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Abstract. Let S be a near polygon of order (s, t) with quads through every two points at distance 2. The near
polygon S is called semifinite if exactly one of s and t is finite. We show that S cannot be semifinite if s = 2 and
derive upper bounds for t .
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1. Introduction

A near polygon is a partial linear space with the property that every line L contains a unique
point πL (p) nearest to a given point p. Here distances are measured in the collinearity
graph �. If d is the diameter of �, then the near polygon is called a near 2d-gon. We always
suppose that d is finite. A near 0-gon consists of one point, a near 2-gon is a line, and
the class of the near quadrangles coincides with the class of the generalized quadrangles
(GQ’s), which were introduced by Tits in [8]. Near polygons themselves were introduced
by Shult and Yanushka in [7] because of their relationship with certain systems of lines in
Euclidean spaces. A near polygon is said to have order (s, t) if every line is incident with
exactly s + 1 points, and if every point is incident with exactly t + 1 lines. Clearly, a near
polygon is finite if both s and t are finite. If exactly one of s and t is finite, then the near
polygon is called semifinite.

In this paper we only consider near polygons satisfying the following properties: (i) every
line is incident with s + 1 ≥ 3 points, (ii) every two points at distance 2 have at least two
common neighbours. By Yanushka’s Theorem (Proposition 2.5 of [7]), every two points at
distance 2 are contained in a so-called quad which is a geodetically closed subGQ. More
generally, we know that every two points x and y at mutual distance i ∈ {0, . . . , d} are
contained in a unique geodetically closed sub near 2i-gon H (x, y) (Theorem 4 of [3]). It
also can be proved that the near polygon has an order (s, t) (Lemma 19 of [3]).

An interesting problem is whether there are semifinite near polygons satisfying (i) and
(ii). It is proved that the answer is negative for (d, s) ∈ {(2, 2), (2, 3), (3, 2)}. For GQ’s
of order (2, t), the problem was solved by Cameron [5]. The case of GQ’s of order (3, t)
was considered by Brouwer [1] and the case of near hexagons of order (2, t) was treated by
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Brouwer et al. [2]. In Section 3 we show that similar techniques as in [2] and [5] provide upper
bounds for the number of lines through a point for any near 2d-gon of order (2, t) satisfying
(ii). As a corollary we have the following result which is the main theorem of this paper.

Main theorem. Every near polygon of order (2, t) satisfying (ii) is finite.

In order to determine an upper bound for t + 1, we need to find an upper bound for the
diameters of the graphs �d (x). This problem is solved in Section 2. In Section 4 we show
how the use of certain geodetically closed sub near polygons can lead to better upper bounds
for t + 1. These improved upper bounds might be useful to reduce the case load in future
classifications.

2. Finiteness of the diameter of Γd (x)

Let S = (P,L, I ) be a near 2d-gon satisfying

(I) every line is incident with at least three points,
(II) every two points at distance 2 have at least two common neighbours, and let x be a

fixed point of S.

Lemma 1 Let u, v and w be three points such that d(u, v) = d(v, w) = 1 and d(x, v) =
d(x, w) = d(x, u) − 1, then every common neighbour ṽ 
= v of u and w has distance
d(x, u) from x.

Proof: Let z be the point of vw at distance d(x, u) − 2 from x . The point on uṽ collinear
with z has distance d(x, u) − 1 from x . Hence d(x, ṽ) = d(x, u).

Definitions A path γ = (x0, x1, . . . , xk) in S is called saw-edged if the following three
conditions are satisfied:

(1) d(x, x0) = d(x, xk);
(2) d(x, xi ) ∈ {d(x, x0), d(x, x0) + 1} for all i ∈ {0, . . . , k};
(3) if d(x, xi ) = d(x, x0) + 1, then d(x, xi−1) = d(x, xi+1) = d(x, x0).

Let l(γ ) = k denote the length of γ . We call l̄(γ ) = l(γ ) + t(γ ) the modified length of γ ;
here t(γ ) denotes the number of teeth of γ , i.e. the number of vertices xi , i ∈ {0, . . . , k}, at
distance d(x, x0) + 1 from x .

