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Abstract. In the paper we consider nonlinear, nonoscillatory controlled
objects of second order. Main Theorem affirms that for these controlled
objects there exist (in the controllability region) the time-optimal synthesis
of Feldbaum’s type. In the beginning of the paper, Felfbaum’s n-interval
Theorem is proved for linear controlled objects of n-th order with real eige-
nvalues (and without the requirement that the eigenvalues are pairwise di-
stinct).

1. Introduction. First results in mathematical theory of optimal con-
trol were obtained by A. Feldbaum [3], [4]. He considered linear controlled
objects of the form

z = Az + Bu, (1)
where x € R"™ is a column-vector named the state of the object, A is a
constant n x n matrix with real, distinct eigenvalues, B € R"™ is a constant
column-vector, and wu is the control that runs over the segment [—1, 1]
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(or, what is unessential, over a segment [—f, f] with constant, positive f).
For this object he solves the time-optimal problem which requires to find
a control uw = u(t) transiting a given initial point zy to the origin in the
shortest time.

In [3], Feldbaum investigates the system

it =22 i =u, —1<u<l, (2)

i.e., the linear controlled object (1) of the second order with the matrix

(1)

For this object, he proves: For every initial state zg € R?, there exists an
optimal control transiting xy to the origin; this optimal control is uniquely
defined, takes only the values 41, and has no more than one switching (i.e.,
no more than two intervals of constancy).

Feldbaum’s reasoning is short and elegant. We sketch it here. To brevity,
denote a vector-column z € R? with coordinates z!, 22 as (z!, 22)7, i.e.,
as transposed row-vector. Let (z!(t), 22(t))?, to < t < t1, be the trajectory

connecting zg = (a', a®)?" with the origin and satisfying the conditions

:'EQ(t)E—l as tp<t<o, jJQ(t)El as o <t<t

(if :'v2(t) is equal at first +1 and then —1, the reasoning is similar). The
graph of the function z?(t) = il(t) is the union of two segments [Ag, A,]
and [A,, A1] with tangents —1 and +1 correspondingly. Assume that
there exists an another process y(t) = (y'(¢), ¥2(¢))T, to <t < 0, with the
same endpoints y(ty) = zg, y(#) = 0 and the same restriction |y2 )] <1
which is more quick than z(¢), ie., § < t;. For 0 < t < t1, we put
y'(t) = y?(t) = 0. Then both the processes are defined on the same segment
[to, t1]. The graph of y2(t) cannot intersect the segment [Ag, A,] at a point
distinct from Ap (otherwise the restriction |y?(t)] < 1 would be broken).
Similarly, the graph of y%(t) cannot intersect the segment [A,, A;] at a
point distinct from Aj. In other words, the graph of 3?(¢) is situated on
one side of the graph of x2(t), i.e., the difference 2%(t) — y?(t) keeps the
same sign on the whole segment [to, ¢1]. Consequently,

(@)~ 00) = @A 00) = o 00)) = [0~ o)
= [ @0 - po)a 2o,
contradicting z'(¢o) = y'(to) = a1, ' (t1) = y'(t1) = 0. O

We remark that for any initial point zq € R? there is a unique phase
trajectory going from zg to the origin and corresponding to a control with
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two intervals of constancy. By Feldbaum’s reasoning, these and only these
trajectories are optimal, i.e., this reasoning gives a necessary and sufficient
condition of optimality.

Generalizing these arguments, Feldbaum established in 1953 the following
result (for the proof, see Supplement 1 in [4]):

FELDBAUM’S n-INTERVAL THEOREM. Assume that the eigenvalues of
the controlled object

T =z x =z, .., =" &' =—ax" —...—apz' +u,
ul<1 (3)

are real and distinct. A control transiting xo € R™ to the origin is optimal
if and only if it is piecewise constant, takes only the values uw = +1, and
has no more than n intervals of constancy.

We remark that under the condition that the eigenvalues are real, this
result is equivalent to the maximum principle.

With his n-interval Theorem, Feldbaum solves the problem of synthesis
[5] for time-optimal trajectories. Let z(t), —o00 < t < oo be a trajectory
of (3) with u = +1. The part of this trajectory for —oo < t < @ is said
to be the semitrajectory with the endpoint x(0) for the control v = +1.
Similarly a semitrajectory for the control u = —1 is defined. Denote now

by S’,(LH the semitrajectory of (3) for v = +1 with the endpoint at the

origin. Furthermore, by ST(L__)l denote the union of all semitrajectories for

= —1 with endpoints belonging to S,(LJF). Next denote by S,(Lt)2 the union

of all semitrajectories for u = +1 with endpoints in Sﬁb__)l, etc. At last if n
(=)

is even, S} 7 is the union of all semitrajectories for v = —1 with endpoints

in S§+) and if n is odd, SYL) is the union of all semitrajectories for u = +1
with endpoints in 5’57).

