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ABSTRACT. The existence of a Walras equilibrium is proved in the
framework of a finitely economy with production. The theorem assumes
the production set correspondence to be closed valued and absolutely
continuous with respect to the ”weighting” finitely additive measure.
The result is obtained by using the Kakutani’s fixed point theorem and
some convergence results stated for multifunctions.

1. Introduction

Coalition production economies have been introduced by Hildenbrand [9]
with reference to the intuition, due to Aumann ([4] and [6]), that individuals
in large economies can be represented by means of points in a continuum
or, what is basically the same, in a nonatomic (countably additive) measure
space. By the appearance of the two papers [1] and [2] this idea received
new light: perfect competition models more properly require to be based
on finite additivity of the measure space of agents (see the wide and deep
discussion in [1]). Successively, the coalition production economy model has
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been joined with the discovery of Armstrong and Richter in the paper [7]
by Basile.

However, the latter only dealt with what is known in the literature as the
Core-Walras equivalence. Namely, it was only dealing with showing how
it is still true that, in the finitely additive coalition production economies
model, the two approaches to equilibria, the game theoretical one (due to
Edgeworth) and the other based on the idea of perfect competition (due to
Walras), give rise to the same set of equilibria.

As of our knowledge, the question of the existence of such equilibria (in
finitely additive coalition production economies) has not been attacked yet.
Armstrong and Richter in [2] prove the existence in a model which involves
only exchange of goods. On the other hand the existence theorem that can
be found in [9] is based on the countably additive assumption.

The aim of this paper is to prove that finitely additive coalition produc-
tion economies do admit Walras equilibria under mild assumptions. Our
result extends that by Armstrong and Richter [2] since the latter corre-
sponds to the case that the production set correspondence is identically
null (only exchange activities). Although the scheme of the proof repeat
an idea present in [2] (i.e. via Stone space argument one moves to the
countably additive setting whose equilibria can be pulled back to equilib-
ria in the finitely additive setting), for the crucial step of finding equilibria
in the countably additive setting we had to provide a suitable new exist-
ence theorem. This is done by extending to coalition production economies
the existence theorem proved by Schmeidler in [12] relative to the case of
exchange economies.

The paper is organized as follows: Section 2 contains the description of
the model and the main theorem is stated. Then, in a quite wide Section
3, existence theorem (Theorem 2) is proved with reference to the countably
additive setting where the two approaches, the coalitional and the individ-
ual, may be interchanged. Finally, Section 4 shows how to obtain a Walras
equilibrium in a finitely additive coalition production economy from the one
found in the countably additive setting.

2. The model and the statement of the main theorem

We use as mathematical model for a large economy a finitely additive (f.a.
for short) nonatomic (= strongly continuous according to [8]) probability
space (€, F, ). The points of the set 2 represent the economic agents; the
elements of F (an algebra of parts of 2) represent the coalitions; for every
coalition F'in F, pu(F') represents its “weight” in the market. Coalitions
F with p(F) =0 are called null.
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Let n (> 2) be the number of different commodities present in the market.
The generic bundle of goods is represented by a point x = (z!,... ,z2") of
R%. We refer to the natural partial order of R*: If 2 and y are points of
R™ then x < y and z < y have to be meant coordinatewise.

The allocations specify the way to assign a bundle of goods to every
coalition. We assume that an allocation is a fa. function from F to R
and, according to Richter ([11]), we only consider allocations which are -
absolutely continuous (e — ¢ definition). In other words, by allocation we
mean an element of the collection

A={a:F >R : aisfa. and o < p}.

Coalitions have an initial endowment which we represent by an element v of
A. We suppose (it is a standard assumption) that [, v(t)du > 0, to ensure
the presence of a positive amount of every commodity in the market.

If o is an allocation and F' is in F, we denote by ar the restriction of «
to the algebra Fp ={F € F : E C F}. If # is another allocation, we write
a < [ to express the absolute continuity of ap with respect to Op.

We assume that each coalition F' has a preference relation =z on A.

For o, € A, the interpretation of a >=p B (we read that coalition F'
prefers allocation « to () is that each member of F' prefers what he gets
from « to what he gets from g.

Our hypothesis about preferences are those of Armstrong and Richter [2],
to recall them we need a few definitions more. If a and § are allocations
and F' is a coalition, then
1) a(F) > B(E) VE € Fp
) <pal—p3 Vi=1,...,n

1) a(F) > B(E) VE € Fr
a>p f means { 2) YU <pal —F Vi=1,...,n.

We also define a “weak preference” >p in the following way:

a = (3 if and only if there exist two sequences {ag }ren and {Sj}ren in
A with o =p B, Vk € N, which respectively converge (in the variation
norm) to « and f.

