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1. Historical background

The study of real functions has played a fundamental role in the develop-
ment of mathematics over the last three centuries. The seventeenth century
discovery of calculus by Newton and Leibniz was largely due to increased
understanding of the behavior of real functions. The birth of analysis is
often traced to the early nineteenth century work of Cauchy, who gave pre-
cise definitions of concepts such as continuity and limits for real functions.
Convergence problems while approximating real functions by Fourier series
gave rise to both the Riemann and Lebesgue integrals. Cantor developed his
set theory in an effort to answer uniqueness questions about Fourier series
[83, 18, 151].

During this time, different techniques have been used as the theory be-
hind them became available. For example, after Cauchy, various limiting
operations such as pointwise and uniform convergence were studied, giving
rise to various approximation techniques. At the turn of this century, mea-
sure theoretic techniques were exploited, leading to stochastic convergence
ideas in the 1920’s. Also, at about the same time topology was developed,
and its applications to analysis gave rise to functional analysis.

In recent years, a new research trend has appeared which indicates the
emergence of a yet another branch of inquiry that could be called set theo-
retic real analysis. This area is the study of families of real functions using
modern techniques of set theory. These techniques include advanced forc-
ing methods, special axioms of set theory such as Martin’s axiom (MA) and
proper forcing axiom (PFA), as well as some of their weaker consequences
like additivity of measure and category. (See [97], [132], [65], [51], and [§]
for examples of this work.)

Set theoretic real analysis is closely allied with descriptive set theory, but
the objects studied in the two areas are different. The objects studied in
descriptive set theory are various classes of (mostly nice) sets and their
hierarchies, such as Borel sets or analytic sets. Set theoretic real analysis
uses the tools of modern set theory to study real functions and is interested
mainly in more pathological objects. Thus, the results concerning subsets
of the real line (like the series of studies on “small” subsets of R [110],
or deep studies of the duality between measure and category [121, 108,
8]) are considered only remotely related to the subject. (However, some
of these duality studies spread to real analysis too. For example, see a
monograph [38].)

Set theoretic real analysis already has a long history. Its roots can be
traced back to the 1920’s, where powerful new techniques based on the Ax-
iom of Choice (AC) and the Continuum Hypothesis (CH) can be seen in
many papers from such journals as Fundamenta Mathematicae and Studia
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Mathematica. The most interesting consequences of the Continuum Hy-
pothesis discovered in this period have been collected in 1934 monograph of
Sierpiniski, Hypothése du Continu [140]. The influence of Sierpinski’s results
(and the monograph) on the set theoretic real analysis can be best seen in
the next section.

The new emergence of the field was sparked by the discovery of powerful
new techniques in set theory and can be compared to the parallel develop-
ment of set theoretic topology during the late 1950’s and 1960’s. In fact, it
is a bit surprising that the development of set theoretic analysis is so much
behind that of set theoretic topology, since at the beginning of the century
the applicability of set theory in analysis was at least as intense as in topol-
ogy. This, however, can be probably attributed to the simple fact, that in
the past half of a century there were many mathematicians that knew well
both topology and set theory, and very few that knew well simultaneously
analysis and set theory.

Our terminology is standard and follows [30].

2. New developments in classical problems

The first problem we wish to mention here is connected with the Fubini—
Tonelli Theorem. The theorem says, in particular, that if a function
f:[0,1]% — [0,1] is measurable then the iterated integrals fol fol f(z,y)dydx
and fol fol f(z,y)dxdy exist and are both equal to the double integral
[ [ f dma, where my stands for the Lebesgue measure on R2. But what
happens when f is non-measurable? Then clearly the double integral does
not exist. However, the iterated integrals might still exist. Must they be
equal? The next theorem, which is a classical example of an application of
the Continuum Hypothesis in real analysis, gives a negative answer to this
question.

Theorem 2.1 (Sierpiniski 1920, [136]). If the Continuum Hypothesis holds
then there exists f: [0,1]? — [0,1] for which the iterated integrals fol fol flx,y)dydx
and fol fol f(x,y)dzdy erxist but are not equal.

Proof. Let =< be a well ordering of [0,1] in order type continuum ¢ and
define A = {(z,y) € [0,1]?>: z < y}. Let f be the characteristic function
X4 of A. Then for every fixed y € [0, 1] the set {z € [0,1]: f(z,y) # 0} =
{z € [0,1]: = < y} is an initial segment of a set ordered in type ¢. So, by
CH, it is at most countable and

/Ol/olf(x,y)dxdy:/ol(]dyzo.
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Similarly, for each =z € [0,1] the set {y € [0,1]: f(z,y) # 1} =
{y € [0,1]: y < x} is at most countable and

Alfolf(x,y)dydx:/olldyzl.

Thus, fol fol flz,y)dyde =1#0= fol fol f(z,y) dz dy. O

Sierpiniski’s use of the Continuum Hypothesis in the construction of such a
function begs the question whether such a function can be constructed using
only the axioms of ZFC. The negative answer was given in the 1980’s by
Laczkovich [98], Friedman [68] and Freiling [61], who independently proved
the following theorem.

Theorem 2.2. There exists a model of set theory ZFC in which for every
function f: [0,1])% — [0,1], the existence of the iterated integrals fol fol f(z,y)dydx
and fol fol f(z,y) dx dy implies their equality.

It is also worthwhile to mention that the function f from the proof of The-
orem 2.2 has the desired property as long as every subset of R of cardinality
less than continuum has measure zero, i.e., when the smallest cardinality
non(N) of the non-measurable subset of R is equal to c. Since the equation
non(AN) = ¢ holds in many models of ZFC in which CH fails (for example,
it is implied by MA) Theorem 2.2 is certainly not equivalent to CH. On
the other hand, Laczkovich proved Theorem 2.2 by noticing that: (A) the
existence of an example as in the statement of Theorem 2.1 implies the ex-
istence of such an example as in its proof, i.e., in form of X4; (B) there is
no set A C [0,1]2 with f = X4 satisfying Theorem 2.2 if non(N') < cov(N),
where cov(N) is the smallest cardinality of a covering of R by the sets of
measure zero. (It is well known that the inequality non(N) < cov(N) is
consistent with ZFC. See e.g. [8].)

A discussion of a similar problem for the functions f: [0,1]" — [0, 1] and
the n-times iterated integrals can be found in a 1990 paper of Shipman [135].
The same paper contains also two easy ZFC examples of measurable func-
tions f:[0,1)> — R and g: R? — [—1,1] for which the iterated integrals
exist but are not equal. Thus, the restriction of the above problem to the
non-negative functions is essential.

Another classical result arises from a different theorem of Sierpiriski of 1928.
Theorem 2.3 (Sierpinski [137, 138]). If the Continuum  Hypothesis

holds then there exists a set S C R of cardinality continuum such that its
image f[S] # [0,1] for any continuous f: R — [0, 1].



SET THEORETIC REAL ANALYSIS 147

The set S from the original proof of Theorem 2.3 is called Sierpinski
set and it has the property that its intersection S N N with any measure
zero set N is at most countable.! Another set that satisfies the conclusion of
Theorem 2.3, known as Luzin set (see [138] or [140, property Cs|), is defined
as an uncountable subset L of R whose intersection LN M with any meager
set M is at most countable.? The existence of a Luzin set is also implied
by CH. In fact, the constructions of sets S and L under the assumption
of CH are almost identical: you list all G5 measure zero sets (F, meager
sets) as {Z¢: & < ¢} and define S (L, respectively) as a set {z,: a < c}

where z, € R\ (Ug <a Zg). The choice is possible since, by CH, the family

{Z¢: € < a}is at most countable implying that its union is not equal to R.

It is also easy to see that this construction can be carried out if cov(N) = ¢
(and its category analog cov(M) = ¢ in case of construction of L). The sets
constructed that way are called generalized Sierpinski and Luzin sets, re-
spectively, and they also satisfy the conclusion of Theorem 2.3 independently
of the size of ¢. Since many models of ZFC satisfy either cov(N) = ¢ or
cov(M) = ¢ (for example, both conditions are implied by MA) it has been a
difficult task to find a model of ZFC in which the conclusion of Theorem 2.3
fails. It has been found by A. W. Miller in 1983.

Theorem 2.4 (A. W. Miller [109]). There exists a model of set theory ZF'C
in which for every subset S of R of cardinality ¢ there exists a continuous

function f: R — [0,1] such that f[S] = [0, 1].

In his proof of Theorem 2.4 Miller used the iterated perfect set model,
which will be mentioned in this paper in several other occasions.

Some of the most recent set-theoretic results concerning classical prob-
lems in real functions are connected with a theorem of Blumberg from 1922.

Theorem 2.5 (Blumberg [10]). For every f: R — R there exists a dense
subset D of R such that the restriction f1D of f to D is continuous.

The set D constructed by Blumberg is countable. In a quest whether
it can be chosen any bigger Sierpinski and Zygmund proved in 1923 the
following theorem.

!This approach was used in the paper [137], while the Luzin set approach in the
paper [138]. Since they are published in the same year, the priority is not completely clear.
However in the list of Sierpiniski’s publications printed in [143] paper [137] precedes [138],
suggesting its priority.

2The construction of such a set, under CH, was published by Luzin in 1914 [103]. The
same construction had been also published in 1913 by Mahlo [105]. But (as is not unusual
in mathematics) such a set is commonly known as a Luzin set.
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Theorem 2.6 (Sierpinski, Zygmund [144]). There exists a function f: R —
R whose restriction f X is discontinuous for any subset X of R of cardi-
nality c.

Theorem 2.6 immediately implies the following corollary, which shows
that there is no hope for proving in ZFC a version of the Blumberg theorem
in which the set D is uncountable.

Corollary 2.7 (Sierpinski, Zygmund [144]). If the Continuum Hypothesis
holds then there exists a function f: R — R such that f X is discontinuous
for any uncountable subset X of R.

The proof of Theorem 2.6 is a straightforward transfinite induction di-
agonal argument after noticing that every continuous partial function on R
can be extended to a continuous function on a Gy set.

