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ABSTRACT. We present an adaptation of the (by now classical) parallel
projection method for finding a point in the nonempty intersection of a
finite number of closed convex sets in a Hilbert space. The adaptation
consists of controlling at each iteration step whether or not some con-
dition is fulfilled; if not, the adapted next iteration point is determined
such that its position with respect to the intersection is better than the
usual next iteration point. This may improve the speed of convergence.

1. Introduction

Many problems in applied mathematics may be reduced to the following
standard form: given a finite number of closed convex sets {C;}{”; with
nonempty intersection C* = N2 ;Cy in a real Hilbert space H with inner
product (, ) and norm || || derived from (, ), find in an iterative manner a
point in C*. For an overview of such problems in fields as diverse as control
theory, image processing, statistics and solving systems of linear inequalities
we refer to [6], [12], [13], [18]. Mainly theoretical results may be found in
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(3], [14], [15] and [17]. For generalized methods and problems in related
areas we refer to [4], [5] and [10]. An extensive bibliography is given in [1].

The possibility of doing the iteration by using a parallel computer with r
processors (1 <7 < m) focuses the interest of the researchers on construct-
ing parallel algorithms where at each step in the iteration r sets among the
m sets {C;}]~, are involved. Denoting for short the set {1,2,... ,m} by
J, and by Ji11 the subset of J consisting of the r indexes {i1,... ,,} that
determine the sets Cj,,... ,C;, that are used at step k + 1 in the iteration,
the typical parallel iteration step used to solve the problem starting from
some point z, in H has the following form ([2], [7], [9]):

That = T+ kg1 D, trr1 () (Pjze — i), (1)
JE€Jk+1

with a positive relaxation coefficient Axy1, a set of r nonnegative weights
pr+1(j) (e, pry1(d) = 0 for each j € Jyi, and 3¢, pe41(d) = 1),
and Pjxj denoting the shortest distance projection of the current iterate
x, onto Cj. The weights and the relaxation coefficient may vary at each
step. Conditions on the choice of Agi1,uk+1(7) and Jxy1 for each k =
0,1,... should then be found to assure the (usually weak) convergence of
the sequence {zj}{ 5 to a point in C*.

In this paper we present an adaptation of the iteration scheme given by
(1), in order to improve possibly the speed of convergence. The reason to
do this is the following. In the construction of the sequence {zj}{25 that
we present we know that, when zp has been found, the set C* is part of
a half-space @ with border line S; through the point zj; however, when
the next iteration point xp,q is determined from xj as in (1), there is no
guarantee that xx41 also belongs to that half-space; indeed, the position of
Tp41 in (1) is also determined by the sets C; for all j in J11, and a control
in advance of all r-tuples of sets {C;}/2; seems not to be possible.

The adaptation that we present goes as follows. Instead of determining
the next iteration point directly by (1), we use the right hand side of (1) to
determine, for £ > 1, an intermediate point vgy1, given by

Vks1 = T+ M1 D, o (3) (P — ) (2)
JE€JIk41

(we put v1 = x1); vk+1 belongs to the border line Sk of a new half-space
Q41 containing C*. Using an easy criterion, we check whether or not vy
also is an element of Qg, i.e., whether or not vy is "on the good side” of
xg. If it is, we put 1 = vg41; if not, we use the points vgy1, vg, 2 and
Zr—1 to determine as next iteration point zpy; a point in the intersection
of Sy and Sj41. As such, the more involved calculations connected with the
adaptation procedure to determine z41 # vi41 generally have to be carried
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out only at a limited number of steps during the iteration, and so the time
needed for it may be kept small.

Besides the above-mentioned general description of determining the ele-
ments of the iteration sequence {xk}'k";’%, we also have to clarify how the cor-
responding subsets Ji1 C J and the corresponding weights {ps41(j) e,
will be choosen. We may state this control strategy under the following form:

(Control 1). There exists some positive integer M such that, for each
nezt,

J C Uﬁiz?)l‘]n-i-ka
i.e., all the sets {C}{L, are selected at least once within any M consecutive
iterations.

(Control 2). For some positive number §, 0 < § < 1/r, when at step
kE+1 (k=0,1,...) the subset Jy41 C J is involved, and hence also the sets
{Cj}jer,, and the weights {pry1(j)}jer..» take pry1(j) > 6 for each j €
Jipt1 ; only when xj, € C; we may take either p41(j) =0 or p41(j) # 0.
At this point we have introduced the necessary elements to state the main
result of our paper. In order to separate it from the more technical matters
involved with the convergence procedure, we state it here as Theorem 1.