We assume the mapping =: F € F —p€ 247\ {0} to be

la) ideal,

2a) selfish,

3a) monotone,

4a) open,

5a) positively acyclic.

We respectively mean that, if « and 3 are two allocations and F' is any
coalition, then:

la) the set {F' € F: a >p [} is an ideal of F;

ao>p 5 means {
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2a) if @ and (3 are identical on Fp, then =g does not distinguish between
them. Namely if v is any element of A, then the following hold

as-pyES B-=py and y>=pasy=-p b

3a) if a(E) > [(F) and a(F) # B(E) for every nonnull subcoalition E
of F, then a = £;

4a) if for the coalition F' it is o »=p [, then there exist two allocations,
o and ', such that ao>p o =r ' >F 3;

5a) there are no cycles of the form ao>p a1 =p ... =p a, >p a with
a, a1, apy, € A

We do not restrict ourselves to consider the exchange as the only economic
activity, we also suppose that every coalition F' has a productive capability
which we express by a subset Y (F') of R* called production possibility set.
The points of this set are called production plans. If y is such a point,
its positive (resp. negative) components are interpreted as outputs (resp.
inputs). More precisely, y € Y(F') means that the coalition I is able to
produce y™ = y V 0 if it has at its disposal y~ = (—y) V 0.

About the production set correspondence Y : F' € F — Y (F) C R*
we assume

0e€Y(F) VF € F and

E.FeF, ENF=0 =Y(E)+Y(F)=Y(EUF).

The first assumption expresses the possibility of inaction, while the second
expresses the convenience for the coalitions to unit their forces forming
bigger coalitions, in the sense that if two coalitions £ and F' can choose the
productive plans y and z respectively, they can still choose them (EU F' can
choose the plane y + z) after they join. In any case, it is Y(F) CY(EUF).

We denote by ) the set of all f.a. selections of the production set corre-
spondence. The elements of ) are said to be production allocations.

The collection & = (Q, F, u,v,>=,Y) is called a (f.a., nonatomic) coali-
tion production economy (see [7]).

Prices are represented by elements of the set

X
P={peRy:Y =k
=i

In the Walrasian idea of perfect competition the prices of goods are given,
neither coalitions nor individuals can influence them.

The triple (o, m,p) € AXx Y x P is a Walras equilibrium if

1b) a(Q) = v(Q) + 7(Q);

2b) p-m(F) =maxp-Y(F) VE € F;

3b)p-a(F) <p-v(F)+p-n(F) VF € F;

db)FeF, B=ra, pwE)>0=p-BF)>p-v(F)+p- - n(F).
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Before stating the following theorem, which is the main result of the
paper, we recall that Y is said to be py-absolutely continuous if Ve > 0, 40 >
0 such that p(F) < d = |ly|| < e for all y € Y(F). We also assume that the
supremum norm is used throughout the paper.

Theorem 1. Let € = (U, F,pu,v,=,Y) be a f.a. nonatomic coalition pro-
duction economy. If the production set correspondence Y is closed-valued
and p-absolutely continuous, then there exists a Walras equilibrium.

The outline of the proof is similar to the one used by Armstrong and
Richter in [2]. It consists of three steps:

— via the Stone representation theorem the model is transferred to a o-
additive one,

— a Walras equilibrium is found in the o-additive context,

the latter is pulled back to the original model and it is shown to be still

a Walras equilibrium.

We begin from the second step, by proving an existence theorem in o-
additive framework (Theorem 2). We complete the proof in Section 4.

3. The o-additive case

As said in the introduction, this section is devoted to investigate the
existence of Walras equilibria in o-additive (o-a., for short) setting. If we
suppose that the space (2, F, 1) that represents the economy is a nonatomic
o-a. probability space (we mean that F is a o-algebra and p is a nonatomic
o-a. measure), we have one more (equivalent) way to define Walras equi-
libria. Because of u-absolute continuity, every element of A is o-a. and by
the Radon-Nikodym theorem, there exists the u-derivative f of a:

o(F) = /F f(du  VF e F.

The same happens for the production set correspondence: it is o-a. and it
has a p-derivative Z. The latter is an Aumann integrable multifunction on
Q) such that

Y(F):/FZ(t)du VF € F.

This gives us the possibility to talk about the production set of each agent.
We will denote by Z the set of all integrable selections of Z.