Corollary 2.7 raises the natural question about the importance of the
assumption of CH in its statement. Is it consistent that the set D in Blum-
berg Theorem can be uncountable? Can it be of positive outer measure, or
non-meager?

The cardinality part of these questions is addressed by the following the-
orem of Baldwin from 1990.

Theorem 2.8 (Baldwin [6]). If Martin’s Aziom holds then for every func-
tion f: R — R and every infinite cardinal number k < ¢ there exists a set
D C R such that f|D is continuous and D is k-dense, i.e., D NI has
cardinality k for every non-trivial interval I.

Thus under MA the size of the set D is clear. By Theorem 2.6 it cannot
be chosen of cardinality continuum (at least for some functions), but it can
be always chosen of any cardinality « less than c.

One might still hope to be able to prove in ZFC that for any f the set D
can be found of an arbitrary cardinality < ¢. However, this is false as well, as
noticed by several authors: G. Gruenhage in 1993 (see Recaw [124, Thm 4])
S. Shelah in 1995 (see [133]) and the author of this survey (unpublished).

Theorem 2.9 ([124, 133]). There exists a model of ZFC+—CH (namely a
Cohen model) in which there is a function f: R — R which is discontinuous
on any uncountable subset of R.

The category version of a question on a size of D has been also settled in
the 1995 paper of Shelah [133] mentioned above.
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Theorem 2.10 (Shelah [133]). There exists a model of ZFC in which for
every function f: R — R there exists a set D C R such that f]D is continu-
ous and D is nowhere meager, i.e., DI is non-meager for every non-trivial
interval 1.

The measure version of the question is less clear. It has been noticed by
J. Brown in 1977 that the precise measure analog of Theorem 2.10 cannot be
proved. (This has been also noticed independently by K. Ciesielski, whose
proof is included below.)

Theorem 2.11 (Brown [11]). There exists a function f: R — R such that
f1D is discontinuous for every set D C R which is nowhere measure zero,
i.e., such that DN I has positive outer measure for every non-trivial interval

1.

Proof. Let {F,: n < w} be a partition of R such that Fy is a dense Gs set
of measure zero and F}, is nowhere dense for each n > 0. Define f: R — R
by putting f(z) = n for x € F,,. Now, f[X is discontinuous for any dense
X C R which is nowhere measure zero.

Indeed, if X C R is dense and nowhere measure zero then there exists an
x € X \ Fy. Now, if every open set U containing z intersects F,, N X for
infinitely many n then f[X is discontinuous at z. Otherwise, there is an
open set U containing x and intersecting only finitely many F},’s. So, we
can find a non-empty open interval I C U such that I N X C Fy. But this
means that I N X has measure zero, a contradiction. O

However, the following problem asked by Heinrich von Weizsicker [67,
Problem AR(a)] remains open.

Problem 1. Is it consistent that every function f: R — R is continuous
on some set X C R of positive outer measure?

Other generalizations of Blumberg’s theorem can be also found in a 1994
survey article [12]. (See also recent papers [13] and [78].)

Another problem that is related in character to the Blumberg’s theorem
is the following.

Let {frn: R — [—00,00]}22; be a sequence of arbitrary functions.

What is the biggest size of a set X C R for which there exists a
subsequence of {fn}02, convergent pointwise on X ¢
Clearly such a subsequence can be found for any countable X C R. Using
this fact Helly [76] proved in 1921 that any bounded sequence of monotone
real functions contains a pointwise convergent subsequence. On the other
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hand, answering a question of S. Saks, in 1932 Sierpiriski [139] showed that
the Continuum Hypothesis implies the existence of a sequence {f,: R —
[—00, 00|}, such that {f,[X} 2, has no pointwise convergent subse-
quence for any uncountable X C R. The necessity of additional set the-
oretical assumptions in the Sierpinski’s construction was recently noticed
by Fuchino and Plewik [69] who showed that the size of X having the prop-
erty under consideration is characterized by the splitting number s: For
any X C R with | X| <'s any sequence {f,: R — [—00, 00|} has a sub-
sequence convergent pointwise on X ; however for any X C R with |X| =s
there exists a sequence {fn: X — [0,1]}22, with no pointwise convergent
subsequence. (For the definition of the splitting number, see e.g. [152].)

In the past few years a lot of activity in real analysis was concentrated
around symmetric properties of real functions. (See Thomson [151].) Recall
that a function f: R — R is symmetrically continuous at z € R if

lim (£(z +B) = f(z— ) =0,

and f is approximately symmetrically differentiable at x if there exists a
set S C R such that x is a (Lebesgue) density point of R\ S and that the
following limit exists

@) —f@—h)
h—0,h¢sS 2h

This limit, which does not depend on the choice of a set S, is called the
approzimate symmetric derivative of f at x and is denoted by D;, f(z). We
will say that f has a co-countable symmetric derivative at x and denote it
by D:f(x) if the set S in the above definition can be chosen to be countable.

One of the long standing conjectures (with several incorrect proofs given
earlier, some even published) was settled by Freiling and Rinne in 1988 by
proving the following theorem.

Theorem 2.12 (Freiling, Rinne [64]). If f: R — R is measurable and such
that Dgpf(ac) =0 for all x € R then f is constant almost everywhere.

The importance of the measurability assumption in Theorem 2.12 was
long known from the following theorem of Sierpiriski of 1936.

Theorem 2.13 (Sierpinski [141]). If the Continuum Hypothesis holds then
there exists a non-measurable function f: R — R (which is a characteristic
function X4 of some set A) for which D3 f(x) =0 for all x € R.
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In fact, in [141] Theorem 2.13 is stated in a bit stronger form? from which
it follows immediately that the theorem remains true under MA, if the co-
countable symmetric derivatives D? f(x) are replaced by the approximate
symmetric derivatives Dg, (). However, neither Theorem 2.13 nor its ver-
sion with Dj (x) can be proved in ZFC. This follows from the following two
theorems of Freiling from 1990.

Theorem 2.14 (Freiling [62]). If the Continuum Hypothesis fails then for
every function f: R — R with Dif(x) = 0 for all z € R there ezists a
countable set S such that f is constant on R\ S.

Thus the existence of a function as in Theorem 2.13 is in fact equivalent
to the Continuum Hypothesis.

Theorem 2.15 (Freiling [62]). [t is consistent with ZFC that for every func-
tion f: R — R with Dgpf(x) =0 for all x € R there exists a measure zero
set S such that f is constant on R\ S.

More precisely, Freiling proves that the conclusion of Theorem 2.15 fol-
lows the property that is just a bit stronger than the inequality non(N) <
cov(N). (Compare comment following Theorem 2.2.)

Another direction in which the symmetric continuity research went was
the study of how far symmetric continuity can be destroyed. First note
that clearly every continuous function is symmetrically continuous, but not
vice versa, since the characteristic function of a singleton is symmetrically
continuous. However, it is not difficult to find functions which are nowhere
symmetrically continuous. For example, the characteristic function of any
dense Hamel basis is such a function.* How much more can we destroy
symmetric continuity?

In the non-symmetric case probably the weakest (bilateral) version of
continuity that can be defined is the following. A function f: R — R is
weakly continuous at x if there are sequences a, /0 and b, ~\, 0 such that

Jim f(@+a,) = f(a) = lim_f(@-+b,)

This notion is so weak that it is impossible to find a function f: R — R
which is nowhere weakly continuous. This follows from the following easy,
but a little surprising theorem.

3Co-countable symmetric derivatives are replaced by co-< ¢ symmetric derivatives and
the theorem is proved in ZFC.

“In fact, a Hamel basis B can be chosen to be both first category and measure zero.
Thus X5 can be measurable and have the Baire property.
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Theorem 2.16 ([48, p. 82]). Fvery function f: R — R is weakly continu-
ous everywhere on the complement of a countable set.

A natural symmetric counterpart of weak continuity is defined as follows.
A function f: R — R is weakly symmetrically continuous at x if there is a
sequence h,, — 0 such that

Jim (£ + ha) = f(@ = ha) = 0.

However, the symmetric version of Theorem 2.16 badly fails: there exist
nowhere weakly symmetrically continuous functions (which are also called
uniformly antisymmetric functions). Their existence follows immediately
from the following theorem of Ciesielski and Larson from 1993.

Theorem 2.17 (Ciesielski, Larson [37]). There  exists a  function
f: R — N such that the set

Sy ={h>0: f(r+h)=f(x—h)}
is finite for every x € R.

The function f from Theorem 2.17 raises the questions in two directions.
Can the range of f be any smaller? Can the size of all sets S, be uniformly
bounded? The first of this questions leads to the following open problem
from [37]. (See also problems listed in [151].)

Problem 2. Does there exist a wuniformly antisymmetric function
f: R — R with range f[R] being (a) finite? (b) bounded? °

Concerning part (a) of this problem it has been proved in 1993 by Ciesiel-
ski [26] that the range of a uniformly antisymmetric function must have at
least 4 elements. (Compare also [28].)

The estimation of sizes of sets S, from Theorem 2.17 has been examined
by Komjath and Shelah in 1993, leading to the following two theorems.

Theorem 2.18 (Komjath, Shelah [94]). The Continuum Hypothesis is equiv-
alent to the existence of a function f: R — N such that the set

Sy ={h>0: f(x+h)=f(z—h)}

has at most 1 element for every x € R.

5A uniformly antisymmetric function f: R — [0, 1] has been recently constructed by
S. Shelah.
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Theorem 2.19 (Komjath, Shelah [94]). If ¢ > w41, K =0,1,2,..., then
there is no function f: R — N such that the set

Sy ={h>0: f(r+h)= f(x—h)}

has at most 28 elements for every x € R.

Theorem 2.18 suggests that the converse of Theorem 2.19 should also be
true. However, this is still unknown, leading to another open problem.

Problem 3. Does the assumption that ¢ < wiy1 imply that there exists a
function f: R — N such that the set

Sy ={h>0: f(r+h)=f(x—h)}

has at most 2F elements for every x € R?

