 0), (4, 3), (8, 6)},

L(A1,A2,A3) is spanned by {(2, 4), (4, 2)} and that L(Ã1, Ã2, Ã3) is spanned by {(1, 3),
(2, 3)}. Thus the fundamental simplex of L(A1,A2,A3) has volume (area) 6 and the fun-
damental simplex of L(Ã1, Ã2, Ã3) has volume (area) 3

2 and therefore

[L(Ã1, Ã2, Ã3) : L(A1,A2,A3)] = 4.

Thus

ResÃ1,Ã2,Ã3
( f̃ 1, f̃ 2, f̃ 3) = ResA1,A2,A3 ( f1, f2, f3)2·3·4.

Proof (Corollary 5): Let Bi be the support of f̃ i . Since the convex hull of Bi equals the
convex hull of Ãi , we have by Theorem 1

ResÃ1,...,Ãn
( f̃ 1, . . . , f̃ n) = ResB1,...,Bn ( f̃ 1, . . . , f̃ n)

P
,

where P is

[L(Ã1, Ã2, . . . , Ãn) : L(B1, Ã2, . . . , Ãn)]

[L(B1, Ã2, . . . , Ãn) : L(B1,B2, Ã3, . . . , Ãn)]

. . .

[L(B1, . . . ,Bn−1, Ãn) : L(B1, . . . ,Bn−1,Bn)].

Thus

P = [L(Ã1, . . . , Ãn) : L(B1, . . . ,Bn)].

By the construction of f̃ i , we have Bi = DAi , where D is a diagonal matrix with diagonal
entries d1, . . . , dn−1. Therefore w = |d1 · · · dn|v, where w and v, resp., is the volume of
the fundamental simplex of L(B1, . . . ,Bn) and L(A1, . . . ,An), resp. Let ṽ be the volume
of the fundamental simplex of L(Ã1, . . . , Ãn). Then

P = w

ṽ
= |d1 · · · dn|v

ṽ

= |d1 · · · dn| [L(Ã1, . . . , Ãn) : L(A1, . . . ,An)].

Finally, note that

ResB1,...,Bn ( f̃ 1, . . . , f̃ n) = ResA1,...,An ( f1, . . . , fn).

Thus we have shown the corollary.
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Figure 2. Dependency of the lemmas.

3. Proof of the main theorem

Before going into the details of the proof we describe its main structure. The proof is based
on some generalization the Pedersen-Sturmfels product (cf. [23]). For the convenience of
the reader we state this formula first (cf. Theorem 8 and Remark 9). In the following lemmas
we generalize this product formula and then we prove the main theorem. The dependency
of Theorem 1 on the lemmas and on the Pedersen-Sturmfels product is shown in figure 2.

Before listing the lemmas, we fix some notations.

Notation 7 We let

1. sign(r ) denote the “sign” of a real number r , more precisely, sign(r ) = −1 if r < 0,
sign(r ) = 0 if r = 0 and sign(r ) = 1 if r > 0.

2. CH (A) ⊂ Rn−1 denote the convex hull of a bounded set A ⊂ Zn−1.
3. Vol (P) denote the volume of some polytope P .
4. VolL (P) denote the normalized volume of some polytope P (not necessarily an L-

lattice polytope), that is, the quotient between the volume of P and the volume of the
fundamental simplex of the integer lattice L .

5.
∏

γ f (γ ), as in [23], denote the product, over the common roots γ with respect to some
lattice of certain Laurent polynomials, of f evaluated at γ .

We state the Pedersen-Sturmfels product.

Theorem 8 ([23]) If {1, . . . , n} is essential for (A1, . . . ,An) and furthermore L(A1, . . . ,

An) = Zn−1, then

ResA1,...,An ( f1, . . . , fn) =
∏
γ

f1(γ )
∏
ω

ResAω
2 ,...,Aω

n

(
f ω
2 , . . . , f ω

n

)ρA1 ,...,An (ω)
,

where

ρA1,...,An (ω) := sign
(
a(ω)
A1

) VolZn−1

(
CH

(
Aω

1 ∪ {0}))
VolL((A2+···+An )ω) (CH (A1)ω)

,

γ ranges over the common zeros in (K\ {0})n−1, with respect to the lattice L(A1, . . . ,An),
of f2, . . . , fn, where K is the algebraic closure of the field generated by the complex
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numbers and the symbolic coefficients of the fi ’s, and ω ranges over the primitive inward
normal vectors of the facets of the convex hull of A2 + · · · + An.