In the o-additive case, it is also possible to consider a “density” for the
preferences, in the sense that if we assume them to verify properties la),
2a), ..., ba) and moreover, to be



254 A. DE SIMONE

1a’) o-ideal ({F € F:a>p (B} is a o-ideal of F),

6a) asimmetric (o XF ),

7a) transitive (e >p (8, OB>ry=a>r7),
then it is possible to generate them (in the sense of Armstrong and Richter
[2]) by individual preferences >; (¢ € ) which have the following properties
(z,y and z are points of RY, f and g are in L;(u)):

le)x =1y, y=rz=x>2 (transitivity);
) (irriflessivity);
3c¢) {z : 2 >+ y}and {x : y >+ 2} are open (continuity);
) (
) (

de)x >y, zHYy=>c1y desiderability or monotonicity);

5¢) {t: f(t) = g(t)} is measurable measurability).
The converse is also true: individual preferences verifying 1c), ..., 5¢)
above, generate coalitional preferences for which 1a’), 2a), ..., 7a) hold.

If (2, F,p) is a o-a. probability space and preferences satisfy 1a’), 2a),
..., 7a), we will talk about o-additive economies.

In this section we prove a theorem which estabilish the existence of a
Walras equilibrium for a nonatomic o-additive economy. To obtain this re-
sult, we need preferences to satisfy the additional hypothesis 1a’), 6a) and
7a). This is not a real restriction for our goal. In fact, when in Section 4
we will use the Stone representation theorem to transfer the original econ-
omy to a o-additive one, we will obtain a model in which preferences will
automatically verify hypothesis 1a’), 2a), ..., 7a).

To state the theorem we need, we have to suppose that

1d) Z(t) is closed and it contains zero Vit € €,

2d) 3y € RT  such that 2<(y) VzeZlt)  VteQ where
(V) =057

To give an upper bound to the production sets (hypothesis 2d) expresses
the fact that the production cannot be infinite even if we assume free dis-
posal of goods. The uniformity of the bond (v does not depend on t) is
justified by the fact that when we pass to coalitional point of view, it is still
impossible to have infinite production and these production sets Z(t) are
the basis to construct the production set of the whole economy.

Let us introduce some other notations:

N(p,t) =max{p-z:z € Z(t)},

E(p,t) — {2 € Z(t) : p- = — N(p,0)},

Ap,t) ={z e RE : -~ <1-v(=) +N(, =)}

Note that N(p,t) exists because p € Rf’ﬁ and 7 is closed and upper
bounded. For short, we write [ f (resp. [z f) rather than [ f(t)du (resp.
Jr [(t)dp), we still indicate by v the p-derivative of the initial endowment
and we neglect null sets in the definitions (in the sense that when we write
Vt € 2 we mean Vi € ) p-a.e.).
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At this point it is immediate to verify that if f € Li(u) and z € Z
are respectively the p-derivative of the allocation a and the p-derivative of
m € ), then the triple (o, 7, p) is a Walras equilibrium if and only if (f, z, p)
is such that

1e) [f=[v+ [

2e) z(t) € E(p,t) vt € Q;

3e)p- f(t) <p-v(t)+ N(p,t)  Vie)

de) z>0, z>¢ f(t)=p-z2>p-v(t)+ N(pt).

Of course an equivalent formulation for 3e) and 4e) is

be) Vt € ©  f(t) is a maximal element in A(p,t) with respect to the
preference relation ;.

To sum up, we can say that in the o-additive setting we can replace the
original (coalitional) point of view (expressed by definition 1b), ..., 4b)
and assumptions 1a’), 2a), ..., 7a)) with an individual one (expressed by
definition le), ..., 4e) and assumptions lc), ..., 5c)). The latter will be
used along the proof of the next, special and preliminary, case of Theorem 1.

Theorem 2. Let & be as in Theorem 1. Assume further that it is o-additive
and that the individual production sets Z(t) verify 1d) and 2d), then there
exists a Walras equilibrium.

The idea of the proof is the following (we improve the method used by
Schmeidler in [12] for the case of pure exchange economy): we define some
equilibria, called k-equilibria, whose definition is similar to that of Walras
equilibria, except for their allocations and production plans, that are con-
fined to belong to some ball of R* whose ray depends on k. Using a fixed
point argument (Proposition 1), we find a k-equilibrium for every k£ > 1
(Proposition 2) and we show that, when & goes to infinity, from these equi-
libria we can obtain a Walras equilibrium (Section 3.3).

With respect to a fixed & > 1 and to the (integrable) function A(t) =

", V4(t), we define the following subsets of RX which will be useful in the
sequel:

B(k)={z e R*: ||| <T[ A}k

By (k) = B(k) N RY;

B(k,t) ={z e R* : ||| < TA(=)} (t€Q);
By (k,t) = B(k,t) NRY (t € Q).