For k£ = 0 the positive answer is implied by Theorem 2.18. Also, it is
consistent that ¢ = wgy1 and there exists f: R — N such that each Sy
has at most 2% elements. This follows from another theorem of Komjéath
and Shelah [95, Thm 1]. (See also a paper [29] of Ciesielski related to this
subject.)

In fact, the proof of Theorem 2.17 gives also the following version for
functions on R™:

e There exists a function f: R™ — N such that the set
{heR": f(x+h)= f(x—h)}

is finite for every =z € R".

This statement is related to the following recent theorem of J. Schmerl,
which solves a long standing problem of Erdés [111, Problem 15.9]. (See
also a survey article [93] for more on this problem.)

Theorem 2.20 (Schmerl [131]). There exists a function f: R™ — N such
that for any distinct a, b,z € R™ with ||ja — z|| = ||z — b|| all the values f(a),
f(z) and f(b) are not equal.

Thus, this theorem says, that there exists (in ZFC) a countable partition of
R"™ such that no three vertices a, b, x spanning isosceles triangle belong to
the same element of the partition.
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3. New classic-like results

Consider a function F' = (f1, fo) from R onto R2. By a well known
theorem of Peano from 1890 (see e.g. [129]) such an F' can be continuous.
However, it is not difficult to see that it cannot be differentiable. It follows
easily from the fact that every differentiable function f: R — R satisfies the
Banach condition 7%, i.e., the set {y: f!(y) is uncountable} has Lebesgue
measure zero. (See e.g. [130, Chap. VII, p. 221].) Thus, Morayne in 1987
considered the following question: can function F' = (f1, f2) be chosen in
such a way that at every point x € R either fi or fs is differentiable? The
surprising answer is given below.

Theorem 3.1 (Morayne [112]). The Continuum Hypothesis is equivalent
to the existence of a function F' = {(fi, fo) from R onto R? such that at
every point x € R either fi1 or fo is differentiable.

The proof of this theorem is based on a well known theorem of Sierpinski
[140, Property P;] from 1919 that CH is equivalent to the existence of a
decomposition of R? into two sets A and B such that all horizontal sections
of A and all vertical sections of B are at most countable. It is also worthwhile
to point out that the function F' from Theorem 3.1 is not a Peano curve,
since it is not continuous. In fact Morayne proves in the same paper that for
such an F' = (f1, f2) it is impossible that even one of fi or f; is measurable.

Next, recall that if two continuous functions f,g: R — R agree on some
dense set M C R then they are equal. Does the statement remain true if
the clause “agree on M” is replaced by “f[M] = g[M]?” Clearly not, as
shown by M = Q and any two different rational translations of the identity
function. What about finding some more complicated set M C R for which
the implication

if f[M] = g[M] then f = g
holds for any continuous f and g7 Even this is too much to ask, as recently
noted by Burke and Ciesielski [19, Remark 6.6]. On the other hand, the
following theorem of Berarducci and Dikranjan from 1993 gives a positive
(consistent) answer to this question in the class of continuous nowhere con-
stant functions. (A function is nowhere constant if it is not constant on any
non-empty open set.)

Theorem 3.2 (Berarducci, Dikranjan [9]). If the Continuum Hypothesis holds
then there exists a set M C R (called magic) such that for every continuous
nowhere constant functions f,g: R — R,

if /M) C g[M] then f = g.
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The construction of a magic set given in [9] is done by an easy diagonal
transfinite induction argument and uses only the assumption that less than
continuum many meager sets do not cover R. In particular, CH can be
replaced by MA in Theorem 3.2.

Examining the problem of existence of a magic set in ZFC Burke and
Ciesielski noticed the following properties of a magic set.

Theorem 3.3 (Burke, Ciesielski [19]). If M C R is a magic set then

(a) M is dense and nowhere meager;
(b) fIM] 5 [0,1] for every continuous f: R — R.

In fact part (b) of Theorem 3.3 is just a remark: if there were a contin-
uous f: R — R with f[M] D [0,1] then it could be easily modified to a
nowhere constant function such that f[M] = R, and the functions f and
g =1+ f would give a contradiction. But (b) shows that there is no magic
set of cardinality continuum in the model from Theorem 2.4, the iterated
perfect set model. Although it was noticed in [19] that in this model there
exists a magic set (clearly of cardinality less than c¢), Theorem 3.3 was used
by Ciesielski and Shelah as a base in proving that magic set cannot be
constructed in ZFC.

Theorem 3.4 (Ciesielski, Shelah [45]). There is a model of ZFC' in which

(a) every subset of R of cardinality less than ¢ is meager;
(b) for every set M C R of cardinality continuum there exists a continuous
function f: R — R such that f[M]=[0,1].

In particular, there is no magic set in this model.

The magic sets for different classes of functions have also been considered.
Burke and Ciesielski [19] studied such sets (which they call sets of range
uniqueness) for the classes of measurable functions with respect to abstract
measurable spaces with negligibles. In particular, they proved the following
theorem concerning the Lebesgue measurable functions.
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Theorem 3.5 (Burke, Ciesielski [19]).

(a) If cov(N) = ¢ (thus under CH or MA) then there exists a set M C R
with the property that for every measurable functions f,g: R — R
which are not constant on any set of positive measure

if fIM] C g[M] then f = g almost everywhere.
(b) There is a model of ZFC in which a set from part (a) does not exist.

The model satisfying Theorem 3.5(b) is a modification of the iterated
perfect set model and was constructed by Corazza [49] in 1989. Once again it
satisfies property (b) of Theorem 3.4, while part (a) is replaced by cov(N) =
¢. It has also been proved by Burke, Ciesielski, and Larson that for the class
D' of differentiable functions the existence of a magic set can be proved in
ZFC.

Theorem 3.6 (Burke, Ciesielski [20]). There exists a set M C R such that
for every D' nowhere constant functions f,g: R — R

if fIM] C g[M] then f =g.

Note also that the existence of a countable magic set (a convergent sequence)
for the class of analytic functions has been proved already in 1981 by Dia-
mond, Pomerance, and Rubel [57]. However, not all convergent sequences
form a magic set for this class.

For the following consideration recall that a function f: R™ — R is Dar-
bouz (or has the Darbouzx property) if f[C] is connected for every connected
subset C' of R™. Thus, in case of n = 1 Darboux functions are precisely
the functions for which the Intermediate Value Theorem holds. The class of
Darboux functions will be denoted here by D (with n clear from the context,
usually n = 1).

The class of Darboux functions has been studied for a long time as one of
possible generalizations of the class of continuous functions. (Clearly every
continuous function is Darboux.) However, it has some peculiar properties.
For example, it is not closed under addition. In fact, in 1927 Lindenbaum
[102] noticed (without a proof) that every function f: R — R can be written
as a sum of two Darboux functions. (For proofs, see [142, 106].) This
theorem has been improved in several ways. FErdés [59] showed that if
f is measurable, both of the summands can be chosen to be measurable.
Another improvement was done by Fast [60] in 1959 who proved that for
every family F of real functions that has cardinality continuum there is just
one Darboux function g such that the sum of g with any function in F has
the Darboux property. The natural question of whether such a “universal”
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summand exists also for families of larger cardinality has been studied by
Natkaniec [114] and lead to the development described in Section 4.

A problem that is in some sense opposite to the existence of a “universal”
summand is for which families F of functions there is a “universally bad”
Darboux function g, in the sense that the sum of g with any function in
F does not have the Darboux property. In 1990 Kirchheim and Natkaniec
addressed this problem for the class F of continuous nowhere constant func-
tions.

Theorem 3.7 (Kirchheim, Natkaniec [91]). If union of less than ¢ many
meager subsets of R is meager (thus under CH or MA) then there exists
a Darbouz function g: R — R such that f + g is not Darbouz for every
continuous nowhere constant function f: R — R.

The problem whether the additional set-theoretic assumptions are nec-
essary in this theorem was investigated in 1992 by Komjath [92] and was
settled in 1995 by Steprans.

Theorem 3.8 (Steprans [148)). It is consistent with ZFC that for every
Darboux function g: R — R there exists a continuous nowhere constant
function f: R — R such that f 4+ g is Darbouz.

A model having this property is the iterated perfect set model. Note
also that in Theorem 3.7 the restriction to the nowhere constant functions
is important. This has been proved independently by T. Natkaniec (in
his 1992/93 paper [116]) and by J. Steprans (in the 1995 paper mentioned
above).

Theorem 3.9 (Natkaniec [116], Steprans [148]). For  every  Darboux
function g: R — R there exists a continuous non-constant function f: R —
R such that f + g is Darboux.

To state further results recall the following generalizations of continuity.
A function f: R™ — R is almost continuous (in the sense of Stallings) if each
open subset of R” x R containing the graph of f contains also a continuous
function from R™ to R [146]. Function f: R — R has a perfect road at x € R
if there exists a perfect set C' such that x is a bilateral limit point of C' and
f1C is continuous at z [107]. The classes of all almost continuous functions
and all functions having a perfect road at each point are denoted by AC and
PR, respectively. It is easy to see that C C AC C D (for functions on R)
and that the inclusions are strict (see e.g. [14]), where C stands for the class
of all continuous functions. We will also consider the class SZ of Sierpiriski-
Zygmund (SZ-) functions, i.e., functions f: R — R whose restrictions f[X
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are discontinuous for all subsets X of R of cardinality continuum. (That is,
functions from Theorem 2.6.)

The classes SZ and PR recently appeared in a 1993 paper of Darji [52],
who constructed in ZFC a function f € SZNPR. Answering a question
posed by Darji the following theorem has been proved recently by Balcerzak,
Ciesielski, and Natkaniec.

Theorem 3.10 (Balcerzak, Ciesielski, Natkaniec [4]).

(a) If R is not a union of less than continuum many of its meager subsets
(thus under CH or MA) then there exists an f € SZNPRNAC.

(b) There is a model of ZFC in which every Darboux function f: R — R
18 continuous on some set of cardinality continuum. In particular, in

this model we have SZNAC = SZND = 0.