Theorem 1 Let y, z ∈ P such that d(x, y) = d(x, z). If y and z are connected by a path
of length δ only consisting of points at distance at most d(x, y) from x, then y and z are
connected by a saw-edged path γ with l̄(γ ) ≤ 3

2δ.

Proof: We use induction on δ. Clearly, the theorem holds if δ = 0 or δ = 1. Let δ = 2
and let u and u′ be two common neighbours of y and z. We may suppose that d(x, u) =
d(x, u′) = d(x, y) − 1. Choose now collinear points v ∈ uz \ {u, z} and v′ ∈ yu′ \ {y, u′},
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then the path (y, v′, v, z) is saw-edged and has modified length 3. Suppose therefore that
δ ≥ 3 and consider a path y = x0, x1, . . . , xδ = z for which d(x, xi ) ≤ d(x, y) for all
i ∈ {0, . . . , δ}. If d(x, xi ) = d(x, y) for some i ∈ {1, . . . , δ − 1} then there exists a saw-
edged path of modified length at most 3

2 i + 3
2 (δ − i) = 3

2δ connecting y and z. Suppose
therefore that d(x, xi ) < d(x, y) for all i ∈ {1, . . . , δ − 1}. By induction, x1 and xδ−1 are
connected by a saw-edged path γ1 with l̄(γ1) ≤ 3

2 (δ − 2) = 3
2δ − 3. The path γ1 can be

extended to a path γ2 of length k = l(γ1) + 2 connecting y and z. By Lemma 1, the path γ2

can be replaced by a path γ3 = (a0, . . . , ak) which satisfies the following properties.

(a) a0 = y, ak = z.
(b) There are exactly t(γ1) + 1 points ai , i ∈ {0, . . . , k}, satisfying d(x, ai ) = d(x, y) − 1;

all the other points of the path γ3 lie at distance d(x, y) from x .
(c) If d(x, ai ) = d(x, y) − 1 for some i ∈ {0, . . . , k}, then d(x, ai−1) = d(x, ai+1) =

d(x, y).

If d(x, ai ) = d(x, y)−1 for some i ∈ {0, . . . , k}, then the path (ai−1, ai , ai+1) can be replaced
by a saw-edged path of modified length at most 3. Hence y and z are connected by a saw-
edged path of length at most

l(γ3) − 2(t(γ1) + 1) + 3(t(γ1) + 1) = l(γ1) + t(γ1) + 3 = l̄(γ1) + 3 ≤ 3

2
δ.

Corollary 1
(a) If y and z are points of S such that d(x, y) = d(x, z), then they are connected by a

saw-edged path γ with l̄(γ ) ≤ 3 d(x, y).
(b) The subgraph �d (x) of � whose vertices are the points of S at distance d From x has

diameter at most � 3
2 d�.

3. Finiteness of t + 1

Let S be a near 2d-gon satisfying the following properties:

(I) every line is incident with exactly 3 points,
(II) every two points at distance 2 have at least two common neighbours.

Let M be a positive integer for which the following holds:
(∗) every geodetically closed sub near 2(d −1)-gon H ofS has order (2, tH ) with tH ≤ M .
In this section, we will prove by induction that such a positive integer M always exists

(notice that for d = 2, we can take M = 0). At this moment however, we need to assume
the existence of such a number. Let (2, t) be the order of S. We now derive upper bounds
for t + 1 using similar techniques as in [2] and [5].

Lemma 2 If there is a cycle of length 2n + 1, n > 1, in �d (x), then t + 1 ≤ (2n + 1)
(M + 1).
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Proof: Let y0, y1, . . . , y2n+1 = y0 be a cycle of length 2n + 1 in �d (x). Let zi , i ∈
{0, . . . , 2n}, denote the unique third point on the line yi yi+1. Suppose that t + 1 > (2n + 1)
(M + 1). Then there exists a line L through x which is not contained in one of the sub near
polygons H (x, zi ). Now, let u be the point of L at distance d −1 from y0. If d(u, zi ) ≤ d −1
for a certain i ∈ {0, . . . , 2n}, then d(x, zi ) = d − 1 implies that d(w, zi ) = d − 2 for a
certain point w on xu or that L is contained in H (x, zi ), a contradiction. Hence d(u, zi ) = d
for every i ∈ {0, . . . , 2n}. Since d(u, y0) = d − 1 and d(u, z0) = d, we necessarily have
that d(u, y1) = d . Since d(u, y1) = d and d(u, z1) = d, d(u, y2) = d − 1. Repeating this
argument several times, one finds that d(u, y2n+1) = d, contradicting d − 1 = d(u, y0) =
d(u, y2n+1). Hence t + 1 ≤ (2n + 1)(M + 1).