Remark 9 Firstly, note that in [23] the Pedersen-Sturmfels product did not consider the
degenerate case where a strict subset of {2, . . . , n} is essential for (Aω

2 , . . . ,Aω
n ). However,

it can be seen easily that the Pedersen-Sturmfels product also holds for these degenerate
cases if we utilize the alternative definition of the sparse resultant given in Remark 3. One
can adjust the proof of Theorem 1.1 of [23] in order to handle these cases. That is, one
can easily show, similarly to the proof of Formula (6) of the present paper, a version of
Proposition 7.1 of [23] for the alternatively defined sparse resultant. The rest of the proof of
Theorem 1.1 of [23] remains unchanged and the version, given in Theorem 8 of the present
paper, of the Pedersen-Sturmfels product follows.

Secondly, note that the presentation of the exponent ρA1,...,An (ω) in Theorem 8 of the
present paper is slightly different from the presentation in [23]. From the proof of Lemma 2.2
of [23] one can easily see that both presentations are equivalent. We chose this alternative
presentation because it is more suitable for this paper.

Now we are ready to state the lemmas.
In the following lemma we study a generalized version δA1,...,An (ω) of the exponent

ρA1,...,An (ω) of Pedersen’s and Sturmfels’ Theorem 8.

Lemma 10 Let B1, . . . ,Bn ⊂ Zn−1 be finite sets and furthermore let the map M :
L(A1, . . . ,An) → L(B1, . . . ,Bn) be a Z-lattice isomorphism such that Bi = M(Ai ).
Then

δA1,...,An (ω) = δB1,...,Bn (ν),

where ω is a positive multiple of MT(ν), where MT is the transpose of M, viewed as a
Q-linear map, and

δA1,...,An (ω) := sign
(
a(ω)
A1

) VolL(A1,...,An )
(
CH

(
Aω

1 ∪ {0}))
VolL((A2+···+An )ω) (CH (A1)ω)

.

Proof: For n = 1, the lemma is trivial, so assume n ≥ 2.
Let us first show that M−1(CH (B1)ν) is a face of CH (A1) with primitive inward normal

vector ω that is a positive multiple of MT(ν). Firstly “⊆”: Let 〈ν, y〉 ≥ −aB1 (ν) be an
inequality defining a halfspace, with primitive inward normal vector ν �= 0, that supports
the convex hull ofB1. The inequality 〈MT(ν), x〉 ≥ −aB1 (ν) defines a halfspace with normal
vector MT(ν) �= 0. By definition MT(ν) is an inward normal vector of this half space and
the primitive inward normal vector ω is a positive multiple of MT(ν). Since 〈ν, y〉 =
〈MT(ν), M−1(y)〉 and CH (A1) = CH(M−1(B1)) = M−1(CH (B1)), this halfspace contains
CH (A1) and, since the points M−1(CH (B1)ν) ⊆ CH (A1) satisfy the equality, this halfspace
supports CH (A1). Secondly “⊇”: Take x ∈ CH (A1) such that 〈MT(ν), x〉 = −aB1 (ν) and
M(x) /∈ CH (B1)ν . Then M(x) is contained in M(CH (A1)) = CH (M(A1)) = CH (B1) and
〈ν, M(x)〉 = −aB1 (ν). Contradiction!
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Next observe that the previous paragraph implies that

sign(aB1 (ν)) = sign(a(ω)
A1

)

because a(ω)
A1

is a certain positive multiple of aB1 (ν).
Next we show that

VolL(B1,...,Bn )
(
CH

(
Bν

1 ∪ {0})) = VolL(A1,...,An )
(
CH

(
Aω

1 ∪ {0})) .

Let B be a basis for the lattice L(A1, . . . ,An). Since the mapping M : L(A1, . . . ,An) →
L(B1, . . . ,Bn) is a lattice isomorphism, M(B) is a basis for L(B1, . . . ,Bn). Furthermore,
let �L(A1,...,An ) and �L(B1,...,Bn ), resp., denote the fundamental lattice simplex spanned by B
and M(B), resp. Then we have �L(B1,...,Bn ) = M(�L(A1,...,An )) and thus

VolL(B1,...,Bn )
(
CH

(
Bν

1 ∪ {0})) = Vol
(
CH

(
Bν

1 ∪ {0}))
Vol

(
�L(B1,...,Bn )

)
= Vol (CH (M(A1)ν ∪ {0}))

Vol
(
M(�L(A1,...,An ))

) .

Since

CH
(
M(Aω

1 ) ∪ {0}) = M(CH
(
Aω

1 ∪ {0})),

for some ω, we have by the substitution rule of integration

VolL(B1,...,Bn )
(
CH

(
Bν

1 ∪ {0})) = Vol
(
CH

(
Aω

1 ∪ {0}))
Vol

(
�L(A1,...,An )

) .