Theorem 1. Suppose that in a real Hilbert space (H,{ , ),|| ||) a finite
number {Ci}2, of closed conver sets are given, with C* =
N, Cy # 0. Starting from some point x, in H, construct a sequence {xk}gzof)
in the following manner : when xi has been found, put
Up1 = T+ M1 Y, prr () (Pyw — wp),
J€Ik+1

where Ji11 and pg41(7) fulfill the conditions mentioned in (Control 1) and
(Control 2), and with A1 given by

S jediss M1 (9)l|zk — Pyl

||zs — Zjejk+1 ,uk+1(j)le'k||2

Put x1 =vy. For k=1,2,... compute o = (Tf—1 — Uk, Vg1 — V). When
ap <0, take 41 = vg1. When ay, > 0, compute

A1 =

Br. = ||vk — zp-1]?,

Ve = ||vks1 — il

Gk = By — o,
and put
2
QRVk a
Thy1 = U1 + (vk — Th—1) + L (Vg1 — T)-
Ck Ck

Then the sequence {mk}zzo?) is weakly convergent to a point in C*.
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The technical development of the procedure itself is going on in a Hilbert
space (H, ((, ), ||| [||) associated to (H,(, ),|| ||). The association of
a new Hilbert space H to the given Hilbert space H, leading to a trans-
formation of a parallel iteration method for finding a point in C* C H to
a semi-sequential iteration method in H goes back to Pierra [16] for fixed
weights and for 7 = m, and has been extended for variable weights in [11]
and [8] (again, only for the case r = m or, what is the same, for Jy; 1 = J
for all k).

The paper is organized as follows. In Section 2 we describe the construc-
tion of the associated Hilbert space ‘H and the corresponding subsets in it;
this description is an adaptation of the one appearing in [8], but is given
here in its adapted form for the sake of readers’ convenience. In Section
3 we construct the transformed sequence {Zj}{20 in H of the wanted se-
quence {z} }} 20 in H, using geometrical conditions for the determination of
the relaxation parameter and for the position of the current iteration point
Zg. Finally, in Section 4 we show weak convergence of the sequence {xk}zi%
in H to a point of C*.

2. The associated Hilbert space H

Let H be a real Hilbert space with inner product ( , ) and norm || ||
derived from (, ). Suppose that in H m closed convex subsets {C;}i%;
are given with nonempty intersection C* = N, Cy; let J = {1,2,... ,m}.
In order to find a point in C* in an iterative manner, use will be made of
a parallel computer with r processors, with » < m. Assume that, during
the iteration process, we obtain at step k£ (k =0,1,...) a point xj, (starting
from some given point z), and that to obtain the next iterate xp,1 we need
an ”intermediate” point vgi1 by using r sets among the m sets {C;}{";.
Denoting for short by Jxy1 (k = 0,1,...) the subset of J consisting of
the 7 indices determining the r sets (C})jes,., used to obtain vy from
xy, and denoting by Pjzj the shortest distance projection of zj onto the
corresponding set C for j € Jiy1, assume that vy4q is given by

Ukt = Tk + Mg Y, prrr () (Pjay, — 1), (3)
T€Ik+1

with Ag41 a (variable) positive relaxation coefficient and with {sx41(5)}jes,.,
a set of r (variable) nonnegative weights (i.e., pg41(j) > 0 for each j, and
Y jedein pr+1(j) = 1). We investigate this intermediate step in a newly de-
fined Hilbert space ‘H, the construction of which is described now.

Consider the closed interval [0,1] with its Borel measurable sets and with
the corresponding Lebesgue measure m. When H is made into a measurable
space by considering the Borel measurable sets corresponding to the norm
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topology on H, let £(]0,1], H) be the set of all measurable functions from
[0,1] to H, and denote by L2([0,1], H) the set of equivalence classes in
L([0,1], H) of functions ¢ in £([0, 1], H) such that

llell? = [ llotoPam(e) < oc. (@

Putting, for functions ¢ and ¢ in £(]0, 1], H)

(o = [ (ott), wlem(s),

we obtain that L2([0, 1], H) is a Hilbert space with norm ||| ||| derived from
the inner product ((, )). This space L%([0,1], H) is our new Hilbert space
associated to H; it will be denoted for short by H.

