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MINIMAX INEQUALITY OF KY FAN TYPE
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ABSTRACT. In this paper, we prove a main result about Ky Fan min-
imax inequality in any compact H-space. Then, we apply this result
to fixed point problem, intersection problem of sets with convex sec-
tions, minimax inequality of the Von Neumann type, and variational
inequality.

1. Some elementary concepts

We recall some elementary concepts on an H-space (see [3]).

1) Let X be a topological space and F(X) be a family of all nonempty
finite subsets of X. Let I'4 be a family of nonempty contractible subsets
of X indexed by A € F(X) such that Ty C T'ys where A C A’. The pair
(X,{T'4}) is called an H-space.

2) The set C C X is called H-convex in (X,{T'4a}) if 'y C C for any
finite subset A C C.
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3) Let (X,{I'4}) be an H-space and Y a topological space. Let
$:C xY — RU{+£oo} is a functional and A € R. For each y € Y, ®(z,y)
is called to be H-quasiconvex (or H-quasiconcave) in X about A, iff the set

{r e X : ®(z,y) <A} (or{z € X:P(z,y) > A})
is H-convex in (X, {['4}).

4) Let X and Y be two topological spaces and r € R. A functional,
$: X xY +— RU{too}, is called transfer lower semicontinuous in Y iff,
for each z € X and y € Y, ®(z,y) > r implies that there exists a point
x’ € X and an open neighborhood N(y) of y such that ®(z’,z) > r for all
z € N(y).

2. Main results

Lemma 1 (see [8]). Let (X,{T'a}) be a compact H-space and let

T : X — 2% be a set-valued mapping such that

(1.1) for each xz € X, T(x) is a nonempty H-convex subsel;

(1.2) for eachy € X, T (y) = {z € X : y € T(y)} contains an open set
Oy (O, may be empty for some y);

(1.3) U{O, 1y € X} = X.

Then there is a point xo € T (zg).

Theorem 2. Let (X,{T'4}) be a compact H-space, and f,g: X x X — R
be functional such that

(2.1) f<gon X xX;

(2.2) f(z,y) is transfer lower-semicontinuous about y;

(2.3) g(-,y) is H-quasiconcave.

Then, for each A € R, one of the following property holds:

(a) there exists a point xy € X such that g(zg, o) > A;
(b) there exists a point yo € X such that f(x,yg) < X for all x € X.

Proof. For each A € R, let
Sly) ={z e X: f(z,y) > A} and T(y) = {z € X : g(z,y) > A}
for each y € X. Then S(y) C T'(y) by (2.1).

Suppose that there is an x € X, such that f(x,y) > A for each y € X.
Then S : X — 2% is a multivalued mapping with nonempty values, so is
T. By (2.3) we know that T'(y) is H-convex for each y € X. Hence the
condition (1.1) of Lemma 1 holds.

Moreover for each x € X, since S(z) # 0, there is a point 3’ € S(z), i.e.
f(@W/,z) > A According to (2.2) there exists an open neighborhood N(z)
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of z and a point y € X such that f(y,z) > A for each z € N(z). i.e. for
all z € N(x),y € S(z) C T(z). Hence, z € T (y) for all z € N(z) which
implies N(z) C T~ (y). Let N(z) = O,. Then T~'(y) contains an open set
Oy, which shows that for each x € X, there exists a point y € X and an
open subset O, C T~ !(y) such that

Uo,=UNex=x
yeX rEX
where Oy may be empty for some y € X.
By virtue of Lemma 1, there exists a point zy € X such that xg € T'(xg),
ie. g(zo,zo) > A
This completes the proof of Theorem 2. O

Remark 1. If X be a nonempty convex subset of a Hausdorff topological
vector space, then result of Theorem 2 was given in [1], but its proof of
Theorem is based on the KKM-mapping principle.

Corollary 3. Let (X,{l'4a}) be a compact H-space, and let

P, ¥: X x X — R be functionals such that

(3.1) & <V on the diagonal A = {(z,z):x € X} and ® > ¥ on (X x X)\
A;

(3.2) the function ®(y,y) — ®(x,y) is transfer lower—semicontinuous about
Ys

(3.3) the function V(-,y) is H-quasiconver.

Then there exists a point yo € X such that ®(yo,yo) < P(z,yo) for all

zeX.