Finally we show that

VolL((B2+···+Bn )ν ) (CH (B1)ν) = VolL((A2+···+An )ω) (CH (A1)ω) .

We have already seen that CH (B1)ν = M(CH (A1)ω). Furthermore, we view the lattice
L((A2 + · · · + An)ω) and L((B2 + · · · + Bn)ν), resp., as sublattices of L(A1, . . . ,An) and
L(B1, . . . ,Bn), resp. Then

M : L((A2 + · · · + An)ω) → L((B2 + · · · + Bn)ν)

is a affine lattice isomorphism and thus

�L((B2+···+Bn )ν ) = M
(
�L((A2+···+An )ω)

)
,

where �L((B2+···+Bn )ν ) and �L((A2+···+An )ω), are the fundamental lattice simplices spanned by
appropriate, similar to above, bases of the integer lattices L((B2 + · · · + Bn)ν) and
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L((A2 + · · · + An)ω). Since the map M restricted to the hyperplane with normal vector
ω containing L((A2 + · · · + An)ω) is obviously injective, we have by the substitution rule
of integration

VolL((B2+···+Bn )ν ) (CH (B1)ν) = Vol (CH (B1)ν)

Vol
(
�L((B2+···+Bn )ν )

)
= Vol (M(CH (A1)ω))

Vol
(
M(�L((A2+···+An )ω))

)
= Vol (CH (A1)ω)

Vol
(
�L((A2+···+An )ω)

) .

Thus we have shown the lemma.

Essentially, the following lemma contains the Poisson-type product formula for sparse
resultant shown by Pedersen and Sturmfels. In [23] they show a formula assuming that the
lattice generated by the supports of f1, . . . , fn is Zn−1. We remove this assumption.

Lemma 11 If {1, . . . , n} is essential for (A1, . . . ,An), then

ResA1,...,An ( f1, . . . , fn) =
∏
γ

f1(γ )
∏
ω

ResAω
2 ,...,Aω

n

(
f ω
2 , . . . , f ω

n

)δA1 ,...,An (ω)
,

where γ ranges over the common zeros in (K\ {0})n−1, with respect to the lattice
L(A1, . . . ,An), of f2, . . . , fn, where K is the algebraic closure of the field generated by
the complex numbers and the symbolic coefficients of the fi ’s, δ is as defined in Lemma 10
and ω ranges over the primitive inward normal vectors of the facets of the convex hull of
A2 + · · · + An.

Proof: Note that, since {1, . . . , n} is essential for (A1, . . . ,An), we have that
L(A1, . . . ,An) is a sublattice of Zn−1 of rank n − 1. By mapping a basis of L(A1, . . . ,An)
onto the canonical basis of Zn−1 we construct a lattice isomorphism M fromL(A1, . . . ,An)
to L(B1, . . . ,Bn), where Bi := M(Ai ). Furthermore we canonically extend M to Laurent
polynomials with support in L(A1, . . . ,An) and let gi stand for the image of fi under M .

Note that ResA1,...,An ( f1, . . . , fn) = ResB1,...,Bn (g1, . . . , gn).
Furthermore, by the Poisson-type product formula of [23] (cf. Theorem 8), we have

ResB1,...,Bn (g1, . . . , gn) =
∏
β

g1(β)
∏
ν

ResBν
2 ,...,Bν

n

(
gν

2 , . . . , gν
n

)δB1 ,...,Bn (ν)
,

where β ranges over the common zeros in (K\ {0})n−1 of g2, . . . , gn with respect to
L(B1, . . . ,Bn), where K is the algebraic closure of the field generated by the complex
numbers and the symbolic coefficients of the gi ’s and ν ranges over the primitive inward
normal vectors of the facets of the convex hull of B2 + · · · + Bn . Since M is invertible and
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by Lemma 10, we have

ResB1,...,Bn (g1, . . . , gn) =
∏
β

g1(β)
∏
ω

ResAω
2 ,...,Aω

n

(
f ω
2 , . . . , f ω

n

)δA1 ,...,An (ω)
,

where ω ranges over the primitive inward normal vectors of the facets of the convex hull of
A2 + · · · + An . Now, observe that by the construction (cf. [23]) of

∏
β g1(β), we have

∏
β

g1(β) =
∏
γ

f1(γ ),

where γ ranges over the common zeros in (K\ {0})n−1 of f2, . . . , fn with respect to
L(A1, . . . ,An). Thus we have shown the lemma.

Next we rewrite the exponent δA1,...,An (ω).