For i = 1,2... we denote by (J;, ;) the set J; endowed with a (prob-
ability) measure p; such that p;(j) > 0 for j € J; and 3-;c; pi(j) = 1.
These nonnegative numbers denote the weights used in (3) to obtain v; from
xi—1. Suppose that for some fixed i € {1,2,...} we have a set {1;(j)}je,
of nonnegative weights. Denoting the indices in J; in ascending order by
{i1,...,4,}, let then T; be the function from (J;, i;) into the set of subsets
of [0,1] defined as follows

1;(i1) =10, pi(ir)],
and, for j =2,3,... ,r

Ti(i5) =Jpi(in) + -+ pi(ij—1), pilin) + .. + pa(i5)]-
Together with the singleton number {0}, the sets T;(i;) (j =1,... ,r) form
a disjoint covering of [0,1]; as some of the numbers p;(i;) may be zero, some
of the sets Tj(i;) may be empty.

A first important subset of H, denoted by D, consists of the set of equiva-
lence classes which correspond to constant functions in £([0, 1], H). D may
be obtained by the natural imbedding ¢ : H — H, which associates to each
v in H the element ¢(v) in H defined by ¢(v)(t) = v for all ¢ € [0,1]; as
such, D = ¢(H). It has been shown in [8, Lemma 1] that D is a closed
linear subspace of H.

The other important class of subsets of H is defined as follows. Suppose
that at a fixed step ¢ (i = 1,2,...) in the iteration (3) use is made of the
sets {C}jes, and the weights {1;(j)} e, and as above let J; = {i1,... ,i,}.
Whenever we choose an element v;; in each set Cj,(j = 1,... ,7), we may
define a function ¢’ : [0,1] — H by putting ¢*(t) = v;;, for all t € T;(i;), and
by letting ¢’(0) be that chosen element v;_ in C;, with the smallest index
s € {i1,ia,... ,i,} such that T;(is) # (. Hence, ¢’ is a piecewise constant
function defined on [0,1], with values lying in some or all of the chosen
sets {C; };7:1; clearly, ¢ € H. Considering the set of all such functions
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¢ as explained above, for fixed i (and hence for fixed J; and for fixed
{Ci;}j=1), for fixed {u;(i;)}7_, and for all possible choices of elements v;;
in the corresponding sets {C'; };7:1, we denote the set of equivalence classes
of these functions in ‘H by F 1{: Analogous as in [8, Lemma 2| it may be
shown that each set F;{f is a closed convex subset of H.

For given v in H,q(v) is a point in D C H. For fixed i, fixed J;, fixed
{C}}jer, and fixed {u;(j) }je;» the point g(v) may be projected onto the set

F uJ:' Denoting the corresponding projection by P, [g(v)], this projection
o

point is a piecewise constant function on [0,1], takiné on the subintervals of
[0,1] determined by weights {1;(j)} e, a constant value in the sets {C}};c,.
As in Proposition 1 in [8], it may be proved that these constant values
(otherwise said, the ”components”) of PF;.L]?- [q(v)] are given by {P;(v)}je,

(where Pj(v) denotes the projection (in bif ) of the point v onto the set
C; for j € J;). In the same manner (cfr. [8, Proposition 2]), when a
function ¢ € F !;7; is given, and this function has components {w;};es, in
the corresponding sets {C}};jcs, in H, then Pp(y) is the image under the
natural imbedding ¢ of H in H of the point 3=, ;. pi(j)w; in H; ie.,

Pp(e) = q(d pi(j)wy).