For each t in €2, the set B(k,t)NZ(t) is compact because of the closedness
of Z(t), so it is possible to consider

M(k,p,t) =max{p-z:x € B(k,t)NZ(t)}
which represents the (nonnegative) maximum income that agent ¢ can obtain

by using his productive capability, if we admit that he must choose his
production plan in the ball B(k,t).
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The set of production plans that permit the agent ¢ to obtain the income

M (k,p,t) is denoted by E(k,p,t) so

E(k,p,t) ={z € B(k,t) N Z(t) : p- v = M(k,p,t)}.
Since agent ¢ is able to obtain M (k, p,t) with a suitable choice of a produc-
tion plan in his production set, his budget set is

Slk,p.t)={z eRY :1- <1 v(=)+M(T,,=)}
As already said, we do not consider all the bundles in this budget set. We
restrict ourselves to consider

C(k,p,t) = S(k,p,t) O By (2K, ).

Finally, we denote by C’(k, p, t) the set of the maximal elements of C'(k, p, t)
with respect to the preference relation >, so

C'(k,p,t) = {z € C(k,p,t) 1y =1 x = y ¢ C(k,p,1)}
and we define
DT Ckp,t) i pev(t) + M(k,p,t) > 0.

3.1. A fixed point argument.

For a number k£ > 1, let us consider the following correspondence ¢ from
B4 (2k) x B(k) x P into itself:

¢(z,y,p) = ¢'(p) x ¢*(p) x ¢*(z,y)
where

6'(p) = [ D(k,p,t),

¢*(p) = [ E(k,p, 1),

P*(x,y) ={peP:YgeP p-(x—y—[v)>q (x—y—[V)}

Proposition 1. The correspondence ¢ has a fixed point.

Proof. The sets B4 (2k), B(k) and P are non—empty, convex and compact.
If we show that for any (z,y,p) in By (2k) x B(k) x P its image ¢(x,y,p) is
non—empty and convex, and that ¢ is closed, the existence of a fixed point
for ¢ will follow from Kakutani’s fixed point theorem. It is enough to refer
to the components ¢! and ¢? of ¢, since for ¢> the result is trivial.

CLAIM. For any price p , the sets ¢*(p) and $(p) are non—empty.

Proof. For any t in ) we have
D(kapa t) - B+(2k7 t)a

hence the correspondences t — D(k,p,t) and t — FE(k,p,t) are integrably
bounded (uniformly in p). They are also measurable for any price p. The
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first one because of measurability of >;, the second one because of the
equality

{(t,z):t€Q xe€ Ek,pt)} =
=[Qx (Blk,t)NZ(@t)|Nn{(t,z):t€Q p-x=M(k,p,t)}.

Corollary 5.2 in [5] ensures that for any p in P the sets ¢!(p) and ¢?(p) are
non—empty. O

CLAIM. For any t in Q the correspondence 01 : p € P — D(k,p,t) C R is
closed.

Proof. Let us fix an element ¢ in 2. Suppose that limy, pp, = p, limpz, =2
and that, for each h in N, the point x; belongs to D(k,pp,t). From the
relation zp, € D(k,pp,t) € C(k,pn,t) = B+(2k,t) N S(k,pn,t) it follows
that ||zp| < 2kA(¢) and pp, - 2, < pp, - v(t) + M (k, pp, t) for each h € N.

Taking the limits of these relations when h tends to infinity and observing
that limy, M (k, pp,t) = M(k,p,t), we have ||z| < 2kA(t) and p-z < p-v(t)+
M(k,p,t). This ensures that = belongs to the set C(k,p,t). Let us show
that z is in fact in D(k,p,t).

Let p-v(t) + M(k,p,t) be positive and let us assume that there exists
an element w in C(k,p,t) such that w »=; x. We can suppose that for a
point z of C(k,p,t) we have z =, z and p-z < p-v(t) + M(k,p,t). In fact,
if this is not true for w, then p-w = p-v(t) + M(k,p,t); the continuity
of =, (hypothesis 3c)) ensures that there exists z < w such that (z is still
preferred to = by t) z > x, this is the wanted point.

When h is large enough (h > hy), we have

ph -z <pp-v(t)+ Mk, pp,t) Z >t Tp-

This means that xj is eventually not maximal.
On the other hand since p-v(t) + M (k, p, t) is positive, for h large enough
(h > hg) it results
pn - v(t) + M(k,pp,t) > 0.
By the definition of D(k,pp,t), from this it follows that zj, is eventually
maximal. A contradiction. O

CLAIM. For any t in Q) the correspondence 05 : p € P — E(k,p,t) CRX is
closed.