Proof. Define f and g on X x X by setting

f(z,y) = (y,y) — (z,y) and g(z,y) = ¥(y,y) — ¥(z,y).

Then f and g satisfy the hypothesis of Theorem 2. Since g(z,x) = 0 for
all x € X, Theorem 2 implies that there exists a point yy € X, such that

flz,y0) < 0 for all x € X ie. P(yo,yo) < P(x,y0) for all z € X. This
completes the proof. O

Remark 2. When & = ¥, Corollary 3 was given by Ky Fan ([4] p. 118,
and Corollary 1 in [7]).
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3. Some applications

Theorem 4 (Ky Fan minimax inequality). Let (X,{la}) be a compact H -
space, and f,g: X x X — R be two functionals such that

(4.1) f<gon X x X,

(4.2) f(x,y) is transfer lower semicontinuous about y;

(4.3) g(-,y) is H-quasiconcave.

Then the minimaz inequality mingex sup,cx f(z,y) < sup.ex 9(z, )
holds.

Proof. Let X =sup,cx g(z,z). If A = 400 then Theorem is obviously true.
So we may assume that A < 4+o00. Since there is not an zg € X such that
g(zp,z9) > A, Theorem 2 implies that there exists a point yg € X such
that f(x,y0) < A for all z € X, which results in minyex sup,cx f(z,y) <

SuprXg(ma :E) U

Remark 3. Obviously, Theorem 4 implies Theorem 2. When f = g, The-
orem 4 reduces to the Ky Fan minimax inequality [6].

Theorem 5. Let (X, {['a}) be a compact H-space and A,B C X x X such
that

(5.1) AC B;

(5.2) for each fized x € X, the set {y € X : (x,y) € A} is open in X;

(5.3) for each fized y € X, the set {x € X : (x,y) € B} is H-convez.

Then one of the following properties holds:

(a) there exists a point xo € X such that (xo,z0) € B;
(b) there exists a point yo € X such that {x € X : (x,y0) € A} =10 .

Proof. Let f and g be two characteristic functions defined on A and B
respectively. Since A C B, we have f < g on X x X. For each fixed x € X
and any ¢t € R, we have

X, if t<O0;
yeX: flry) >t} =1 {yeX:(z,y) € A}, if 0<t< L
) if 1<t

Thus, f(z,y) is transfer lower—semicontinuous about y for each fixed z € X.
For each fixed y € X and any ¢t € R, we have

X, if t<O0;
{zeX:glx,y) >t} =4 {xeX:(z,y €B}, if 0<t<];
0, if 1<t
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Thus, g(z,y) is H-quasiconcave on X for each fixed y € X. Let 0 < A < 1.
By Theorem 2, there exists a point zy € X such that g(xg, zo) > A, or there
exists a point yg € X such that f(z,yg) < A for all z € X. This implies
that there exists a point xyp € X such that (zg,z¢) € B or there exists a
point yg € X such that (z,yp) € A for all z € X, that is, {z € X : (z,y0) €
A} = (. The conclusion of Theorem be proved. O

Remark 4. Obviously, Theorem 5 implies Theorem 2. Let A € R and
define

A={(z,y) € X x X : f(z,y) > A} and B={(z,y) € X x X : g(z,y) > A}

When A = B, Theorem 5 is due to Ky Fan [7] and can be formulated in
terms of the complement M of A and the complement N of B as follows.

Corollary 6. Let (X,{l'a}) be a compact H-space and M,N C X x X

such that

(6.1) N C M;

(6.2) the set {y € X : (z,y) € M} is closed in X for each fized x € X ;

(6.3) the set {x € X : (z,y) & N} is H-convex (possibly empty) for each
fized y € X.

Then one of the following properties holds:

(a) there exists a point xy € X such that (zg,zo) ¢ N;
(b) there exists a point yo € X such that X x {yo} C M.

Proof. In terms of the complement M of A and the complement N of B in
Theorem 5, we obtain the conclusion immediately. O

Theorem 7 (Fixed point version). Let (X, {'4}) be a  compact
H-space and let F,G : X — 2% be two set—valued maps such that

(7.1) F(z) C G(z) for each x € X;

(7.2) G=(y) is H-convex for each y € X;

(7.3) F(z) is open in X for each xz € X.

Then one of the following properties holds:

(a) there exists a point w € X such that w € G(w);
(b) there exists a yo € X such that F~1(yy) = 0.