Lemma 12

δA1,...,An (ω) = a(ω)
A1

[
Hω : L

(
Aω

2 , . . . ,Aω
n

)]
[Zn−1 : L(A1, . . . ,An)]

,

where δA1,...,An (ω) is defined in Lemma 10.

Proof: Note that

δA1,...,An (ω) = sign
(
a(ω)
A1

) Vol(CH(Aω
1 ∪{0}))

v

Vol(CH(A1)ω)
vω

,

where v and vω, resp., is the volume of the fundamental simplex of the lattice generated by
A1, . . . ,An and (A2 + · · · + An)ω, resp. Note that

Vol
(
CH

(
Aω

1 ∪ {0})) = Vol (CH (A1)ω) dω

n − 1
,

where dω is the distance of the origin from the hyperplane supporting the convex hull
CH (A1)ω. Thus

δA1,...,An (ω) = sign
(
a(ω)
A1

)
dωvω 1

(n − 1)v

= sign
(
a(ω)
A1

)
dω(n − 2)! hω vω

hω

1

(n − 1)! v

= sign
(
a(ω)
A1

)
dω(n − 2)! hω

[Zn−1 : L(A1, . . . ,An)]

vω

hω
,
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where hω is the volume of the fundamental simplex of the lattice of all integer points
contained in the hyperplane, passing through the origin, with normal vector ω.

Now, by [8, p. 319], we have ‖ω‖ = (n − 2)! hω, where ‖ω‖ stands for the Euclidean
norm of ω. In detail: Cox, Little and O’Shea state, in the second-to-last formula on p. 319
of [8], the non-trivial fact that the volume of the fundamental parallelotope of an (n − 1)-
dimensional sublattice of Zn equals the Euclidean length of the (unique up to sign) primitive
normal vector of this sublattice. By replacing n by n − 1, by considering that ω is assumed
to be primitive as in Lemma 10 and since the volume of the fundamental parallelotope of
the lattice of all integer points contained in the hyperplane, passing through the origin, with
normal vector ω, is (n − 2)! times the volume of its fundamental simplex hω, the formula
for ‖ω‖ follows.

Furthermore, it is easy to see that we have sign(a(ω)
A1

)dω ‖ω‖ = a(ω)
A1

and thus we have
shown the lemma.

Now we further generalize the Poisson-type product formula of Lemma 11. In the fol-
lowing lemma the set {1, . . . , n} is not necessarily the unique subset of {1, . . . , n} essential
for (A1, . . . ,An).

Lemma 13 If the index 1 is contained in the unique subset of {1, . . . , n} essential for
(A1, . . . ,An), then

ResA1,...,An ( f1, . . . , fn) =
∏
γ

f1(γ )
∏
ω

ResAω
2 ,...,Aω

n

(
f ω
2 , . . . , f ω

n

)δA1 ,...,An (ω)
,

where γ ranges over the common zeros in (K\ {0})n−1, with respect to the lattice
L(A1, . . . ,An), of f2, . . . , fn, where K is the algebraic closure of the field generated
by the complex numbers and the symbolic coefficients of the fi ’s, δ···(ω) is as defined in
Lemma 10 and ω ranges over the primitive inward normal vectors of the facets of the convex
hull of A2 + · · · + An.

Proof: If {1, . . . , n} is the unique subset of {1, . . . , n} essential for the tuple (A1, . . . ,An)
then the formula holds by Lemma 11.

Suppose, without loss of generality, {1, . . . , k} is the unique subset of {1, . . . , n} essential
for (A1, . . . ,An). Furthermore letB be the set of vertices of the standard simplex of Rn−1 and
g be a polynomial with distinct symbolic coefficients, distinct from all the other symbolic
coefficients in this paper, with support B. The overall strategy of the proof is as follows. We
factorize

ResA1+B,A2,...,An ( f1 g, f2, . . . , fn)

in two different ways. One factorization (Step 1, Formula 4) is the right hand side of
the lemma raised to some power times some factor and the second factorization (Step 2,
Formula 6) is the left hand side of the lemma raised by the same power times the same
factor. Thus the lemma follows up to some factor that is a certain root of unity (Step 3).
Then we show that this root of unity is one (Step 4).
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Now we carry out this strategy:

Step 1: Note that f1 g has support A1 + B. Furthermore note that the Newton polytope
of f1 g is (n − 1)-dimensional and therefore {1, . . . , n} is essential for (C1, . . . , Cn) =
(A1 + B,A2, . . . ,An). By Lemma 11 we have

ResA1+B,A2,...,An ( f1 g, f2, . . . , fn)