Proof. If limy, p;, = p, limpy, = y and, for each h in N, ~— belongs to
E(k,pp,t), then, for each h in N we have

yn € B(k,t) N Z(t) and

Ph - Yn = M(kaphat)'

From these relations, when h goes to infinity, we respectively have
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y € B(k,t)N Z(t) (since this set is closed),
p-y= M(k,p,t) (sincelimy, M(k,pp,t) = M(k,p,t)).
So y belongs to the set E(k,p,t) and the proof is complete. O

Now we terminate the proof of Proposition 1 by appealing to Theorem
1 in [9] and nonatomicity of u. They ensure that the sets [ D(k,p,t) and
J E(k,p,t) are convex. By applying Kakutani’s theorem to ¢ we get the
desired conclusion.

3.2. Existence of k-equilibria.

We call k-equilibrium a triple (f,z,p) € L (1) x Z x P such that
1) [f=Jv+]z
2f) z(t) € E(k,p,t) vt € €
M p-f(t)<p-v(t)+ M(k,p,t) and f(t) € B4(2k,t) vt e
Af) p-v(t) + M(k,p,t) > 0= f(t) € C'(k,p,t).

We observe that 3f) and 4f) together are equivalent to
5f) f(t) € D(k,p,t)  Vte Q.

Proposition 2. For any k greater than 1 there exists a k-equilibrium.

Proof. Fix k > 1 and let (Z,7,p) be a fixed point of ¢, namely T €
I D(k.p,t),y € [E(k,p.t)andpe{peP:Vge P p-(T-7—[v) =
q-(T—7— [v)}. There exist elements w in LT (u) and r in Ly (u) such that
T=[w and w(t) € D(k,p,t) VteQ,
y=[r and r(t)€ E(k,p,t) Vte.

Note that r(t) is an element of E(k,p,t), so we have p-r(t) = M (k,p,t).
Since w(t) belongs to D(k,p,t), which is contained in B, (2k,t), all the
components of w(t) are less than or equal to 2kA(¢). Let us show that it is
impossible that they are all simultaneously equal to 2kA(t). O

CLAIM. At least for an index i, we have w'(t) < 2k\(t).

Proof. If z is an element of B(k,t), then, by definition, we have 2! <
kX(t) = kY 7_y 17 (t) for every i. So, for = in B(k,t) N Z(t), we have
px < kA(t) Y0, Py and therefore, M (k,p,t) < kA(t) >0 D,. If we assume
that w'(t) = 2kA(t) for all i, then we have

Bow(t) > X0 S By + kAN S By > B v(t) + M(k. D, 1).
s=1 s=1

This is a contradiction since w(t) belongs to D(k,p,t) which is a subset of
S(k,p,t). O
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CLAIM. For any t in Q it isp-w(t) =p-v(t) +p-r(t).

Proof. We can suppose that p- v(t) + D - r(t) is positive. From the previ-
ous claim, we know that we can increase one of the components of w(t)
remaining in B(2k,t). Namely there exists an index ¢ and a positive & such
that
Jw(®) + €l | < 2kA(L),
where by e’ we denote the i-th vector of the natural base of RX.
If we assume that

prw(t) <p-v(t)+p-r(t) =p-v(t)+ M(k,D,t),
we can find &' in ]0, e[ such that
prw(t)+& <p-v(t)+ M(k,Dp,t).
Since prices are normalized we have
P (w(t)+ee)<p-wt)+e <p-v(t)+ M(k,p,t).
The desiderability of >; (hypothesis 4c) ensures that
w(t) 4 £'et = w(t).

We have found an element in By (2k,t) which is preferred to w(¢), this is
impossible because it contradicts the maximality of w(t) in C(k,p,t). O

Let us set b = [(w — v — r) for short. Evidently p-b = 0. Since P is
an element of ¢3(%,7), then ¢-b < 0 Vq € P; consequently b* < 0 Vi €
{1,...,n}. Therefore p’ = 0 for any i such that b < 0.

If b = 0, the wanted equilibrium is (w,r,p). Othervise, for any ¢ such
that b’ is negative, we define

Al = {t € Q:wi(t) < vi(t) +ri(t)}.

It comes out that pu(A?) > 0 (otherwise b* = fQ\Ai (w' — vt —7?) >0).

Let us set C" = [,i(v' + r" — w') and observe that from p(A%) > 0 it
follows that C? > 0. Moreover |b'| < C?since |b*| = b = [ (V' +7¢ —w') <
Jai(V+ 71t —wh) = C°

At this point define

Filt) = { w'(t) + ([b'|/C) (W' (t) + ' (t) —w'(t)) if b <Oandte A’
w'(t) otherwise '

CLAIM. The triple (f,r,D) is a k-equilibrium.