JEJ;

We now have the necessary equipment to interprete the intermediate
iteration step (3) in H as a corresponding step in H. When vy is obtained
from z in H as in (3), which implies that sets {C}}je,,,, and values
Met1 and {px41(j)}jer,,, are given, we can form the transformed point
T = q(xg) in ‘H of g in H; from Ty a point vx11 in H may be obtained in
two steps:

yﬁl =z, + >\k+1(PFJk+1 (ﬁ) - @)v (5)
Fr+1
Uk+1 = Pp(Ykt1)- (6)

Then v is precisely the image under the imbedding ¢ of the point vg 1
given by (3); i.e., vg11 = q(vg41)- The interesting part of course is that,
conversely, the steps ((5) + (6)) in H may be used to determine values of
Aet1 and {pp41(4) e, for instance by imposing geometrical conditions
in H, and that vy in (3) is then determined by vy 1 = ¢ (vps1). We
finally remark that the result of obtaining vx1; from zy as in ((5) + (6))
also may be written in one step, namely

Uﬁl =+ )\k+1(PD(PFJk+1 (@» - ﬁ) (7)
P41



AN ADAPTIVE PARALLEL PROJECTION METHOD 275

3. Construction of the adapted sequence in ‘H

Let ‘H be the Hilbert space with inner product ((, )) and norm ||| |[||
derived from ((, )), introduced in Section 2, with the closed linear subspace
D and an uncountably infinite family of closed convex sets (Fl{“‘j )weq- For
the moment, the explicit choice of the subsets J,, C J and of the weights
{1 (J) }jes, is not involved ; hence, for notational reasons we denote these
sets momentarily for short by {F, },cq. We know that in the original Hilbert
space H the set C* = N2, C} is nonempty, and that ¢(C*) C DN (NyeaFlL).
Hence, we act as if we want to obtain, in an iterative manner, a point in
D n (NyeaFw). Denote by Pp and Pg, the shortest distance projection
operators in ‘H onto D and F},, respectively.

Let {Z,} be a given starting point for a sequence {z,, }./20 in D, and choose
a set I} among the sets (F,),cq- At the projection point P, T, of T, onto
F there is a supporting (also called tangent) hyperplane in H, denoted by
P1, that intersects D along a hyperplane S; of D. On the halfline in H
emanating from z; and going through P, g we choose a point g1 such that
the projection of 77 onto D, denoted by 771, is a point of S7. As 77 is given
by

Y1 = Zo + M (PR Zo — Z0) (8)
for some suitable positive relaxation coefficient A1, the point vy is given by
01 = 20 + M (Pp(Pr Z0) — o). 9)

We put 7 = 07. It is easy to check that, for any point Z in Sp, the vector
U1 — & is orthogonal onto the vector v — .
Denoting for an ordered pair (a,b) of different points in D

S(a,b) = {w e D: ((w—bb—a)) >0}, (10)

S(a, I;) is a closed half-space of D, and b is the projection of @ onto S(a, 13)
Hence, in our construction we can say that S; is the ”border line” of
S(zp,v1), and 7 is the projection of xy onto S(zp,v1). Besides, due to
the manner in which 07 has been constructed we know that

DnFy c S(zo,01). (11)

Choosing another set Fy in {F,, },cq, we construct from z; = 07 a point
v2 in D in an analogous manner as given by (8) and (9). Hence

U3 = 71 + \(Pp(Pr,71) — 71), (12)

and A9 is determined such that T3 belongs to the intersection Sy of D and the
hyperplane P, of ‘H supporting the set F» at the point Pg,z7. Analogously
as above we can say that Ss is the "border line” of the half-space S(z1,02)
of D.



276 G. CROMBEZ

In view of our aim to reach a point in DN (NyeqF., ), and of (11), we want
that the next iteration point 73 of the sequence {7, }>} that we want to
construct should belong to S(zg, v1). Hence, when ((zo—v1,v2—01)) < 0,02
is a point that belongs to S(zg,v1) (intuitively, it is "on the good side” of
S1), and in that case we take T3 = U3. However, when the condition about
Vg is not true, i.e., when ((zo — 01,02 — 07)) > 0, we take as next iteration
point Z3 a point in the intersection of S; and So. An explicit description of
how 5 is constructed will be given in the general procedure further on.

AAAAA —m— T~~~
In a general manner, when g, v1,T1,v9, T3, ... Up_1, Tp_1, Uk, T have al-
ready been obtained, we first determine 03,41 by
—_— — — —~
Uk+1 = Tk + M1 (Pp (PR, k) — Tk), (13)

for a suitable value of A\, such that v, belongs to the intersection Sy 1
of D and the hyperplane Py1 of H supporting the set Fj,1 at the point
Pp,,, T When ((Zj_1 — U, Ug41 — Uk)) < 0, put Tp41 = Upp1. Otherwise,
take as Ty, a suitable point in the intersection of the hyperplanes S and
Sky1 of D. In this way the sequence {@}zzo‘é in H is constructed.