=
∏
β

f1(β) g(β)
∏
ω

ResAω
2 ,...,Aω

n

(
f ω
2 , . . . , f ω

n

)δA1+B,A2 ,...,An (ω)

where β ranges over the common zeros in (K\ {0})n−1, with respect to the lattice
L(A1 + B,A2, . . . ,An), of f2, . . . , fn , where K is the algebraic closure of the field
generated by the complex numbers and the symbolic coefficients of g and the fi ’s, δ is
as defined in Lemma 10 and ω ranges over the primitive inward normal vectors of the
facets of the convex hull of A2 + · · · + An . Note that by Exercise 3, p. 318, of [8] the
Newton polytope of f1 g equals CH (A1) + CH (B) and thus by Exercise 12, p. 325, of
[8], we have a(ω)

A1+B = a(ω)
A1

+ a(ω)
B and therefore, by Lemma 12,

δA1+B,A2,...,An (ω)

= a(ω)
A1+B

[
Hω : L

(
Aω

2 , . . . ,Aω
n

)]
[Zn−1 : L(A1 + B,A2, . . . ,An)]

= a(ω)
A1

[
Hω : L

(
Aω

2 , . . . ,Aω
n

)]
[Zn−1 : L(A1 + B,A2, . . . ,An)]

+ a(ω)
B

[
Hω : L

(
Aω

2 , . . . ,Aω
n

)]
[Zn−1 : L(A1 + B,A2, . . . ,An)]

.

Furthermore

δA1+B,A2,...,An (ω) = δA1,...,An (ω)[L(A1 + B,A2, . . . ,An) : L(A1, . . . ,An)]

+δB,A2,...,An (ω)[L(A1 + B,A2, . . . ,An) : L(B,A2, . . . ,An)],

because

[Zn−1 : L(A1 + B,A2, . . . ,An)]

= [Zn−1 : L(A1, . . . ,An)]

[L(A1 + B,A2, . . . ,An) : L(A1, . . . ,An)]

= [Zn−1 : L(B,A2, . . . ,An)]

[L(A1 + B,A2, . . . ,An) : L(B,A2, . . . ,An)]
.

Thus, by Lemma 11 and by the construction of
∏

β f1(β) g(β) (cf. [23]),

ResA1+B,A2,...,An ( f1 g, f2, . . . , fn)

=
∏
β

f1(β)

( ∏
ω

ResAω
2 ,...,Aω

n

(
f ω
2 , . . . , f ω

n

)δA1 ,...,An (ω) I1

)
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×
∏
β

g(β)

(∏
ω

ResAω
2 ,...,Aω

n

(
f ω
2 , . . . , f ω

n

)δB,A2 ,...,An (ω) I2

)

=
∏
β

f1(β)

(∏
ω

ResAω
2 ,...,Aω

n

(
f ω
2 , . . . , f ω

n

)δA1 ,...,An (ω) I1

)

×
(∏

β ′′
g(β ′′)

∏
ω

ResAω
2 ,...,Aω

n

(
f ω
2 , . . . , f ω

n

)δB,A2 ,...,An (ω)

)I2

=
∏
β

f1(β)

(∏
ω

ResAω
2 ,...,Aω

n

(
f ω
2 , . . . , f ω

n

)δA1 ,...,An (ω) I1

)

× ResB,A2,...,An (g, f2, . . . , fn)I2 , (1)

where β ′′ ranges over the common zeros in (L\ {0})n−1, with respect to the lattice
L(B,A2, . . . ,An), of f2, . . . , fn , where L is the algebraic closure of the field generated
by the complex numbers and the symbolic coefficients of g and f2, . . . , fn and where

I1 = [L(A1 + B,A2, . . . ,An) : L(A1, . . . ,An)]

I2 = [L(A1 + B,A2, . . . ,An) : L(B,A2, . . . ,An)].

Now we analyze Formula (1) further. Note that, since

∏
γ

f1(γ ) =
(∏

β ′
f1(a)β ′

)eA1 ,...,An

, (2)

where β ′ ranges over the common zeros in (K ′\ {0})n−1, with respect to the lattice
L(A1, . . . ,Ak), of f2, . . . , fk , where K ′ is the algebraic closure of the field generated
by the complex numbers and the symbolic coefficients of f1, . . . , fk , we have

∏
β

f1(β) =
(∏

β ′
f1(β ′)

)eA1 ,...,An [L(A1+B,A2,...,An ):L(A1,...,An )]

,

=
(∏

γ

f1(γ )

)[L(A1+B,A2,...,An ):L(A1,...,An )]

. (3)

Thus Formula (1) yields the equality

ResA1+B,A2,...,An ( f1 g, f2, . . . , fn)