Proof. 1f) and 2f) are promptly verified once it is observed that
fQ fl. - fAi. F! + fQ_\Ai f! :_fAi w' + (|bzl/cz).fAi(VZ + ‘712 - U’Z) + fQ\Ai w? =
fQ w' + (|bl|/CZ)CZ = fQ w' + fQ(VZ Lot wz) — fQ(VZ _‘_1,,1,)‘ Then

[2=[w+n 0
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(for i such that b° = 0 the equality trivially holds).

Let us move to prove 3f). Note that f(¢) and w(t) can only differ in some
component i such that b’ is negative, but in that case we observed that
P’ = 0, hence this difference does not influence the scalar product of f(t) or
w(t) with p. From this and from the previous claim we have

p-f(t) =P-w(t) =p-v(t) + M(k.D1).
Moreover, since |b'| < C?, then
1b']

E(l/i +rt —wt) < vt -l
This implies that, f(t) < v'(¢t)+ri(t) < 2kA(t) if £1(t) differs from w'(t). So,
for any ¢ in €2, the vector f(t) belongs to B (2k,t) and 3f) is proved. Finally,
assume that there exists ¢ in Q and 2’ in C(k,p,t) such that 2’ =; f(t); by
desiderability of = it follows that f(t) >; w(t) and by transitivity one gets
2= w(t).

The vector w(t) is in D(k,p,t), so t must be such that

D V(t) +M(k'7pat) = 07
this completes the proof. O

Remark. We have found, for any £ > 1, a k-equilibrium for which the
equality holds in statement 3f) of the definition. In addition equality [%]
(see the proof of claim above) holds.

3.3. Existence of Walras equilibria (proof).

The last step consists of a limit argument. We will obtain a Walras
equilibrium from the given k-equilibria, by letting k run to infinity.

For any & > 1 we have found a k-equilibrium (xy,yg,px). Since P is
compact, we can suppose that there exists p in P such that the sequence

(pr)ken converges to p.
CLAIM 1. If there exists an index i such that p’ is zero and if t is such that

the scalar product p-v(t) is positive, then the sequence {zy(t)}ren does not
have limit points.

Proof. Suppose = to be such a point, then there exists a subsequence of
{zk(t) } (we still indicate it by {zx(t)}x) whose limit is z. Since

OSM(kapkvt)S’y Vk € N,

then, by passing to a subsequence if necessary, we have that { M (k, pg,t) }ken
has a limit, let us denote it by L(t).
For any k in N it is

Pr - Tk(t) = pr - v(t) + M(k,pr,t) > pi - v(1).
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taking the limit of this relation for k that goes to infinity we have
pra(t)=p-v(t)+ L(t) = p-v(t) >0,

so there exists an index j in {1,...,n} such that p/ > 0 and 2/(¢) > 0

(obviously j # 7). _

Monotonicity of preferences ensures that x + €' > x and for their conti-
nuity there exists a positive d such that if we define z = x 4+ e* — de’ it is
zERi and z > x.

If we take k large enough (k > ki), we have ||z|]| < 2kA(t). Since zy(t)
goes to & and the preferences are continuous, then there exists a kg in N
such that

Z =t Tk Vk > ko.
If we take k > max{ki, ko }, then the maximality of x in C(k, pg,t) implies
that
pr 2> pi-v(t) + M(k, pg, )
which gives, for k that goes to infinity,
przzp-v(t)+Lt)=p-a
This is impossible because

pz=p-z4+p —0p) <p-zx.
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CLAIM 2. p > 0.

Proof. Suppose that there exists an index 7 in {1,... ,n} for which p’ is zero.
Let us define T'= {t € Q : p-v(t) > 0}. If we observe that [ p-v = p- [ v and
that the latter integral is positive because, by hypothesis, all the components
of [v are positive, we conclude that p(7') is positive. Let us define

n . n X
/Zlﬂ—i—limsup/Zyi
j=1 k j=1

and F' = {z e R} : X , ~1 <n}.

Let ¢t be in T, from Claim 1 it follows that xj(t) belongs to F' for at
most a finite number of k. So for any ¢ in T' there exists k; in N such that
Si_q xy,(t) > 1 for k > k;. Then

_ 2
T W)

o P > i
hmklnszz:1 x(t) > n vt e T,

this ensures that
n
/ lim ian:E?c > nu(T),
T k =

so we have . ' '
nu(T) < [Jpliminfy 377 @y < liminfy [ 377 ) @) <liminfy [o 37 27 =
(since [z = [(v + yx)) hminfy 717 + yp) < limsupy, [ 325,17 +

limsupy, [ Y7oyl = [ Yj=1 17 + limsupy, [ S7_ ), = u(T)n/2,
a contradiction. O

From the equality p = limg pr and from Claim 2 it follows that there
exists a positive d such that when £ is sufficiently large (k > K) all the
components pj, of p;, are greater than 0.