Corollary 2 At least one of the following possibilities occurs:
(1) t + 1 ≤ (2� 3d

2 � + 1)(M + 1)
(2) �d (x) is a bipartite graph.

Theorem 2 If �d (x) is bipartite, then t + 1 ≤ � 3d
2 �(M + 1)2.

Proof: Let d ′(·,·) denote the distance in �d (x). Let y be a fixed vertex of �d (x). For every
z ∈ �d (x), let Cz be the set of lines through x containing a point of �d−1(y) ∩ �d−1(z), and
let Dz denote the set of all the other lines through x . If d ′(y, z) is even, then we put Az := Dz

and Bz := Cz ; otherwise Az := Cz and Bz := Dz . Clearly Ay = ∅. For two collinear points
z and z′ in �d (x), let Ez,z′ denote the set of all lines through x contained in H (x, z′′) with z′′

the unique third point of the line zz′. Since �1(x)∩(�d−1(z)∩�d−1(z′)) = �1(x)∩�d−2(z′′),
we have that Az′ = Az�Ez,z′ (symmetrical difference). Hence for every point z of �d (x),
|Az| ≤ � 3d

2 �(M + 1). Now, let z be a point of �d (x) for which |Az| is maximal. Let
Az = {L1, . . . , L |Az |}. For every i ∈ {1, . . . , |Az|}, let Hi denote the unique geodetically
closed sub near polygon through z and the unique point of Li at distance d − 1 from
z. If there would be a line zz′, z′ ∈ �d (x), through z not contained in any of these sub
near polygons, then |Az′ | = |Az| + |Ez,z′ | > |Az|, a contradiction. Hence t + 1 ≤ � 3d

2 �
(M + 1)2.

If d = 1, then t +1 = 1. For d > 1, successive application of Corollary 2 and Theorem 2
gives an upper bound for t + 1 which only depends on d. This proves our Main Theorem.
It is now also clear that a number M exists for which condition (∗) holds.

4. Improved upper bounds for t + 1

Again, let S be a near 2d-gon satisfying (I) and (II). Lemma 2 provides an upper bound for
t +1 in the case that there exists a point x for which �d (x) is not bipartite. This upper bound
can be improved if certain geodetically closed sub near polygons exist, see Lemma 5. These
improved upper bounds might be useful to reduce the case load in future classifications. As
in the previous section let M denote a positive integer satisfying condition (∗).

Let H be a geodetically closed sub near 2δ-gon of S. A point x of S is called classical
with respect to H if there exists a (necessarily unique) point π (x) ∈ H such that d(x, y) =
d(x, π (x)) + d(π (x), y) for all y ∈ H .
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Lemma 3 (Lemma 3.1 of [3]) A point x of S is classical with respect to H if and only if
there exists a point y ∈ H at distance d(x, H ) + δ from x.

Classical points always exist at any admissible distance from H .

Lemma 4 For every i ∈ {0, . . . , d − δ}, there exists a point x at distance i from H for
which (x, H ) is classical.

Proof: The lemma clearly is true if i = 0. Suppose therefore that i > 0. Let y be a point
at distance i − 1 from H for which (y, H ) is classical. Let z be a point of H at distance
i + δ − 1 from x . Since i + δ − 1 ≤ d − 1, there exists a point x ∼ y at distance i + δ

from z. Since z has distance at most δ to any point of H, d(x, H ) ≥ i . Hence d(x, H ) = i
since d(y, H ) = i − 1. The result now follows from Lemma 3.

The following lemma is an improvement of Lemma 2.