=
(∏

γ

f1(γ )
∏
ω

ResAω
2 ,...,Aω

n
( f ω

2 , . . . , f ω
n )δA1 ,...,An (ω)

)[L(A1+B,A2,...,An ):L(A1,...,An )]

× ResB,A2,...,An (g, f2, . . . , fn)[L(A1+B,A2,...,An ):L(B,A2,...,An )]. (4)
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Step 2: Therefore we conclude from Formula 4 by Lemma 11 that

ResA1+B,A2,...,An ( f1 g, f2, . . . , fn)

= ResA1,...,An ( f1, . . . , fn)[L(A1+B,A2,...,An ):L(A1,...,An )]

× ResB,A2,...,An (g, f2, . . . , fn)[L(A1+B,A2,...,An ):L(B,A2,...,An )] × Q,

where Q is a rational function depending only on the coefficients of the Laurent poly-
nomials f2, . . . , fn . Now we show that Q is 1. First we observe that Q is a polynomial:
Obviously Q = R

S , where R and S are relatively prime polynomials. Since the left hand
side of the previous equality is a polynomial, the denominator S divides either

ResA1,...,An ( f1, . . . , fn)

or

ResB,A2,...,An (g, f2, . . . , fn).

Since these two resultants are irreducible and depend on either f1 or g, the denominator
S, which does not depend on f1 or g, is a constant. Next we show that the total degree of Q
in the coefficients of f2, . . . , fn−1 and fn , resp., is zero. That is, we show that, for i ≥ 2,

MV(CH (A1 + B) , CH (A2), . . . , CH (Ai−1), CH (Ai+1), . . . , CH (An))

[Zn−1 : L(A1 + B,A2, . . . ,An)]

= MV(CH (M1), . . . , CH (Mi−1), CH (Mi+1), . . . , CH (Mk)) eA1,...,An I1

[Zk−1 : L(M1, . . . ,Mk)]

+ MV(CH (B) , CH (A2), . . . , CH (Ai−1), CH (Ai+1), . . . , CH (An)) I2

[Zn−1 : L(B,A2, . . . ,An)]
,

(5)

where M : L(A1, . . . ,Ak) → Zk−1 is a lattice embedding, Mi stands for M(Ai ) and
MV(·) stands for the mixed volume (cf. [8]). Now, equality (5) can be proved as follows:
By Exercise 3, p. 318, and by Exercise 12, p. 325, of [8] and by the multilinearity of the
mixed volume

MV(CH (A1 + B) , CH (A2), . . . , CH (Ai−1), CH (Ai+1), . . . , CH (An))

[Zn−1 : L(A1 + B,A2, . . . ,An)]

= MV(CH (A1) , CH (A2), . . . , CH (Ai−1), CH (Ai+1), . . . , CH (An))

[Zn−1 : L(A1 + B,A2, . . . ,An)]

+ MV(CH (B) , CH (A2), . . . , CH (Ai−1), CH (Ai+1), . . . , CH (An))

[Zn−1 : L(A1 + B,A2, . . . ,An)]
.

In order to further rewrite this equality we apply Bernshtein’s theorem (cf. [8, 12]:

MV(CH (A1) , CH (A2), . . . , CH (Ai−1), CH (Ai+1), . . . , CH (An))

[Zn−1 : L(A1,A2, . . . ,An)]
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is the number of roots with respect to the lattice L(A1, . . . ,An) of a system of Laurent
polynomial equations with symbolic coefficients with supports A1,A2, . . . ,Ai−1,

Ai+1, . . . ,An , where obviously the roots are defined over the algebraic closure of the
field generated by the complex numbers and the symbolic coefficients of the Laurent
polynomials. Similarly one can interpret the first summand in the right hand side of
Formula (5). Thus we see by the definition of e that

MV(CH (A1) , CH (A2), . . . , CH (Ai−1), CH (Ai+1), . . . , CH (An))

[Zn−1 : L(A1 + B,A2, . . . ,An)]

= MV(CH (M1), . . . , CH (Mi−1), CH (Mi+1), . . . , CH (Mk)) eA1,...,An I1

[Zk−1 : L(M1, . . . ,Mk)]

and we also see easily that

MV(CH (B) , CH (A2), . . . , CH (Ai−1), CH (Ai+1), . . . , CH (An))

[Zn−1 : L(A1 + B,A2, . . . ,An)]

= MV(CH (B) , CH (A2), . . . , CH (Ai−1), CH (Ai+1), . . . , CH (An)) I2

[Zn−1 : L(B,A2, . . . ,An)]
.