The suitable value A;y1 such that the condition stated in the lines fol-
lowing (13) should be true, may be derived from [10, Lemma 1]. Adapted
to our notation, this value is given by

11 Pry ., T — Tk |2

11Pp (Pri . Tk) — Zal|*

The determination of 3,1 when ((Zr_1 —Up, Ur+1 —Ug)) > 0 is described
in the following procedure.

Ak+1 = (14)

Procedure to determine 77,1 :
Suppose that

—

ap = ((Th—1 — Uk, U1 — Ug)) > 0.

Put
Br. = |||or — Te_1l|?
Ve = |||Ok41 — Tkl []?
Gk = Bk — o}

Then 73,41 is determined by
2

Thrl = Upl + —— (U — Tp_1) + £ (Vps1 — ZTh)- (15)

Ck Ck

Indeed, a straightforward computation shows that

——

((ZTr41 — Vpt1, U1 — Tp)) = 0 (16)
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and
{((Th1 — U, Uk — Tp_1)) = 0. (17)

Hence, Tp11 belongs to the intersection of the hyperplanes Sy, 1 and S, of
D. As also x belongs to Sk, we also have

(T — T % — TR)) = 0. (18)

From the determination of Tj,1 in the case that Zp,; # Ups1 several in-
equalities may be derived, which will be needed in the sequel. We discuss
them now.

We first remark that, when convergence of the sequence {@}gﬁ% has
not yet been obtained at step k + 1, we not only have that «; is strictly
positive (by assumption), but that also 8y and ~; are strictly positive. Also
Cr is strictly positive (from which it follows that 7,1 in (15) is always
well-defined); indeed, as we also have ay = (Tp_1 — Up, Ukr1 — Zh), and
due to the Cauchy Schwarz inequality, {; = 0 would imply that the half-
spaces S(7x_1,vr) and S(Zg, Ur+1) have an empty intersection; but this is
impossible as the nonempty subset D N (NyeqFi,) should be part of both
S(zx_1,0%) and S(Ty, Urr1) by construction. We know by construction that
Dn (ﬂf:llFi) is a subset of the intersection of the half-spaces S(Ty_1,Ur)
and S(Z, Up11)- In particular, for any 2 in DN (NFHE) we have, due to a
well-known property of projections

((2 = V1, kg1 — Tk)) 20 (19)
and
(5 — T, O — T 1)) > 0. (20)

Using (16) we obtain that for such 2

—_——— —_——

((2 = Tha 1, Upt1 — Th)) = ((2 = Vb1, Dkt 1 — Tk))
and so, using (19) we obtain
((2 — Tpa1, Okt — k) 2 0. (21)

Analogously, using (17) we have

— —

((2 = Thp1, 06 — 1)) = ((£ = Ok, O — Tp—1))
which, in view of (20), leads to
((2 = Zpr1, 0 — T-1)) 2 0. (22)

Using these inequalities we can prove the following result, wich will be
crucial for the convergence of the sequence.

Proposition 1. For any Z in DN (ﬂfillFi) we have
((2 = Tpg1, Teg1 — 7)) 2 0. (23)
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Proof. We have to consider two cases, depending on the fact that z;,; and
Upy1 either are different or coincide.

In the case that Ty 1 # Ups1, we replace in the second half of the inner
product (23) the term Ty, by its expression (15). This leads to

——

((2 = Tpy1, Thg1 — T1))

— ALYk — —

= ((£ = Zpq1, Up1 — Ti)) + ?«Z — Tpq1, Ok — Th—1))
ol o
+ a«z — Tpq1, kg1 — Th))s

and each term on the right-hand side is nonnegative, due to (21), (22) and
the strict positivity of the quantities oy, Vg, (-

In het case that T, = Upt1,Zr41 is the projection of zj onto the half-
space S(Tk, Tr11), and D N (NFHE) is by construction a subset of that
half-space. Hence, again using a property of projections, we see that also in
this case the inequality (23) is true. O

Considering the complete sequence {Ty }2':“6 we can restate Proposition 1
in the following form.
Proposition 1°. For any z in D N (N2, F;) we have
({5 — Ermn, i — ) 2 0 (23)
forallk=0,1,2,....