The model satisfying Theorem 3.10(b) is, once again, the iterated perfect
set model.

Another generalization of continuity is that of countable continuity: a
function f: R — R is is countably continuous if there exists a countable
partition {X,} 2, of R such that the restriction of f to any X, is contin-
uous. (See also Section 4.) In 1995 Darji gave the following combinatorial
characterization of this notion.

Theorem 3.11 (Darji [53, 54]). If the Continuum Hypothesis holds
then

(%) f: R —= R is countably continuous if and only if for every uncountable
set U C R there is an uncountable set V- C U such that the restriction
[TV is continuous.

The characterization () cannot be proved in ZFC. This follows from
a result of Cichon and Morayne [21] from 1988 which implies that in some
models of ZFC (actually, when ¢ = ws and d = wy, where d is the dominating
number) (%) is false. However, it is not known, whether the equivalence (x)
can be proved in absence of CH, leading to the following open problem.

Problem 4. Is (x) from Theorem 3.11 equivalent to the Continuum Hy-
pothesis?

Another recent theorem concerning countable and symimetric continuities
is the following theorem of Ciesielski and Szyszkowski, answering a question
of L. Larson.
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Theorem 3.12 (Ciesielski, Szyszkowski [46]). There exists a symmetrica-
lly continuous function f: R — R such that for some set Z C R of cardi-
nality continuum f[Z is of Sierpiriski-Zygmund type, i.e., f|]X is discon-
tinuous for any subset X of Z of cardinality continuum.

In particular, f is not countably continuous.

We will finish this section with the following two interesting results. The
first one was proved independently in 1978 by Grande and Lipiniski and
in 1979 by Kharazishvili.

Theorem 3.13 (Grande, Lipiiiski [71], Kharazishvili [90]). If the
Continuum Hypothesis holds then there exists a non-measurable function
F:R? — R such that for every measurable f: R — R, the composition
F(x, f(z)) is measurable.

This theorem has important consequences concerning the existence of
solutions of the differential equation y' = F(x,y) in the class of absolutely
continuous functions. In 1992 Balcerzak [3] showed that in Theorem 3.13
the CH assumption can be weakened to non(N') = c¢. However, the following
problem remains open.

Problem 5. Can Theorem 3.13 be proved in ZFC?

In fact, all functions F' satysfying Theorem 3.13 are of the form Xj,, where
h is a (partial) function from R to R. It is worth to mention here that,
by [3, Prop. 1.5], the property counsidered in Problem 1 implies that no
F = X;, with h: R — R can satisfy Theorem 3.13. Similarly, the property
considered in the following stronger version of Problem 1 implies that F
from Theorem 3.13 cannot be of the form X, for a function A from ¥ C R
into R.

Problem 6. Is it consistent that for every subset Y of R of positive outer
measure and every function f: Y — R there exists a set X C Y of positive
outer measure such that f|Y is continuous?

The second result is the following 1974 theorem of R. O. Davies.

Theorem 3.14 (Davies [56]). If the Continuum Hypothesis holds then for
every f: R2 — R there exist functions gn,hn: R — R, n < w, such that

Fam) =3 u(@) - haly).
n=0
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Problem 7 ([111, Problem 15.11]). Is the conclusion of Theorem 3.14
equivalent to CH?

Note that Theorem 3.14 is related to Hilbert’s Problem 13 (from his
famous Paris lecture of 1900) and a 1957 theorem of Kolmogorov, in which
he proves that every continuous function f: [0,1]™ — R can be represented
in a certain form (similar to the above) by continuous functions of one
variable. An interesting account on this and related results can be found in
a 1984 paper of Sprecher [145].

4. Cardinal functions in analysis

The important recent developments in set theoretical analysis concern
the cardinal functions that are defined for different classes of real functions.
These investigations seem to be analogous to those concerning of cardinal
functions in topology from the 1970’s and 1980’s. (See [81, 77, 82, 152].)
They are also related to the deep studies of cardinal invariants associated
with different small subsets of the real line. (For a summary of the results
concerning cardinals related to the measure and category see [65] or [8]. For
a survey concerning cardinals associated with the thin sets derived from
harmonic analysis see [18].)

The first group of functions is motivated by the notion of countable conti-
nuity and was introduced in 1991 by J. Cichon, M. Morayne, J. Pawlikowski,
and S. Solecki in [22]. More precisely, they define the decomposition function
dec(F,G) for arbitrary families 7 C R® and G ¢ J{RY: X C R}, where
YX stands for the set of all functions from X to Y.

dec(F,G) = min{k < ¢: (Vf € F)BX € 11,.)(VX € X)(f| X € §)} U {ct},

where Il denotes the family of all coverings of R with at most x many sets.
In particular, if C stands for the family of all continuous functions (from
subsets of R into R) then

f: R — R is countably continuous if and only if dec({f},C) < w.

In [22] the authors considered the values of dec(Bg,B,) for o < 8 < wr,
where B, stands for the functions of a-th Baire class.

The motivation for this definition comes from a question of N. N. Luzin
whether every Borel function is countable continuous. This question was
answered negatively by P. S. Novikov (see Keldys [84]) and was subsequently
generalized by Keldys [84] (in 1934), and S. I. Adian and P. S. Novikov [1]
(in 1958). The most general result in this direction was obtained in late
1980’s by M. Laczkovich (see Cichoni, Morayne [21]) who proved, in partic-
ular, that dec(Bg, By) > w for every a < 8 < wy.
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One of the most interesting results from the paper [22] is the following
theorem.

Theorem 4.1 (Cichon, Morayne, Pawlikowski, Solecki [22]).
cov(M) < dec(By,C) <d,

where cov(M) is the smallest cardinality of a covering of R by meager sets,
and d, the dominating number, is the smallest cardinality of a dominating
family D C w®, i.e., such that for every f € w* there exists g € D with

f<rgf
It has been also shown by J. Steprans and S. Shelah that none of these
inequalities can be replaced by the equation.
Theorem 4.2 (Steprans [147]). It is consistent with ZFC that
cov(M) < dec(B1,C).

Theorem 4.3 (Shelah, Steprans [134]). It is consistent with ZFC that
dec(B1,C) < d.
There are also some interesting results concerning the value of dec(C, D),

where D! is the class of all (partial) differentiable functions. It has been
proved by Morayne (see Steprans [149, Thm 6.1]) that

Theorem 4.4 (Morayne [149, Thm 6.1]). cov(M) < dec(C,D) < c.
Also, Steprans proved that

Theorem 4.5 (Steprans [149]). [t is consistent with ZF'C that
dec(C,D) < c.
However, the relation between numbers dec(C, D), dec(B1,C) and dec(Bg, B,)

for 0 < a < B < wy is unclear.
In the same direction, K. Ciesielski recently noticed that (obviously)

cf(¢) < dec(SZ,C) < ¢
and that it is the best that can be said in ZFC.

SRecall that for f,g € w*” we write f <* g if there exists an n < w such that f(m) <
g(m) for every m > n.
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Theorem 4.6 (Ciesielski [32]).
(1) For every k with cf(k) > w there exists a model of ZFC in which ¢ = k
and dec(SZ,C) = c.
(2) For every k with cf(k) > w there exists a model of ZFC in which ¢ = k
and dec(SZ,C) = cf(k) = cf(c).

In fact, (1) happens in a model obtained by extending a ground model
with GCH by adding x many Cohen reals. The equation dec(SZ,C) = ¢
follows immediately from Theorem 2.9.

The model for (2) is obtained as follows. You start with a model with
GCH, assume that A = cf(k) < k and take an increasing sequence
{A¢: &€ < A} cofinal with A and such that each A¢ is a cardinal succes-
sor. The desired model is obtained by a generic extension via forcing P
which a finite support iteration of forcings M, where each M¢ is a standard
cce forcing adding the Martin’s Axiom over the previous model and making
= )\5.

The second group of cardinal functions is defined in terms of algebraic
operations on functions. Their definition was motivated by the following
property of Darboux functions (from R to R) due to Fast and mentioned in
the previous section:

e for every family H C R® with |H| < ¢
there exists g € R® such that g + h € D for every h € H, (1)

where |Z| denotes the cardinality of Z. In 1974 Kellum [85] proved the
similar result for the class AC of almost continuous functions and in 1991
Natkaniec [114] defined the following cardinal functions for every F C RE
to study these phenomena more closely.

A(F) =min {|H|: HCR* & ~Fg e R* VA e H } + (€ FpU{(2)*}
= min {[H|: H CR® &V} e R® I e M }+ (¢ F}u{(2)"}
M(F)=min {[H] : H C R* & -3} € RF\ (X} ¥(€ H }- (€ Fpu{(2)*}
—min {|}]: H C R® & vV} € R\ {Xg} I H }- (¢ F}u{(2)*}.

The extra assumption that g # Xy is added in the definition of M since
otherwise for every family F C R® containing constant zero function X we
would have M(F) = (2°)7.

Its easy to see that the functions A and M are monotone in a sense that
A(F) < A(G) and M(F) < M(G) for every F C G C RE. Also clearly (1) is
false for H = R®. Thus, in language of the function A the results of Fast
and Kellum can be expressed as follows:

¢ < A(AC) < A(D) < 2°.
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If 2¢ = ¢* (so, under the Generalized Continuum Hypothesis GCH) the
values of A(AC) and A(D) are clear: A(AC) = A(D) = 2° = ¢*. Thus,
Natkaniec asked [114, p. 495] (see also [72, Problem 1]) whether the equation
A(AC) = 2° can be proved in ZFC.

This question was investigated by Ciesielski and Miller in 1994. They
proved that A(AC) = A(D), that the cofinality cf(A(D)) of A(D) is greater
than ¢, and that this together with the inequalities ¢ < A(D) < 2° is essen-
tially all that can be proved in ZFC.

Theorem 4.7 (Ciesielski, Miller [40]).
(a) A(AC) = A(D) = e, where
e, = min{|F|: F C k" &Vge k" If € F |fNg| <k}

(b) cf(A(D)) > «.