Thus we have shown equality (5) and therefore Q is a constant. Now, by the construction
of Q and as we have seen in the beginning of Step 2, we have that Q is a polynomial,
obviously, of the form T α1

1 · · · T αm
m , where m is the number of its distinct polynomial

prime factors Tj and the α j ’s are non-negative integers. Since Q is also a constant, we
have α j = 0 and thus Q = 1. Thus we have shown that

ResA1+B,A1,...,An ( f1 g, f2, . . . , fn)

= ResA1,...,An ( f1, . . . , fn)[L(A1+B,A2,...,An ):L(A1,...,An )]

ResB,A1,...,An (g, f2, . . . , fn)[L(A1+B,A2,...,An ):L(B,A2,...,An )]. (6)

Step 3: Since the right hand side of Formula (4) equals the right hand side of Formula (6),
the formula of the lemma holds up to a certain constant factor σ , namely an
[L(A1 + B,A2, . . . ,An) : L(A1, . . . ,An)]-th root of unity.

Step 4: Now, we show that σ = 1. By Lemma 11 and Remark 3, we have

ResA1,...,An ( f1, . . . , fn)

=
(∏

β ′
f1(β ′)

∏
ν

ResM(A2)ν ,...,M(Ak )ν (M( f2)ν, . . . , M( fk)ν)δM(A1),...,M(Ak )(ν)

)eA1 ,...,An

,

where the vector ν ranges over the primitive inward normal vectors of the facets of the
convex hull of M(A2) + · · · + M(Ak), where M : L(A1, . . . ,Ak) → Zk−1 is some
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lattice isomorphism which we naturally extend to the fi ’s. Since this factorization of
ResA1,...,An ( f1, . . . , fn) equals the factorization we have derived previously, and because
of Formula 2, we have σ = 1.

Thus we have shown the lemma.

Lemma 14 The set {1, . . . , n} has a unique subset essential for {A1, . . . ,An} and this
unique essential subset contains the index 1.

Proof: Let dim(L) denote the rank of an integer lattice L and let #I denote the cardinality
of a set I .

We proceed in three steps: We show that {1, . . . , n} has a subset essential for (A1, . . . ,An)
(Step 1). Then we show that the index 1 is contained in any essential subset (Step 2). Finally
we show that there is only one essential subset (Step 3). Now we carry out this strategy:

Step 1: Obviously we have n > n − 1 ≥ dimL(A1, . . . ,An). Consider the set S :=
{I ⊆ {1, . . . , n} | I �= ∅ and #I > dimL((Ai )i∈I )}. The set S is nonempty and finite
and therefore contains a minimal element J . For all proper subsets K of J we have
dimL((Ak)k∈K ) ≥ #K . Now fix a proper subset K ⊂ J with cardinality #K = #J − 1.
Then #J > dimL((A j ) j∈J ) ≥ dimL((Ak)k∈K ) ≥ #J − 1. Therefore dimL((A j ) j∈J ) =
#J − 1. Thus {1, . . . , n} has a subset essential for (A1, . . . ,An).

Step 2: The index 1 is contained in any essential subset of {A1, . . . ,An}; otherwise
{Ã1,A2, . . . ,An} has a subset being essential but not containing the index 1 which
is a contradiction!

Step 3 (uniqueness): Take two different subsets I and J , resp., of {1, . . . , n} essential
for {A1, . . . ,An} which contain the index 1. Let d1 := dimL((Ai )i∈I ) and d2 :=
dimL((A j ) j∈J ). Thus #I = d1 + 1 and #J = d2 + 1. Furthermore let K := I ∩ J ,
whose cardinality is #K ≥ 1. We show that

dimL
(
(Ai )i∈(I∪J )\{1}

)
< #((I ∪ J )\ {1})).

Note that, since I and J are essential, as in Step 1, we have

dimL
(
(Ai )i∈I\{1}

) = dimL((Ai )i∈I )) = d1

and

dimL
(
(A j ) j∈J\{1}

) = dimL((A j ) j∈J ) = d2.

Therefore dimL((Ai )i∈(I∪J )\{1}) = dimL((Ai )i∈I∪J ) which is at most

dimL((Ai )i∈I ) + dimL((A j ) j∈J ) − dimL((Ak)k∈K ).

Since K is a proper subset of the essential I , we have that dimL((Ak)k∈K ) ≥ #K and
therefore

dimL
(
(Ai )i∈(I∪J )\{1}

) ≤ d1 + d2 − #K .

Furthermore, note that d1 + d2 − #K < d1 + d2 + 1 − #K = #((I ∪ J )\ {1}).
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Next observe, as in Step 1, that (I ∪ J )\{1} contains a subset which is essential for
(Ã1,A2, . . . ,An). This is a contradiction because (I ∪ J )\{1} does not contain the index 1!