As a consequence of Proposition 1’ we can derive the following results.
For each point 2 in D N (N2, F;) we have

~ 2
[lzn = 2]l
= [|Zn = Zailll® + Zns7 — 211° + 2((&n — T3, Tyt — 2)),
which, due to (23), leads to
|||$7ﬁ2\|\22HI@*@H\QHII@*ZAIHQ- (24)
This implies that the sequence {|||7, — 2|||},;%, is a descending sequence

of positive numbers, and so it converges to some limit, say d(2). As also
|||Znt1 — 2]|| — d(2) we derive, again from (24), that

||z — Zni1l]| — O for n — +o0. (25)

In view of (16) we know that the vectors T 1 — Up11 and Uy — T}, are
mutually orthogonal (this is true in particular when Zp,; = Up;1). The
Pythagorean theorem leads to

l1zx =zl = 11z — ortll® + o — Zealll?,
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from which we deduce, in view of (25), that
177 — Tl — 0 for k — oo, (26)

As Up11 belongs to the hyperplane Py, of H that is orthogonal to 7} —
Pp, ., 7y, again applying the Pythagorean theorem gives us

1125 — Ot ll* = 17k — Pry Zall* + 1| Prys, T — O],
and using (26) we may deduce
117 = Priy, @l||* — 0 for k — +oc. (27)

From the fact that the sequence {|||z,, — 2[||},;5 is descending we also
conclude that the sequence {7, }% is bounded; indeed, for any £ in D N
(N2, F;) we have

znlll < Wz = 2[I1 -+ (2] < [llZo = 21 + [[2]1]

In order to determine completely the sequence {ﬁ}fg:o% in H, we now have
to clarify how the corresponding subsets Ji+1 C J and the corresponding
weights {px41(4)}jer,,, may be chosen.

As our original aim is to find a point in C* = N* ; (4, it is clear that each
set C; should be involved an infinite number of times while constructing the
sequence {zy } 25 (or {T5}{29).

An easy way to express this, while still leaving some flexibility, is given
by the following control strategy.

(Control 1). There exists some positive integer M such that, for each
nezZt

M—-1
J C Ui—o Jntks

i.e., all the sets {Cy}2, are selected at least once within any M consecutive
tterations.

In order that at step &+ 1 the sets {C}} e, , really should be activated,
the corresponding weights may not be zero. Again using an easy way leaving
enough flexibility leads to the following second part of the control strategy.

(Control 2). For some positive number 6,0 < § < 1/r, when at step
E+1(k=0,1,...) the subset Jy11 C J is involved, and hence also the

sets {Cj}jes,., and the weights {pr41(7)}jes, ., take pgy1(j) > 0 for each
J € Jit1; only when xy, € Cj we may take either py11(j3) = 0 or pg1(j) # 0.

The results obtained above in this Section and involving the notation
Fyy1 or F,,, may now be rewritten using the respective notations F,{:ﬁ

and F;{S’§ this is straightforward. At this moment only two of them will be
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mentioned explicitly, as they connect results in H and H. As we know from
[8] that

1Tk — PP = mrea ()llzr — Pyl

Hk+1 JE€Tps1
and
||lzx — Pp(P, Jk+1$k)m =lzx = > prrr ()Pl
ME41

7€Ik+1

the expression of A\;41 in (14) may be given using distances in H, while from
(27) we derive that

Z 19| — Pjrg|[> — 0 when k — +o0. (28)
JE€Jk41

4. Convergence of the sequence in the original Hilbert space

From the sequence {z, }XZO‘(’) in the associated Hilbert space H, constructed
by choosing the sets and the weights as described in Section 3, we get the
sequence {xy}{ 25 in the original Hilbert space H by putting z = ¢~ ().
We have to show that this sequence {xk}:;’% is weakly convergent to a point
in C* =N~ Cy.