CLAIM 3. For k > K itis yi(t) > (1—n)y/d Vi =1,...,n and
vt € QL.

Proof. Let k be greater than K and let ¢ be an element of (2. If for a
particular index i it is y;,(t) < [(1 — n)v]/d, then

n
Ph-Uk = Y DY = D PYi + Dk < Y DLY + Phbi-
=1 i i
From pj, < 1 we obtain 32, p;y < (n — 1)y. On the other hand, pj, > ¢
and  yi < (1—n)y/§ <0 imply that piyt < [§(1 —n)y]/s. Therefore
we have that the scalar product pg - yi is negative. The latter is impossible
because (xg, Yk, px) is a k-equilibrium. O
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Let us define, Gi(t) = {yx(t)} for each t in  and denote by G(t) the set
of the limit points of Gy(t). We have (see [5])

/G D hmsup/Gk

Let y be such that y(t) € G(t) Vt € Q and [y = limy, [ yp.
Such an y exists. In fact let us observe that

~[v<[w<m  wken [+

where first inequality follows from the observation that [v+ [y = [x > 0
implies that [y, > — [~ and the second one follows from the observation
that yi(t) € Z(t) VYVt e Qand yg(t) < (y) VteQ.

Thus, by [*%], the sequence { [ v} admits a convergent subsequence (we
still indicate it by {[ yx}r) for which we have limy, [y € limsup,, [ Gy C

IG.

We note that the sequence ([ zx)ren converges because we have

/(V—I-y):lilgl/(u—l-yk):liin/xk.

The nonnegativity of pr and of xy(t), jointly with
i - () = pr - v(t) + M(k, pg,t) Vk e N, V= € Q
(that follows from the remark at the end of Section 3.2), gives
P (t) < pr - v(t) + M(k, i, t)
Vke N, Vte Q. Vie{l,... ,n}. [xxx]
Since Z(t) is bounded by 7, using [* * %] we have

phxi(t) <Z + VEeN, V=eQ, Vde {I¥... x}

Therefore for k£ > K we have

n

Oz () Z +7 vt € Q.

=1
Let us now define Xy (t) = {xr(t)} and denote by X (t) the set of the limit
points of Xp(¢).

From the latter inequality it follows by Fatou’s lemma that

Iilgn/xk. € limsup/Xk. Q/X.
k

This allows us to choose x such that z(t) € X(¢t) Vt € Qand [z = [(v+y).
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CLAIM 4. The triple (z,y,p) is a Walras equilibrium.

Proof. 1e) is obviously verified.

Since we know, from Claim 3, that there exists a positive integer K such
that ||lyk| < (n — 1)v/d for any k > K, then for £ > max{K, (n — 1)y/d} the
production plan y(¢) permits to obtain, at prevalent price p, the maximum
income not only in Z(t) N B(k,t) but in all Z(t). We mean that for k
sufficiently large

Pr-Yr =max{p-z:z € Z(t)}.
Let us denote this maximum by N(p,t). This ensures that the sequence
{M (k, pk,t)}ren is eventually constant (equal to N(p,t)) and it gives 3e).

Suppose that ¢ and z can be found such that ¢ € Q, z € A(p,t) and
z =¢ x(t). Because of desiderability of preferences, we have z # 0. To fix
our ideas let us assume that z! is positive.

Let us denote by 8 a positive number such that 253 = 2 — (5,0,... ,0) €
RY and  zg = z(t) (continuity of preferences). Since
limy, i, 25 = p-2—Bp* < p-z < pv(t)+N(p,t) = limy(pg-v(t) + M (k, p., 1))
we can affirm that there exists k1 in N such that

Di - 28 < p - v(t) + M(k,pg,t) vk > k.

Moreover there exists ko in N such that
n
lzgll < 26> V() Yk > k.
i=1

Since z(t) € X (t) then, using if necessary a subsequence, we have z(t) =
limy, z1,(t) and there exists k3 in N such that zg > x,(t) VE > k3. For
kE > max{ki, k2, k3}, the vector zj(t) is not maximal in C(k,pg,t). This
contradiction proves 4e).

Finally, to show 2e), let us prove that the set R = {t € Q : p-y(t) <
maxp - Z(t)} has measure zero.