Thus we have shown the lemma.

Now we are ready to prove the main theorem.

Proof (Theorem 1): Let f̃ 1 be a Laurent polynomial with distinct symbolic coefficients
with support Ã1. By Lemma 13 we have

ResÃ1,A2,...,An
( f̃ 1, f2, . . . , fn)

=
∏
γ

f̃ 1(γ )
∏
ω

ResAω
2 ,...,Aω

n

(
f ω
2 , . . . , f ω

n

)δÃ1 ,A2 ,...,An (ω)
,

where γ ranges over the common zeros in (K̃\ {0})n−1, with respect to the lattice
L(Ã1,A2, . . . ,An), of f2, . . . , fn , where K̃ is the algebraic closure of the field gener-
ated by the complex numbers and the symbolic coefficients of f̃ 1 and the fi ’s, and ω ranges
over the primitive inward normal vectors of the facets of the convex hull of A2 + · · · +An .
Since the symbolic coefficients of f̃ 1 are algebraically independent from the symbolic
coefficients of f2, . . . , fn , Lemma 13 is stable under specialization of f̃ 1 and we have

ResÃ1,A2,...,An
( f1, . . . , fn)

=
∏
γ

f1(γ )
∏
ω

ResAω
2 ,...,Aω

n

(
f ω
2 , . . . , f ω

n

)δÃ1 ,A2 ,...,An (ω)
,

where γ ranges over the common zeros in (K\ {0})n−1, where K is the algebraic closure
of the field generated by the complex numbers and the symbolic coefficients of f1 and the
remaining fi ’s and ω is as before.

Furthermore, as in [23] by the construction of
∏

γ f1(γ ), we have

∏
γ

f1(γ ) =
∏
γ ′

f1(γ ′)[L(Ã1,A2,...,An ):L(A1,...,An )], (7)

where γ ′ ranges over the common zeros in (K\ {0})n−1 of f2, . . . , fn with respect to
L(A1, . . . ,An).

By Lemmas 13 and 14, we have∏
γ ′

f1(γ ′) = ResA1,...,An ( f1, . . . , fn)
∏
ω

ResAω
2 ,...,Aω

n

(
f ω
2 , . . . , f ω

n

)−δA1 ,...,An (ω)

and thus∏
γ

f1(γ ) = ResA1,...,An ( f1, . . . , fn)[L(Ã1,A2,...,An ):L(A1,...,An )]

×
∏
ω

ResAω
2 ,...,Aω

n

(
f ω
2 , . . . , f ω

n

)−δA1 ,...,An (ω) [L(Ã1,A2,...,An ):L(A1,...,An )]
.
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Therefore

ResÃ1,A2,...,An
( f̃ 1, f2, . . . , fn)

= ResA1,...,An ( f1, . . . , fn)[L(Ã1,A2,...,An ):L(A1,...,An )] (8)

×
∏
ω

ResAω
2 ,...,Aω

n

(
f ω
2 , . . . , f ω

n

)δÃ1 ,A2 ,...,An (ω)−δA1 ,...,An (ω)[L(Ã1,A2,...,An ):L(A1,...,An )]
.

Note that

[L(Ã1,A2, . . . ,An) : L(A1, . . . ,An)]

[Zn−1 : L(A1, . . . ,An)]
= 1

[Zn−1 : L(Ã1,A2, . . . ,An)]

and therefore by Lemma 12

δÃ1,A2,...,An
(ω) − δA1,...,An (ω)[L(Ã1,A2, . . . ,An) : L(A1, . . . ,An)]

=
(
a(ω)
Ã1

− a(ω)
A1

) [
Hω : L

(
Aω

2 , . . . ,Aω
n

)]
[Zn−1 : L(Ã1,A2, . . . ,An)]

.

Therefore we have shown the equality of the main theorem.
Since the Laurent polynomials in the main theorem have symbolic coefficients and the

sparse resultants on the right hand side of the equality are defined with respect to the precise
supports of these Laurent polynomials, the factorization on the right hand side is irreducible.

Thus we have shown the main theorem.

4. Conclusion

In this paper we studied sparse resultant under vanishing of coefficients. The sparse resultant
of some Laurent polynomials fi with respect to any supports is some power of the sparse
resultant of the fi ’s with respect to their precise supports times a product of powers of
sparse resultants of some parts of the fi ’s. This result is important for applications where
perturbed data with very small coefficients arise as well as when one computes resultants
with respect to some fixed supports, not necessarily the supports of the fi ’s, in order to
speed up computations. This work extended some work by Sturmfels on sparse resultant
under vanishing coefficients (cf. Corollary 4.2 of [25]).
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