For given vectors = and y in H with images ¢(x) and ¢(y) in D C H we

|

know from [8] that ((¢(z),¢(y))) = (z.y), and [||g(z) —q()|l| = ||z —y[|. In
particular, for the sequence {$k};§) in H we know that

||z, — xpt1l] — 0 for n — 400 (29)

(from (25)), that the sequence {zy}; 25 is bounded, and that for each point
z in C* the sequence of positive numbers {||z,, — 2|}/ is convergent to
some limit denoted by d(z). Using the above facts, we first show that the
sequence {xk}ko‘é has a subsequence that weakly converges to a point in
C*

Let i be a fixed index in J = {1 .,m}. As i is involved an infinite
number of times, the sequence {zy}; 2 has a subsequence, that we denote
by {zi}12, with corresponding Subsets Ji, < J and weights {u,(5)};e
such that i € J), and p;, (i) > & (for this last fact, except possibly when
xl € Cj, ie., when Px!, = z!, in which case we may put p! (i) = 0). As
the sequence {xk} o is bounded the subsequence {z¢ };79 is also bounded,
and so it contains a subsequence that we denote by {xn 1199 such that

this subsequence {xnp ;ZOT is weakly convergent to a point a* € H. In view

of (28) and of the choice of ,uflp (i) we have that

p=0D

)
[

- Pla:;pH — 0 when p — o0, (30)
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+o0
K pJp=1
weakly convergent to a'. But the closed convex set C; is also weakly closed,
and so a’ € C;.

Let now j be any index in {1,... ,m},j # i. Within any M iterations
after (and including) the iteration that gave us the point xflp, the index j
is involved at least once. Picking within each such M-iteration one element
of the sequence {xk};zog for which the index j was involved, we obtain a

;ZOC{; for each index m,, there exists an index n,, such that

and this in turn immediately implies that also the sequence {P;z?, is

subsequence {xi'np}
n, < my, < n,+ M — 1. For this subsequence {minp };:“f we have analogously
that

||xﬁnp - ijﬁnPH — 0 when p — +o00. (31)
As we may derive from (29) that
li — =0
k'—EPoo |[zkt0r — k]| )

we conclude in particular that

il 2, =0. (32)
The above analysis allows us to prove that also the sequence {ij;np ;:f

is weakly convergent to the above-mentioned point a’. Indeed, for any b € H
we have

[(Pjz},, —a',b)| < |(Pjz), — b, ,0) + |(x], — =i, ,b)| +[(x}, —a',b)|,

and each term on the right-hand side is convergent to zero when p — +o0,
respectively by (31), by (32), and by the fact that {z? }1°5 is weakly con-

. . np p:1
vergent to a'. We conclude in particular that o' € C}, as each element
ijinp belongs to Cj. As this is true for any index j in {1,... ,m}, we may

conclude that a’ € N C; = C*.
We may resume the foregoing in the following lemma.

Lemma 1. With the choices of Jyy1, {pk+1(J)}jes, and Mpy1 for all k =
0,1... as mentioned, respectively in (Control 1), (Control 2) and (28), the
sequence {xk};:“(’) has a subsequence that weakly converges to a point in C*.

We remark that the foregoing arguments may also be used to show that,
whenever a subsequence of {wk}::s is weakly convergent to a point a € H,
the weak limit a belongs to C*. So we may state

Lemma 2. The weak limit of any subsequence of {xk};:f’% that weakly con-
verges, belongs to C*.
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To obtain the result that the sequence {z) }5 itself is weakly convergent
to a point in C*, it is now sufficient to show that each weakly convergent
subsequence of {xk};if) is weakly convergent to the same point a. So, let us
suppose that there exists subsequences {zy, }zzo‘(’) and {z,,, }:,OZOO, converging
weakly to points a and a’ respectively. Due to Lemma 2, both a and o
belong to C*. For k € ZT we obtain

len, — a'|]* = llzn, —all?

=(vp, —a+a—d,z, —a+a—d)— ||z, —al?
which, after expanding the inner product, leads to
|2, —d'[|? = llzn, —all® = 2an, —a.a—d) +|la—d[  (33)
Similarly, for k' € Z+ we get
|20, — all® —[lzn,, —d|* = 2(zy, —d',d" —a) +|la —al”.

(34)

As remarked at the beginning of this section, the sequences {||z,,—al|};725

and {||z, —a'||};125 are both convergent with respective limits d(a) and d(a’).

In particular, we get

lim_([lzn — al| = ||z — o'l| = d(a) — d(a’). (35)

n—-+o00

Taking in (33) and (34) the limit, respectively for & — +oo and for
k' — 400 we obtain, in view of (35)

d(a')? = d(a)* =0+ [la — d'|[?,
and
d(a)? —d(a')* = 0+ [la' — a||?,

from which we conclude that a = a/. Hence the result, leading to Theorem 1
as stated in the Introduction.
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