(¢) Let A > k > wq be cardinals such that cf(\) > wy and k is regular.
Then it is relatively consistent with ZFC that the Continuum Hypoth-
esis is true, 2° = X, and A(D) =

(d) Let X be a cardinal such that cf(X) > wi. Then it is relatively consistent
with ZFC that the Continuum Hypothesis holds and A(D) = X = 2°.

In particular Theorem 4.7 says that A(D) does not have to be a regular car-
dinal (part (d)) and that A(D) can be any regular cardinal number between
T and 2¢, with 2¢ being “arbitrarily large” (part (c)).
At the same time Natkaniec and Recaw established the values of M(AC)
and M(D) proving

Theorem 4.8 (Natkaniec, Recaw [120]). M(AC) = M(D) = cf(c).

The first systematic study of functions A and M was done by Ciesielski
and Recaw in the later part of 1995. They collected basic properties of
operators A and M, which are stated below, and found the values of A and
M for some other classes of functions.

Proposition 4.9 ([44]). Let ) # F C G C RE. Then
(0) A(0) = M(0) = 1;

(1) A(F) < (g) and M(F) < M(G);

(2) A(F) =

(2" M(F )>2ZfX@,XREf

(3) A(F) = (297 if and only if F = R¥;

(3") M(F )<cszX{$}¢.7:f0reveryrx€]R r#£0;

(4) A(F)=2ifand only if F — F ={f1 — fo: f1, fo € F} #RR.7

"In [44] this was proved with the additional assumption that Xg € F. This extra
assumption was removed by F. Jordan in [79].
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In particular, (4) from Proposition 4.9 shows that every function is a differ-
ence of two functions from a class F if and only if A(F) > 2.

To state the other results from [44] recall the definitions the following
classes of functions, where X is an arbitrary topological space.

Conn(X) of connectivity functions f: X — R, i.e., such that the graph of f
restricted to C' (that is f N [C x R]) is connected in X x R for every
connected subset C' of X.

Ext(X) of extendable functions f: X — R, i.e., such that there exists a con-
nectivity function g: X x [0,1] — R with f(z) = g(z,0) for every
z e X.

PC(X) of peripherally continuous functions f: X — R, i.e., such that for every
z € X and any pair U C X and V € R of open neighborhoods of x
and f(z), respectively, there exists an open neighborhood W of x with
cl(W) CU and f[bd(W)] C V, where cl(W) and bd(WW) stand for the
closure and the boundary of W, respectively.

We will write Conn, Ext and PC in place of Conn(X), Ext(X), and PC(X)
if X = R. Notice also, that f € PC if and only if f is weakly continuous,
as defined on page 151.

For the generalized continuity classes of functions (from R into R) defined
so far we have the following proper inclusions C, marked by arrows —.

(See [14].)
/ AC ——> Conmm — D \
Ext pPC

Chart 1.

In particular, inclusions AC C Conn C D, monotonicity of A and Theo-
rem 4.7(a) imply that A(Conn) = A(AC) = A(D). Similarly, Theorem 4.8
implies that M(Conn) = M(AC) = M(D). The values of A and M for the

remaining classes are as follows.

Theorem 4.10 (Ciesielski, Recaw [44]).

(1) A(Ext) = A(PR) = c*.
(2) A(PC) = 2.
(3) M(Ext) = M(PR) = 2.
(4) M(PC) = c.
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Notice also that Ext C ACNPR C ConnNPR € DN PR C PR. Thus, by
monotonicity of A and the above theorem we obtain the following corollary.

Corollary 4.11.
(1) A(ACNPR) = A(ConnNPR) = A(DNPR) = ¢*; and,
(2) M(ACNPR) = M(CounNPR) = M(D N PR) = €.

The values of functions A and M for the class SZ has been studied by
Ciesielski and Natkaniec. First they noticed that if the definition of M from
page 162 is used then trivially M(SZ) = 1, since for any function h € R
with ’h_l(O)‘ = ¢ we have g- h ¢ SZ for every g € RR. Thus, they modified
the definition of M(SZ) to

M(SZ) = min {[H] : H C R, & ~T} e R* W( € H }- (€ SZ}U{(2)},
where
R = {{ eRR: |{7>()] < c}.
With this agreement in place they proved the following result.

Theorem 4.12 (Ciesielski, Natkaniec [41]).
(a) M(SZ) = A(SZ) = d., where
dy =min{|F|: F Ck"& Vg e k" If € F |fNg| =k}.
(b) Let A > k > wy be cardinals such that cf(\) > wy and k is regular.
Then it is relatively consistent with ZFC that the Continuum Hypoth-
esis is true, 2° = X\, and A(SZ) = A(D) = k.
(c) Let X > wy be a cardinal such that cf(X) > wy. Then it is relatively

consistent with ZFC that the Continuum Hypothesis holds, 2° = X, and
A(SZ) = ¢t < 2= A(D).

However, the following problems remain open.

Problem 8 ([41, Problems 2.13 and 2.17]).

(a) Is it consistent that A(SZ) > A(D)?
(b) Can A(SZ) be a singular cardinal?

Another systematic study of the operator A was done by F. Jordan
in 1996. In his study he examined the values of A(=F) where —F = RR\ F
and classes F are chosen from those discussed above. Notice that A(—F)
has the following very nice interpretation:
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A(—F) is the smallest cardinality of an H C R® such that F — H = RE,

where F — H ={f—h: f € F & h € H}. To make this study non-trivial
Jordan notes first that the value of A(F) does not determine the value of

A(=F):

Theorem 4.13 (Jordan [79]). For every cardinal number 2 < X\ < 2¢ there
exists F C R® such that A(F) =2 and A(=F) = \.

In particular, there exist families G, F C R¥ such that A(F) = A(G) and
A(=F) # A(=9).

This paper [79] contains also the following results, where for a cardinal
number £ and functions f,g: X — Y we define [X]" = {Y C X: |Y| = k}

and [f = g] = {z € X: f(z) = g(z)}.

Theorem 4.14 (Ciesielski [79, Thm. 7]). A(=PC) = w;.

Theorem 4.15 (Jordan [79]
(1) A(=PR) = A(—Ext) =
(2) A(SZ) =d. < A(—D) < A(=Conn) < A(-AC) < d¥, where

dr. =min{|F|: F C k" & (VG € [s"]")(3f € F)(Vg € G)
(Ilf = gll = #)}.
(3) A(AC) = A(Conn) = A(D) = e, < A(—SZ) < ¢}, where
ey, = min{|F|: F C k" & (VG € ["]")(3f € F)(Vg € G)
(Ilf = gll <®)}.
(4) If ¢<¢ = ¢ then d. = d:® and e = ¢}. In particular
A(SZ) =d. = A(—D) = A(~Conn) = A(-AC) = d

).
2¢,

and
A(D) = A(Conn) = A(AC) = e, = A(—SZ) = ¢.
(5) If <~ =c and c = AT for some cardinal X then d. < e.. In particular
A(=D) = A(-AC) = A(SZ) =d. <e¢. = A(D) = A(AC) = A(—SZ).

The importance of the extra assumptions in (4) and (5) of Theorem 4.15
is not clear. In particular, the following problem is still open.

Problem 9. When does either d. = d¢ or e. = ¢¢ hold?

8This part was proved by K. Ciesielski.
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Note also that (4) and (5) of Theorem 4.15, and Theorem 4.12 imply
immediately the following corollary.

Corollary 4.16 (Jordan [79]).

(1) Let A > k > wy be cardinals such that cf(X) > wy and k is regular.
Then it is relatively consistent with ZFC+CH that 2° = X\ and

A(-D) = A(-AC) = A(SZ) = A(D) = A(AC) = A(~SZ) = &.

(2) Let A > wo be a cardinal such that cf(\) > wy. Then it is relatively
consistent with ZFC+CH that 2° = X\, and

A(-D) = A(-AC) = A(SZ) = ¢t < 2° = A(D) = A(AC) = A(~SZ).

Finally, the following three classes of functions have been brought to this
picture.

CIVP of functions f: R — R having the Cantor Intermediate Value Property,
i.e., such that for every x,y € R and for each Cantor set K between
f(z) and f(y) there is a Cantor set C' between = and y such that
fICl C K;

SCIVP of functions f: R — R having the Strong Cantor Intermediate Value
Property, i.e., such that for every z,y € R and for each Cantor set K
between f(x) and f(y) there is a Cantor set C between x and y such
that f[C] C K and f[C is continuous;

WCIVP of functions f: R — R having the Weak Cantor Intermediate Value
Property, that 1is, such that for every z,y € R with
f(z) < f(y) there is a Cantor set C' between z and y such that
fierc (f(=), f(y)-
They fit Chart 1 in the following way. (See Gibson, Natkaniec [70].)

AC —— Conn—— D
C — Ext T PC

T SCIVP——CIVP—— PR

\

WCIVP

Chart 2: “Darboux like” functions.

Clearly the above inclusions, monotonicity of A and M, and Theorem 4.10
imply immediately:
A(SCIVP) = A(CIVP) =¢* and M(SCIVP) = M(CIVP) = 2.
The values of functions A and M for the class WCIVP, and for the classes

formed by the intersections of SZ with each of the remaining classes men-
tioned above were not studied too carefully so far. However, obviously
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SZNSCIVP = () implying
A(SZNSCIVP) = M(SZNSCIVP) = 1.
Also, it follows from Theorem 3.10 that
it is comsistent that A(SZND) = M(SZND) = 1,
while also

it is consistent that A(SZNPRNAC) > 2.

A stronger version of this last inequality follows also from the following
recent theorem of K. Banaszewski and Natkaniec.

Theorem 4.17 (Banaszewski, Natkaniec [7]).
(1) SZNCIVP # 0. In particular SCIVP # CIVP.

(2) If union of less than ¢ many meager subsets of R is meager (thus under

CH and MA) then ACNCIVP N SZ # (.