Since E(p,t) is measurable and integrably bounded, we have [ E(p,t) # ()
(see [10] or [9]). Let e be an integrable selection of E(p,t), then, for any ¢
in R,

p-e(t) =maxp- Z(t) > p-y(t)
holds and moreover

02/(p-y—p-e):lim/(pk-yk—pk-e)20.
R k JRr

This implies that p(R) is zero as wanted. O

The proof of Proposition 2 is now complete.
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4. Proof of the main theorem

We can turn now our attention to the proof of Theorem 1.

Let (', F,u’) be the Stone space (canonically) associated to (Q, F, pu);
in this space y' is not only nonatomic but also o-additive.

There is a natural way to define Y/(F'), >’z (for F’ € F') and the initial
allocation /. They keep all the properties we have seen in (€2, F, u) and, in
addition, Y’ and v/ are o-additive.

We will show the existence of a Walras equilibrium in (€', 7, 1') (this is
enough for us). For brevity we will avoid to use apices.

Let us call B the o-algebra generated by F, it is in fact the Baire algebra
on Q ([8]), let us extend p and v to B and call these extensions p* and
v*. The triple (€2, B, 1*) is a nonatomic o-additive probability space. As
Armstrong and Richter show ([2]), in this hypothesis it is possible to extend
preferences from F to B and to generate them by individual preferences
(¢t € Q) which verify 1c), ..., 5¢). Let us indicate by S the set of all
the compact convex, non—empty subsets of R*, this is a complete, uniform,
separated semigroup if we define the addition in usual pointwise way and
we use the Hausdorff metric.

Since a f.a., nonatomic, closed-valued set correspondence is compact-
valued (see [7]), we can interpret Y as a function from F to S and we
can extend it to B obtaining a o-additive function Y* : B — S. Since this
extension is obtained by “continuity”, then it is u*-absolutely continuous.

Using the extension of Radon-Nikodym theorem to multifunctions ([10]
or [3]), we obtain the existence of a multifunction Z; : O — R* such that

Y*(F) = / Zi()dy*  VF* eB.

*

Let us define the closed-valued correspondence Z : ¢t € Q — Z1(t) U {0} C
RX.

CLAIM. For any element F* in B, it is Y*(F*) = [p. Z(t)dp*.
Proof. We have to show that
Z(t)dp” = / Zy(t)dp”
F* F*
holds for any £ in B. This means that

([ riren—([ rireny  vres

where [ is the set of the integrable selections of Z and I is analogously
defined using Z7 instead of Z.
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Since I; C I, one of the two inclusions is trivial. Let us show the other
one. Take f in I, since f is integrable then the set X = {t € Q* : f(t) = 0}
is measurable, so we can write

L rwan = [ s+ [ o fd = /. Ly SO VT eB
If t € F*\ X, then f(t) belongs to Z1(t), so we have
[ t0dw e [ z@de =y E\X) Y.
F* FH\X

From this, the desired inclusion follows. O

The function v*, is o-additive and p*-absolutely continuous, so it admits
a density that we indicate by n(t).

At this point the coalition production economy verifies all the hypothesis
of Theorem 2. From this theorem we obtain the existence in (€2, B, u*) of a
Walras equilibrium which we indicate by (z,y, p).

Let us define for any F'in F

olF) = [ a®dw #(F) = [ yodu

and let us prove that («,m,p) is a Walras equilibrium for (2, F, ).

For proving 1b), 2b) and 3b) only some computation is necessary. Here
it follows.

1h) a(@) = for(dp® = fon(t)ds* + o Z@)du* = v*(9) + V() =
v(Q2) + Y (Q);

2b) p-7(F) =p- [py(t)dp” = [pp-yt)dy” > [pp- Z(t)dp" = p-
JrZ)dp* =p-Y*(F) =p-Y(F);

3b) pa(F) = p [pa(du® = [opa(t)d® < [ppn(t)du+ [y py(t)de” =
p- v (F)+p-n(F)=p-v(F)+p-n(F);

To get 4b) suppose that there exist an element F' of F with p(F) >
and an allocation 3 such that 8 >r o and p- B(F) < p-v(F) +p-n(F).

By passing to the Baire algebra we have: 8* =g« o, p-[BH(F*) <
p-V*(F*) 4+ p-7n*(F*) and p*(F*) = p(F) > 0. Recall that ([2])

of ,dB* do*
B* b O(* C}:}f (di*)(t) >t (

0

)(t) a.e. on F*

dp*
so we have
dg* dv* dm*
. ) <p- t . t .. F*
p- (G0 <p- (GO +p- (T ae on

and this is a contradiction because of the definition of Walras equilibrium.
This completes the proof. O
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