Proof. Let A = {(z,y) : y € F(z)} and B = {(z,y) : y € G(x)} be
two subsets of X x X. We can easily see that Theorem 7 is equivalent to
Theorem 5. U
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Now, given a Cartesian product X = [[{X; : 1 < i < n} of topological
space, let

X' :H{Xj 1<j<nj#Aitandz’ = (z1,. .. ,Ti_1, Tig1, ... ,xp) € XV
For x = (z1,...,2p), ¥y = (Y1, .- ,Yn) € X, let

(yi, 932) = (Il, oo s Li—15Yiy Lj41s - ,In).
Thus, Theorems of Ky Fan (see [5]—[7]) concerning sets with convex sections
can be extended in a natural way.

Theorem 8. Let (X;,{I'4,}) (=1,2,... ,n) be n compact H-spaces, and

fiseee s fns 915+« 5 gn, be real—valued functions on the product space (X, {T' 4})

where A =[[{A; : 1 <i <n} such that

(8.1) fi<gionX fori=1,2,... n;

(8.2) for eachi=1,2,... ,n and for each fived x; € X;, fi(x;, ") is transfer
lower—semicontinuous on X';

(8.3) for each i = 1,2,...,n and for each fized x* € X*, g;(x;,2°) is H-
quasiconcave on X;.

Let t1,... ,t, be n real numbers. For each point ' € X', there exists a

point x; € X; such that f;(z;, :E’) > t;. There exists a point u € X such that

gi(u) > t; fori=1,2,... ,n.

Proof. For any two points x = (x1,... ,x,) and y = (y1,... ,y,) of X, we
define

O(z,y) = 1I§gn{fi(xi,y )—ti} and U(z,y) = lrgiléln{gi(ri,y ) —ti}-

Then:

1) @ <Won X x X by (8.1).

2) ®(x,y) is transfer lower semicontionuous on X for each fixed x € X.
(If ®(x,y) > t, where ¢ is real number, then for all i = 1,2,... ,n we have
fi(zi,y?) > t +t;. By (8.2), that there exists an #; € X; and an open
neighborhood N (y%) of y® such that f;(7;,2%) > t+t; (i = 1,2,... ,n). It
follows that there exists a point (#;,7') € X and an open neighborhood
N(y;,y") such that for i = 1,2,... ,n, fi(%;, 2°) — t; > t. Hence, ®(7,2) =
ming<;<n{ fi(%;, 2') — t;} > t for all z € N(y;,9%).)

3) ¥(z,y) is H-quasiconcave on X for each fixed y € X by (8.3). (For
each t € R the set
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{r € X :¥(x,y) >1t, fixedy € X}
={z e X: min {gi(z;,y") —t;} >t, 1<i<n}
1<i<n

= {z € X : min {gi(z;,y") >t +t;}, 1 <i<n}
1<i<n

{r € X :gi(zi,y") >t +t;}

.

i=1

which is H-convex.)

The last part of the hypothesis asserts that for each y € X, where 3* € X?,
there exists an x; € X;, such that f;(z;,y%) > t; for each i (1 < i < n).
Hence,

(I)(I,y) = 1<Zlgn{fz(zz7yl) - ti} > 0.

According to Theorem 2, there exists a point u € X such that ¥(u,u) > 0.
Thus, g;(u) > t; for i = 1,2,... ,n. The theorem is proved. O

Theorem 9. Let (X;,{T'4;}) be n (n > 1) compact H-spaces, and let

Ai,... A, and By,..., By be subsets of the product space X = [[{X; :

1 < i< n}. Suppose that

(9.1) A; C B; fori=1,2,... .n;

(9.2) for each i = 1,2,... ,n and for each x; € X;, the set A;(z;) = {x' €
X' (x5, 2%) € A} is open in X¢;

(9.3) the set Bj(x') = {z; € X; : (z;,2') € B;} is H-convex for each i
(i =1,2,...,n), and for each point z* € X' the set A;(z') = {z; €
X; : (x;,2%) € A;} is nonempty.

Then Ny B; # 0.