In particular,
it is consistent that A(SZNCIVP N AC) > 2
and
A(SZNCIVP) > 2.

This last inequality has been recently improved by F. Jordan, who proved
the following.

Theorem 4.18 (Jordan [80]). A(SZN—D N CIVP) > ¢. In particular
A(SZN-DNCIVP) = A(F) = A(PR) = ¢
for every F C RR such that SZN—D N CIVP C F C PR.

This theorem gives the value of A for many classes that can be obtained
intersecting classes from Chart 2 and SZ.

Some of the difficulties of studying operators A and M for the intersec-
tions ACNSCIVP and ACNCIVP is that there is relatively little known
about these classes. For example, although Theorem 4.17(2) implies that
consistently these classes are different, a ZFC example was unknown until
the following very recent theorem of Ciesielski.

Theorem 4.19 (Ciesielski [31]). There exists an f € ACNCIVP which is
discontinuous on every perfect set. In particular, f ¢ SCIVP.

Also the only example of an f € ACNSCIVP\ Ext results from the following
recent theorem of Rosen. (See also [31] for a generalization.)
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Theorem 4.20 (Rosen [127]). If the Continuum Hypothesis holds then there
exists an f € ACNSCIVP \ Ext.

In fact, the conclusion of Theorem 4.20 remains true under the assumption
that union of less than continuum many meager sets is meager. However,
the problem of existence of such a function in ZFC remains open.

Several other operators similar to A and M have also been studied. Thus,
in 1995 Natkaniec [117] introduced the following operators connected to the
composition of functions, where Const stands for the family of all constant
functions.

Cout (F) =min{[H]: H C R* & ~T} € R \Const ¥( € H } o (€ FJu{(2)*}
Cm(f):min{|H|: H CRE & -3} € RE\Const V(€ H (o} € f-}u{(2‘)+}

He proved also the following.

Theorem 4.21 (Natkaniec [117]).
(1) Cout(Ext) = Cout(CIVP) = Cpe(PR) = 1.
(2) Cout(AC) = Cpyt(Conn) = Cppye(D) = cf(c).
(3) Couwt(PC) =rc.
(4) Cm(EXt) = Czn(AC) = Cin(COHD) = Cln(D) = 1.
(5) Cin(CIVP) = C;,(PR) = C;,(PC) = ct.

Similar functions have been also studied by Ciesielski and Natkaniec [41]:
Cout(SZ)=min({|H| : H C Ryqu & -3} e RE V(e H }o (€ SZ}U{(e9)F})
Cin(SZ)=min({|H|: H C Ry & ~I} e REV(€H (o} € SZIU{(€)T})

where Rymy (Ry, ) is the set of all h € R® for which there exists g € R® such
that go h € SZ (hog € SZ, respectively). In fact, the classes Ry and Ry\
have the following nice characterizations:

Riw = {{ € R™: |{7(f)] < ¢ for every t € R},
and, when ¢ is a regular cardinal,
Ry, = {{ € R*: [{[R]| =<}.
In [41] the authors proved that
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Theorem 4.22 (Ciesielski, Natkaniec [41]).
(1) Cin(SZ) =2.
(2) Cout(SZ) = A(SZ) if ¢ = AT for some cardinal .
(3) ¢ < Cout(SZ) < 2% if ¢ is regular.
(4) cf(¢) < Coue(SZ) < 2°K), if ¢ is singular.

Also, in a recent short survey paper [119] Natkaniec evaluated the values
of operators A, M, C;,, and C,,¢ for the class HAC of almost continuous func-
tions in sense of Husain, i.e., such f: R — R that f~1(U) C int(cl(f~1(U)))
for every non-empty open set U C R.

Theorem 4.23 (Natkaniec [119]).
(1) A(HAC) = 2¢.
(2) M(HAC) = cov(M) , where cov(M) is the smallest cardinality of a

family of meager sets that covers R.
(3) Cin(HAC) = (29T and Coyuy(HAC) = c.

Some other cardinal operators connected with composition and concern-
ing some kind of coding were also studied by Ciesielski and Recaw [44],
Ciesielski and Natkaniec [41], and Natkaniec [119].

Another variant of function A is connected to the families of bounded
functions. To define it properly the following notation is necessary. For a
Let UB stand for all uniformly bounded families H C R, and let B be the
class of all bounded functions f: R — R. Then we define

Ap(F) =min{|H|: He UB & -3} € B) V(e H) (} + (€ F)}.
In 1994 Maliszewski [104] proved that
Ayp(D) = cf(c)

so that Ay(D) < A(D). Moreover, he proved that if F € UB, all functions
in F are measurable (have Baire property), and the size of F is less than the
additivity of measure (category) then there exists a “universal summand”
bounded function for F with the same property. Similar results were also
proved for countable families of Borel measurable functions of « class when
a > 1 and for finite families of Baire one functions.

The values of A;, for the other classes of functions from Chart 1 has been
investigated by Ciesielski and Maliszewski [39]. In particular, they proved
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Theorem 4.24 (Ciesielski, Maliszewski [39]).
(1) Ap(Ext) = Ap(PR) = 2.
(2) Ab(AC) = Ab(CODD) = Ab(D) = Cf(C).
(3) Ap(PC) =c.

Notice also that Theorem 4.24 implies immediately the following corollary.

Corollary 4.25 (Ciesielski, Maliszewski [39]).

(1) Every bounded function f: R — R is the sum of two bounded almost
continuous functions.

(2) There exists a bounded function f: R — R which is not the sum of two
bounded functions with perfect road.

In particular, Corollary 4.25(1) generalizes a result of Darji and Humke [55]
that every bounded function can be expressed a sum of three bounded al-
most continuous functions. On the other hand Corollary 4.25(2) shows that
the following result of Natkaniec is sharp.

Theorem 4.26 (Natkaniec [118]). Fvery bounded function can be expressed
as a sum of three bounded extendable functions.

It might be also interesting to examine a bounded version of M, defined
as

My(F) =min{|H|: He UB & -3}y e B, } #1) (Ve H)(}- (€ F)}.

However this function has not been studied so far.

One might also consider the study of the operator A (and M) for the func-
tions from R” into R with n > 1. This has indeed been done by Ciesielski
and Wojciechowski in [47]. The study concerned only the classes Ext(R™),
AC(R™), Conn(R™), D(R™), and PC(R™) since other classes from Chart 2 do
not have natural generalizations into functions of more than one variable.
First, one should recall that for n > 1 Chart 1 is not valid any more. The
new inclusions (for n > 1) are as follows:

Ext(R") ¢ PC(R") = Conn(R™) ¢ D(R") N AC(R"),

DR") ¢ AC(R™), AC(R") ¢ D(R"), D(R"™)NAC(R") ¢ Conn(R").
(The inclusion “PC(R™) C Conn(R"™)” was proved by Hamilton [75] and
by Stallings [146], and the inclusion “Conn(R™) C PC(R™)” by Hagan [74].
The proof of the inclusion “Conn(R™) C AC(R™)” is presented in [146].
The examples showing that D(R") ¢ AC(R") and AC(R") ¢ D(R™) can

be found in [115, Examples 1.1.9 and 1.1.10] or [114, Examples 1.7 and
1.6], while a simple Baire class 1 function in D(R™) N AC(R") \ Conn(R")
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was described in [128, Example 1].) We do not know whether the inclusion
Ext(R™) c PC(R"™) is proper.

The problem with studying the value of the operator A for all these classes
(except for AC(R™)) is that there exists a function f: R™ — R which is not
a sum of n Darboux functions, implying that

A(Ext(R")) = A(PC(R™)) = A(Conn(R")) = A(D(R")) = 2.

However, every function f: R™ — R is a sum of n + 1 extendable functions.
To express these results nicely, define for F C RR" the repeatability R(F)
of F as the smallest integer k such that any function f: R™ — R can be
expressed as a sum of k functions from F. (We put R(F) = oo if such
a number does not exist.) In this language the results of Ciesielski and
Wojciechowski can be stated as follows.

Theorem 4.27 (Ciesielski, Wojciechowski [47]).
R(Ext(R\)) = R(Conn(R")) = R(PC(R")) = \ + oo.

Clearly Theorem 4.27 implies that R(D(R\)) < \ +oc. The problem (stated
in [47]) whether this equation can be replaced by the equality has been
recently solved by F. Jordan.

Theorem 4.28 (F. Jordan [80]). For every n there exists a Baire 1 class
function f: R™ — R which is not a sum of n Darboux functions. In partic-
ular,

R(D(R)) = \ + 0.

The value of R(AC(R\)) is clearly equal to 2, since Natkaniec [114] proved
that A(AC(R™)) > ¢. This fact has been recently improved by F. Jordan,
who proved

Theorem 4.29 (F. Jordan [80]). For everyn > 1
A(AC(R"™)) = A(AC) =¢.

In [80] F. Jordan considers also the following version of additivity function
for the classes F of functions from R" into R

GAx(F) = min ({|G]: G € R¥"& W, 1(G) holds } U {(29)"})
where kF = {fo+ -+ fr—1: fi € F} and ¥, ;(G) denotes the statement
(Vfen—k)F)(EgeG)g—f¢(k+1)F)
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This function makes a good generalization of both functions A and R
since

R(F) =\ +oc ifand only if co < GA\ (F) < (€97 for some || <\,
and
GA1o(F)+1=A(F) for any F C R¥ such that F = {—f: f € F}.

Thus, the following theorem generalizes Theorems 4.7(a), 4.10(1), 4.27,
and 4.28.

Theorem 4.30 (F. Jordan [80]). For everyn > 1
(1) GA, n—1(Ext(R™)) = GA,, ,—1(Conn(R"™)) = GA,, ,,—1(PC(R™)) = ¢*;
(2) GA, 1 (D(R™)) = ¢;
(3) GA,,;(D(R™)) = A((j + 1)D(R™)) = ¢ for any j < n — 1 such that
27 >n—1.