Lemma 5 If there exists a (2n + 1)-cycle in �δ(x) ∩ H for some point x ∈ H, then
t + 1 ≤ (2n + 1)(M + 1) − 2n(d − δ).

Proof: By the previous lemma there exists a point y at distance d(y, x) = d(y, H ) = d−δ

from x such that (y, H ) is classical. If H (x, y) has order (2, N ), then a similar reasoning as in
the proof of Lemma 2 yields (t +1)−(N +1) ≤ (2n+1)((M +1)−(N +1)). Hence t +1 ≤
(2n + 1)(M + 1) − 2n(N + 1). The lemma now follows since N + 1 ≥ d − δ.

We will now give two instances where Lemma 5 can be applied and leads to better upper
bounds for t + 1. As any quad Q of S has an order (2, tQ), Q must be isomorphic to either
the (3×3)-grid, W (2) or Q(5, 2), see e.g. [6]. If H is isomorphic to Q(5, 2), then �2(x)∩ H
contains a path of length 5, see [6]. Another example is when H is a hex isomorphic to the
near hexagon T ∗

5 (K) which we will describe now. Let ∞ be a PG(5, 3) which is embedded
as a hyperplane in . Consider in ∞ the set K of 12 points determined by the columns of
the following matrix:

M =




1 0 0 0 0 0 1 1 1 1 1 0

0 1 0 0 0 0 0 1 −1 −1 1 −1

0 0 1 0 0 0 1 0 1 −1 −1 −1

0 0 0 1 0 0 −1 1 0 1 −1 −1

0 0 0 0 1 0 −1 −1 1 0 1 −1

0 0 0 0 0 1 1 −1 −1 1 0 −1




Let T ∗
5 (K) denote the incidence structure whose points are the points of  \ ∞, whose

lines are those lines L of ∞ satisfying |L ∩ ∞| = |L ∩ K| = 1, and whose incidence
relation is the one derived from . By [4] and [7], T ∗

5 (K) is a near hexagon of order
(2, 11). Let x be a point of  \ ∞ and take a 3-dimensional subspace α of ∞ for which
|α ∩ K| = 4, e.g., let α be generated by the first four columns of the matrix M . Let β
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be a plane generated by three points of α ∩ K. Let γ /∈ {α, 〈x, β〉} be a 3-dimensional
subspace of 〈x, α〉 through β. The points of γ \ ∞ determine a sub near hexagon C of
T ∗

5 (K) which is isomorphic to a generalized cube. The points of C can be labeled with the
triples (i, j, k), i, j, k ∈ {−1, 0, 1}, such that (i, j, k) ∼ (i ′, j ′, k ′) if and only if these triples
agree in exactly two positions. If (0, 0, 0) is the unique point of γ \∞ collinear with x ,
then

• d(x, (0, 0, 0)) = 1,
• d(x, (1, 0, 0)) = d(x, (−1, 0, 0)) = d(x, (0, 1, 0)) = d(x, (0, −1, 0)) = d(x, (0, 0, 1)) =

d(x, (0, 0, −1)) = 2,
• d(x, (1, 1, 0)) = d(x, (1, −1, 0)) = d(x, (−1, 1, 0)) = d(x, (−1, −1, 0)) = d(x, (1, 0,

1)) = d(x, (1, 0, −1)) = d(x, (−1, 0, 1)) = d(x, (−1, 0, −1)) = d(x, (0, 1, 1)) = d(x, (0,

1, −1)) = d(x, (0, −1, 1)) = d(x, (0, −1, −1)) = 3.

We may suppose that d(x, (1, 1, 1)) = 3. Then d(x, (1, 1, −1)) = d(x, (−1, 1, 1)) =
d(x, (1, −1, 1)) = d(x, (−1, −1, −1)) = 2 and d(x, (−1, −1, 1)) = d(x, (−1, 1, −1)) =
d(x, (1, −1, −1)) = 3. The closed path (0, −1, −1), (1, −1, −1), (1, 0, −1), (1, 0, 1),
(1, 1, 1), (0, 1, 1), (0, −1, 1), (0, −1, −1) has length 7 and is completely contained in �3(x).
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