Proof. For each i (i =1,2,... ,n), let f; and g; be characteristic functions
of sets A; and B; respectively. i.e.
[ 1, if ze A
fi() —{ 0, if z€ X\ A

(z) = 1, if =z € B;;
9T = 0, if z€ X\ B;.
Since A; C B; (i = 1,2,...,n), then f; < g; on X. For each fixed
z; € X; (i=1,2,... ,n) and any ¢t € R, we have
- . X', if t<0;
{z' € X" fi(zs,2") >t} =3 Ai(x;), if 0<t<1,
0, if 1<t
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which implies that the condition (8.2) is satisfied. Similarly,

X; if ¢t <0
{z; € X;: gi(zs,2%) >t} ={ Bi(ah), if 0<t<1;
0, if 1<t

which implies that the condition (8.3) is satisfied.
When 0 < ¢ < 1, since A;(z) #0 (i = 1,2,... ,n), it follows that the final
hypothesis of Theorem 8 is satisfied. Therefore, according to Theorem 8,

there exists a point u € X such that g;(u) >t for each i (i = 1,2,... ,n),
i.e. there exists a point u € B; for each i (i = 1,2,... ,n). Hence, we have
" 1 B; # ). This completes the proof. O

Remark 5. If each i (i =1,2,... ,n), we define A; = {u € X : fi(u) > t;}
and B; = {u € X : g;(u) > t;}, then we can easily see that the Theorem 9
implies Theorem 8.

Theorem 10 (Ben-Ei-Mechaiekh-Degurie-Granas). Let (X,{T'a}) and (Y,{I'p})
be two compact H-spaces, and f, s, t, g be four real-valued functions on X XY
satisfying

(10.1) f<s<t<gonX xY;

(10.2) f(z,y) is lower—semicontinuous on'Y for each fized x € X;

(10.3) s(x,y) is H-quasiconcave on X for each fized y € Y

(10.4) t(x,y) is H-quasiconvexr on'Y for each fized x € X;

(10.5) g(z,y) is upper—semicontinuous on X for each fived y € Y.

Then for each A € R, one of the following property holds:

(a) there exists a point yo € Y such that f(x,yo) < A; for all x € X;
(b) there exists a point xo € X such that g(xo,y) > X\ for ally € Y.

Proof. Let A1 = {(z,y) € X xY : f(z,y) > A\}; A2 = {(z,y) € X XY :
g(z,y) < A}; By ={(z,y) € X xY : s(x,y) > A\}; Bo ={(z,y) € X xY :
t(z,y) < A}, where X € R.

Suppose that the assertion of theorem is false. Then for each fixed y € Y,
Ai(y) = {z € X : f(z,y) > A} # 0 and for each fixed z € X, Ay(z) =
{y € Y : glz,y) > A} # (. It is easy to see that other conditions of
Theorem 9 from the hypotheses of Theorem 10. By virtue of Theorem 9,
we have By N By # (). Let (xg,y0) € B1 N By. Then

A < s(zo,y0) < t(zo,y0) < A

which is a contradiction. The proof is completed. O
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Corollary 11. Let (X,{I'4a}) and (Y, {I'p}) be two compact H-spaces, and
let f,s,t,g be four real-valued functions on X XY satisfying

(11.1) f<s<t<gon X xY;

( (z,y) is lower—semicontinuous on'Y for each fized x € X;

(11. 3) s(x,y) is H-quasiconcave on X for each fized y € Y

( t(z,y) is H-quasiconvex on'Y for each fized x € X;

(11. 5) g(x,y) is upper—semicontinuous on X for each fized y € Y.

Then the minimax inequality holds as follows

1nf sup f(x,y) < sup 1nf g(z,y).
YEY zex

Proof. This is the immediate conclusion of Theorem 10. U

Remark 6. If X and Y are two nonempty compact convex subsets in a
Hausdorff topological vector space, Corollary 11 is due to Ben-Ei-Mecha-
ickh, Deguire and Granas [2].

Corollary 12 (Minimax principle of Von Neumann). Lef{(X,{I'a}), (Y, {I's})
be two compact H-spaces and let f : X XY +— R be a real-valued functionon
satisfying
(12.1) f(z,y) is H-quasiconvex and lower-semicontinuous for each fived x €
X;
(12.2) f(z,y) is H-quasiconcave and upper—semicontinuous for each fized y €

Y.

Then the minimazx inequality holds as follows

PP T = i S )

Proof. Taking f = s =1t = g in Corollary 11, we can easily see the minimax
equality holds. O
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