Notice also, that in the language of R operator the results from Theo-
rem 4.26 and Corollary 4.25(2) can be expressed by the equation

R|(Ext) = R|(SCIVP) = R (CIVP) = R|(PR) = 3,

where R | is the natural generalization of R for the class of bounded func-
tions.

5. Some elements of topology

Let X and Y be arbitrary sets. For arbitrary families A C P(X) and
B C P(Y), where P(Z) stands for the collection of all subsets of a set Z,
define

C;t,lB ={feY*: f7YB)c A forevary B < B}
and
Cap=1{f€Y™: fl[A|€B forevery Ac A}

If families A and B are the topologies on X and Y, respectively, then C,Z}B
is a well known object: the class of all continuous functions from (X, A) to
(Y, B). Similarly a class of measurable functions with respect to an algebra
A of subsets of X is equal to C;t,le where B is an appropriate topology
onY.

In both these approaches one starts with families of sets A and B and
obtain, in return, a family of functions. But what if a class of functions
F c YX is given to begin with? When can we find families A C P(X)
and B C P(Y) such that F = C;t,lB or F = Cap? And how nice can these
families be, if they exist?
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These questions have been studied recently by several authors. To talk
about their results, let us fix the following terminologies. We say that a
family F C YX can be

e characterized by images of sets if F = C 4 g for some families 4 C P(X)
and B C P(Y);

e characterized by preimages of sets if F = C;&B for some families A C
P(X) and B C P(Y);

e topologized if F = C;‘}B for some topologies A on X and B on Y

e characterized by associated sets if Y = R and F = C;\,IB for some family
ACP(X)and B={(a,00): a € R} U{(—00,b): b e R}

From all these notions only the problem of characterizing by associated
sets has been extensively studied. Clearly, all classes of continuous func-
tion C(X) from a topological space X into R (considered with the natural
topology) can be characterized by associated sets. So can be the family of
B-measurable functions from X into R, for any o-algebra B of subsets of
X. However, there are also many examples of classes of functions that do
not admit such a characterization. In fact, the real interest in the charac-
terizations of functions by associated sets has been initiated by the 1950
paper of Zahorski [155], in which he tried to characterize derivatives (from
R to R) in that way.® Today we know that derivatives cannot be charac-
terized by associated sets: any class F that can be characterized that way
has the property that ho f € F for every f € F and every homeomorphism
h: R — R; however derivatives do not have this property. (See Bruckner’s
book [16] on this subject. Compare also [17].) This negative result has
been followed by several others, in which the authors prove that the follow-
ing classes of functions (from R to R) cannot be characterized by associated
sets: D (Bruckner [15, 1967]), Conn (B. Cristian, I. Tevy [50, 1980]), AC
(Kellum [86, 1982]), Ext (Rosen [126, 1996]) and the remaining classes from
Chart 2 (Ciesielski, Natkaniec [42, 1997]).

The question about topologizing different classes of real functions has
been first systematically studied in early 1990’s by Ciesielski in [27].1° He
starts with the following theorem listing basic properties of classes that can
be topologized. In the theorem C stands for the set of complex numbers, £
for the class of linear functions f(x) = ax + b, 7 for the natural topology
on R, and idx for the identity function from X to X.

9See also 1969 paper of Mréwka [113] on characterizing functions by associated sets.
10 According to [123] already in a 1988 manuscript [150] Tartaglia proved that the class
of all derivatives cannot be topologized.
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Theorem 5.1 (Ciesielski [27]). Let 71 and 19 be the topologies on sets X

and Y , respectively, and let F = C;l’lm £ Y X, If 1 is the weak topology on X

generated by F, that  means, generated by  the  family

{f~YU): U €, f € F}, then

(i) Const C F, 7 C 71, 1 #P(X), 2 #{0,Y} and F =C.},;

(i) if X =Y and idx € F then 0 C 7 C 71;

(iii) if ¥ = R and To C 7o then F is closed under the mazimum and
minimum operations;

(iv) if G C Y'Y s such that idy € G and gof € F forall f € F and g €G
then F = C;’i,, where 7' is a topology generated by {g~*(U): U €
2,0 € g};

in particular, if G = L than we may assume that T is a homotheti-
cally closed T1 topology;

(v)if X =Y, idx € F and F is closed under the composition, then
F=Cr};

(vi) if X =Y € {R,C} and L C F then 11 is a 11 topology;

(vii) if X =Y € {R,C}, £L C F and 1o contains two nonempty disjoint
sets, then 11 is Hausdorff;

(viii) if X =Y =R and every f € F is Darbouzx then 11 is connected;

(ix) if X =Y =R, L CF and 1o contains a non-empty set which has

either upper or lower bound, then To C T1.

Of all these properties only (iii) needs a little longer (but still easy) argu-
ment. Note also, that (i) shows, that in order to topologize some family,
only the search for the range topology is essential. Condition (v) shows that
the question when topologies 71 and 75 can be chosen equal is answered by
the following corollary.

Corollary 5.2 (Ciesielski [27]). Let F C XX. If F can be topologized then
F = Cr s for some topology T on X if and only if idx € F and F if closed
under the composition operation.

Next, from Theorem 5.1 (conditions (iii), (vi) and (ix)) Ciesielski con-
cludes the following fact

Theorem 5.3 (Ciesielski [27]). Let F be a family of real functions closed
under composition and such that C*° C F. If F can be topologized then F
is closed under the mazimum and minimum operations.

which easily leads to the following corollary:

Corollary 5.4 (Ciesielski [27]). The classes: C* of infinitely many times
differentiable functions, D™ of n-times differentiable functions, and C" of
functions with continuous n-th derivative cannot be topologized. The same
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is true, when in the above we replace differentiability with symmetric dif-
ferentiability, approximate differentiability, symmetric approrimate differ-
entiability, T-approximate differentiability or symmetric I-approximate dif-
ferentiability.

(The definitions of all classes of functions from this, and the next corollary
can be found in [16] and in [38].)
With a little more effort he also concludes

Corollary 5.5 (Ciesielski [27]). The following classes cannot be topologized:
the class A of all derivatives,"! the Zahorski’s classes M; fori =0,1,2,3,4,
the class of all symmetrically (symmetrically approzimately or symmetrically
T-approzimately) continuous functions, the class of all Darboux functions,
the class of all measurable functions and the class of all functions having
the Baire property.

From the positive side, paper [27] contains the following deeper result.

Theorem 5.6 (Ciesielski [27]). Let | X| = |Y|=¢, R C Y% be of cardinal-
ity < ¢ and let T be a proper o-ideal on X containing all singletons.
(A) If GCH holds then there is a Hausdorff, connected and locally connected

topology 1o on'Y with the property that for every family F C ConstUR
such that Const C F and

{r e X: f(x)=g(x)} €T for every distinct f,g€ F

we have

F=C;)

T,727
where T is generated by the family {f~(U): U € 1o & f € F}. Topol-
ogy T 1s connected and locally connected. It is also Hausdorff, provided
F separates points.
(B) Moreover, it is consistent with the set theory ZFC+GCH that the
topologies T and 1o are completely reqular and Baire.

Applying Theorem 5.6 to the o-ideal M of the first category subsets of R™,
and using the fact that for any different harmonic functions f, g: R® — R™
we have int,,({z € X: f(z) = g(z)}) = 0 we can conclude that the class of
all harmonic functions f: R™ — R™ can be topologized.

Another o-ideal that can be used with Theorem 5.6 is the ideal Z,, of at
most countable sets. Since for any two different analytic functions f,g € A
we have {x: f(z) = g(x)} € Z,,, we can also conclude the following corollary.

"See also [150].



SET THEORETIC REAL ANALYSIS 177

Corollary 5.7 (Ciesielski [27]). If GCH holds then there is a Hausdorff,
connected and locally connected topology T4 (on R or C) such that for any
family F D Const of analytic functions we have

F=ct

TF,TA?
where TF is generated by the family {f *(U): U € 74 & f € F}. More-
over, Tr is connected and locally connected, and it is Hausdorff provided F
separates points.
It is also consistent with ZFC+GCH that all these topologies are com-
pletely regular and Baire.

Notice also, that if the family F in Corollary 5.7 is closed under the
composition and id € F, then, by Theorem 5.1(v), F = CT;TF We can
write this in the form of next corollary, where A stands for the family of all

analytic functions and P for the family of all polynomials.

Corollary 5.8 (Ciesielski [27]). If GCH holds and F is a family of real
functions which is closed under the composition and such that {id}UConst C
F C A, then there exists a Hausdorff, connected and locally connected topol-
ogy Tr (on R or C) such that F = C%;,Tf' In particular, there exist a
“lmear topology” 1z, a “polynomial topology” Tp and an “analytic topol-
oqy” T4 which are Hausdorff, connected and locally connected Such that
Ty CTp C Ty and for which L = CT 1.0 P = CT Tps and A= CT Ta

Moreover, it is consistent with ZFC+GCH that all these topologles are
completely reqular and Baire.

The following questions in these subject are open.

Problem 10 (Ciesielski [27]).

(1) Can we prove Theorem 5.6 or any of the Corollaries 5.7, or 5.8 without
any additional set-theoretical assumptions?

(2) Can topologies from Theorem 5.6 or any of the Corollaries 5.7, or 5.8
be normal? Lindel6f? hereditarily Lindelof? compact? metrizable?

The general problem of characterizing classes of functions by preimages
of sets (in a sense defined above) has been studied only in two papers:
[33] and [42]. In paper [33] Ciesielski proves the following theorem, which
generalizes a similar result of Preiss and Tartaglia [123].
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Theorem 5.9 (Ciesielski [33]). Let F C R® be a family of cardinality less
than or equal to ¢t and let G C R® be such that

(1) G contains all constant functions;

() (6] < ¢; and,

(3) |f[R]| = ¢ for any non-constant f € R® which is a difference of two
functions from G.

Then there exists a family A C P(R) of cardinality less than or equal to |F]|
such that

GNF=CpanF
where D = {f~1(A): Ac A& f€G}.
Clearly the family G = A of all derivatives satisfies the above conditions

(1)=(3). Thus, using the theorem with G = A and F equal to the family
Bor of Borel functions we obtain the following corollary.

Corollary 5.10. There exists a family A C P(R) such that |A| < ¢ and
A = BorNC(D, A),

where D= {f}(A): fe A & Ae A}.

However, the following stronger characterization of A is also described

in [33], where DB; stands for the class of Darboux Baire one functions.

Theorem 5.11. There exists a Bernstein set B C R such that
A=DB,NC(Dy,{B+c:ceR})=C(D,A),

where A = Jpep{(—00,¢), (¢c,0),B+c}, D={f"1(A): fe A& Ae A},

and Do = {f Y(B+c): f € A & c€R}.

Note that by Corollary 5.5 the families D and A in Theorem 5.11 cannot
be topologies. Also, they cannot be algebras:

Theorem 5.12 (Ciesielski [33]). If A = CB,IA for some families D and A
of subsets of R then neither A nor D contain simultaneously a non-empty
proper subset S of R and its complement R\ S.

In particular, neither A nor D is an algebra.

The following problem remains open.

Problem 11 (Ciesielski [33]). Can the family A in Corollary 5.10 or Theo-
rem 5.11 consist of any kind of regular sets like Lebesgue measurable, Borel,
or sets with Baire property?
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An interesting discussion concerning characterizations of the derivatives
can be also found in a recent article of Freiling [63].

The problem of characterizing by preimages of sets families from Chart 2
has been recently addressed by Ciesielski and Natkaniec.

Theorem 5.13 (Ciesielski, Natkaniec [42]).
(1) The classes: SZ, Ext, AC, Conn, D, SCIVP, CIVP, and WCIVP

cannot be characterized by preimages of sets.

(2) The classes: PR and PC can be characterized by preimages of sets
as C;l,lB with B being the natural topology on R. However, they can
neither be topologized nor be characterized by associated sets.

The problem of characterizing a family of functions by images of sets was
first studied by Velleman for the class C of continuous functions from R
to R.

Theorem 5.14 (Velleman [153]).

(1) C =CaaNCpp, where A is the family of all connected subsets of R
and B the family of all compact subsets of R.
(2) C cannot be characterized by images of sets.

Note that a family C4 4 from Theorem 5.14 is just the family D of Darboux
functions.

Theorem 5.14(1) has been recently generalized by Arenas and Puertas [2].
Theorem 5.14(2) has been essentially generalized by Ciesielski, Dikranjan
and Watson in [34]. In this paper the authors list a basic properties of
classes that can be characterized by images of sets, which is similar in flavor
to Theorem 5.1. Then, they prove the following generalization of Theo-
rem 5.14.

Theorem 5.15 (Ciesielski, Dikranjan, Watson [34]). For a Tychonoff topo-
logical space X the class F = C(X,R) of all continuous functions from X
to R can be characterized by images of sets if and only if X is a discrete
space.

They also remarked that there is a compact subset K C R?, a Cook con-
tinuum, for which C(K, K') = Const U{idk }, and so, it can be characterized
by images of sets.

For the classes of functions from R to R, their generalization of Theo-
rem 5.14 appears as follows.

Theorem 5.16 (Ciesielski, Dikranjan, Watson [34]). If A,B C P(R) are
such that C C C4 5 then there is a non-measurable function f € Ca .
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This, in particular, implies the following corollary.

Corollary 5.17 (Ciesielski, Dikranjan, Watson [34]). Neither of the follow-
ing classes of functions from R to R can be represented as Cqp for any
A, B C P(R):
e the class of upper or lower semicontinuous functions;
the class A of derivatives;
the class of approximately continuous functions;
the class of Baire class 1 functions;
the class of Borel functions;
the class of measurable functions.

They also noticed that the class D of Darboux functions can be characterized
by images of sets. (It is defined that way.)

It has been also recently noticed by Ciesielski and Natkaniec [42] that in
Theorem 5.16 the clause “non-measurable” cannot be replaced by “without
the Baire property.” More precisely, they proved

Theorem 5.18 (Ciesielski, Natkaniec [42]). Let f € C4 4, where
A={DNI:D isdenseinR and I CR is an interval }.

Then f is continuous on a dense set.
In particular f has the Baire property and

C C Cq 4 C Baire,
where Baire stands for the class of functions g: R — R with the Baire

property.

Finally, Ciesielski and Natkaniec [42] proved that it is impossible to char-
acterize by images of sets the classes SZ, and Baire of functions (from R
to R) with the Baire property. They also proved the following theorem.

Theorem 5.19 (Ciesielski, Natkaniec [42]). The  classes:  CIVP,
WCIVP, and D can be characterized by images of sets. However, the re-
maining classes from Chart 2 cannot be represented that way.

The following problem in this area remains open.
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Problem 12 (Ciesielski, Dikranjan, Watson [34]). Can  any  of  the
following classes of real functions be represented as Cap?

The class of all linear functions f(x) = ax + b.

The class of all polynomials.

The class of all real analytic functions.

The class C*° of infinitely many times differentiable functions.

The class D™ of mn-times differentiable  functions,  with
1<n<w.

Another interesting problem (loosely related to real functions, but having
the same flavor that the topologizing question has) concerns the existence
of a topology on a given set X, often the real line, satisfying the best
possible separation axioms, for which a given ideal (o-ideal) of subsets of
X cousists precisely of sets that are nowhere dense (or first category) in X.
Ciesielski and Jasinski [35, 1995] obtained several positive results in this
direction under some additional set-theoretic assumptions. The problem
was also investigated in the papers [125] by Rogowska and [5] by Balcerzak
and Rogowska.

There are also many interesting theorems concerning different classes of
functions f: R™ — R, where R" is equipped with some abstract topology
refining of the natural topology. A survey of some recent results in this
direction can be found in the last issue of the Real Analysis Exchange [73].
The topologies on R that were most studied in this aspect in recent years are
the Z-density topology (defined in 1982 by Wilczyniski [154]) and the deep
Z-density topologies (defined in 1986 independently by azarow [101], and by
Poreda and Wagner-Bojakowska [122]). These are category analogues of the
density topology. The survey of the results in this direction can be found
in a monograph of Ciesielski, Larson and Ostaszewski [38]. (In particular,
see [36] or [38, Sec. 1.5] for some set theoretic results and open problems
concerning these topologies.)

6. Elements of measure theory

The Lebesgue measure, being a function from family of subsets £ of R"
into [0, 00], is not of the form f: R" — R, so it does not lie directly in
a scope of this article. However, it is certainly one of the main tools of
real analysis and many results concerning its generalizations have a deep
set theoretical context. Therefore, a short section concerning the newest
developments in this area has been added to this paper.

An accessible survey concerning different extensions of Lebesgue mea-
sure can be found in the 1989 Mathematical Intelligencer article [23] of
K. Ciesielski. The best survey concerning universal (i.e., defined on P(R))
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countable additive extensions of Lebesgue measure can be found in the 1993
survey article of D. H. Fremlin [66]. Thus, we will concentrate here only
on the newest developments, that concern isometrically invariant extensions
of Lebesgue measure. (See also M. Laczkovich survey article [100] on this
subject.)

Recall here, that by the 1923 theorem of Banach there is a finitely addi-
tive isometrically invariant measure p: P(R?) — [0, 0o] extending Lebesgue

measure, while such a measure on R? does not exist by a famous Banach-
Tarski Paradox (1924):

e the ball B C R? and the cube @ C R3 (of arbitrary volumes) are
isometrically equivalent, i.e., there is a finite partition {By}}_, of B
and isometries {ix}7_; of R? such that {ix[Bg|}?_, forms a partition
of Q.

There were two famous problems around this subject. The first one, due to
Marczewski, was whether the pieces { By }_; in the Banach-Tarski Paradox
can have the Baire property. The answer to this question, surprisingly
positive, was obtained by Dougherty and Foreman in 1994.

Theorem 6.1 (Dougherty, Foreman [58]). For any n > 3 any two bounded
non-meager sets B,Q C R™ with the Baire property are isometrically equiv-
alent with pieces having the Baire property.

The second famous question was the Tarski’s circle-squaring problem: is
a circle C C R? of the unit area equivalent to a square S C R? of the unit
area? Note that if the areas of C' and D were different, then Banach’s
theorem of 1923 would immediately imply the negative answer. However,
the answer to Tarski’s circle-squaring problem is positive, as proved by
Laczkovich in 1990.

Theorem 6.2 (Laczkovich [99]). Any two sets B,Q C R™ having the same
area and being bounded by Jordan curves are isometrically equivalent.

The other class of isometrically invariant extensions of Lebesgue measures
on R™ concerns countably additive extensions. In 1936 Sierpinski asked,
whether such an extension can be maximal. The negative answer to this
question was given in 1977 by A. B. Kharazishvili [87] (for n = 1) and in 1985
by Ciesielski and Pelc [43] (for arbitrary n). (Compare also [24, 25, 96, 156].)

Theorem 6.3 (Ciesielski, Pelc [43]). For every n > 1 and every countably
additive isomatrically invariant extension p: M — [0,400] of the Lebesgue
measure on R™ there exists a proper countably additive isomatrically invari-
ant extension p': M' — [0, 400] of p.
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A weak side of this theorem was that the extension p’ of u was only by (new)
measure zero sets so, in a way, trivial. This has been recently improved by
Zakrzewski, who showed

Theorem 6.4 (Zakrzewski [157]). For every n > 1 and every countably
additive isomatrically invariant extension p: M — [0, +00] of the Lebesque
measure on R™ there exists a countably additive isomatrically invariant ex-
tension p': M' — [0, 4+00| of u such that the canonical embedding e: M/ —
M Ji! of measure algebras defined by e([A],) = [A] is not surjective.

Zakrzewski’s proof is based on a construction of Kharazishvili [88] from
1997, which was known earlier to imply Theorem 6.4 for n = 1.

Many interesting results concerning invariant extensions of Lebesgue mea-
sure can be also found in 1983 book of Kharazishvili [89].
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