)

Thus if n is even, we can start from any point zg of the last ”cell” Sf_
and pass along the ” cells” S§+), 7(;)1’ 7(L+) until the arrival to the origin.
We obtain a phase trajectory for (3) with u = +1 that contains n intervals
of constancy. Similarly for odd n.

Certainly we have obtained in this way only one-half of trajectories cor-
responding to controls with n intervals of constancy, since only the controls
with the last part ©w = +1 were considered. Thze §econd half of trajecto-

ries can be obtained analogously: we denote by Sy ’ the semitrajectory for

u = —1 with the endpoint 0, by Sf:)l the union of all semitrajectories for

u = +1 with endpoints in S;L_), by 5’7(1__)2 the union of all semitrajectories

for w = —1 with endpoints in Sff_)l, ete.
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In the union of all the "cells”, the synthesis of optimal trajectories is
realizable and this union is the controllability region, i.e., the set of all points
which can be transited to the origin. Thus for real and distinct eigenvalues,
Feldbaum gave a necessary and sufficient condition for optimality and also
a solution of the synthesis problem.

Later on a complete proof of m-interval Theorem for real eigenvalues of
the matrix A, without the assumption that they are distinct, was esta-
blished (see, for example, [6]). In this paper we give another proof.

We remark that for n = 2, the object (1) with real eigenvalues of A is
nonoscillatory. In the second part of the article, we generalize n-interval
theorem for nonlinear nonoscillatory objects of the second order. This gives
a solution of the synthesis problem for a class of nonlinear objects.

2. Linear controlled objects. In the sequel, we assume that the vector
B € R" is not situated in any proper invariant subspace of A, i.e., the
vectors

B, AB, ..., A" 'B (4)

are linearly independent. In this case, the maximum principle is a neces-
sary and sufficient condition for time-optimality (regardless A has real or
complex eigenvalues). More detailed, consider the conjugate equation

b = 1A, (5)

1 being a row-vector. Let t(t) be a nontrivial solution of (5) and wu(t),
to <t < t;, be an admissible control (i.e., —1 < u(t) <1 for all ). The
control u(t) satisfies the mazimum condition with respect to ¥(t) if

(¥(t), Bu(t)) = _Ilga)élw(t), Bu) almost everywhere on [to, t1].  (6)

The maximum principle affirms that a process z(t), u(t), to < t < t1,
transiting a point xy to the origin, is optimal if and only if w(t) satisfies
the maximum condition with respect to a nontrivial solution of (5).

Let wu(t), to <t < t1, be an admissible control satisfying the maximum
condition (6) with respect to a nontrivial solution %(t) of the conjugate
equation (5). We recall that the control u(t), to <t < ti, is defined uniquely
by %(t), takes only the values +1, and has a finite number of switchings.
(For definiteness, here and in the sequel we assume that u(t) = u(t+0) at
every point t < t1.) If the matrix A has complex eigenvalues, the number
of the intervals of constancy can be arbitrary big (as the interval [tg, ¢1] is
large enough). But for real eigenvalues (as n-interval theorem affirms), the
number of the intervals of constancy is not grater than n. To establish this,
we recall the notion of a quasipoiynomial and prove auxiliary propositions.
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A function f(t) is a quasipolynomial if it can be represented in the form

F(t) =pr(t)eM + .+ pr(t)e, (7)

p1(t),...,pr(t) being polynomials. We consider here only the quasipolyno-
mials with real, distinct exponents Aq,..., \x and real coefficients of all the
polynomials p;(t), ..., pr(t). If m; is the power of the polynomial p;(t), i =
1,...,k, the number mi + ... + my + k is said to be the weight of the quasi-
polynomial (7).

Lemma 1. An arbitrary nonzero quasipolynomial f(t) of the weight m
with real exponents and real coefficients has less than m roots (i.e., the
equation f(t) = 0 has less than m real, distinct solutions). If f(t) has
m —1 real, distinct roots, then f'(t) #0 at any its root, i.e., f(t) changes
sign at each its root.

Proof. Every nonzero quasipolynomial of the weight 1 has the form f(¢) =
ceM with ¢# 0. Since A and ¢ are real, this quasipolinomial has no roots
and this is the beginning for induction.

Assume that Lemma 1 holds for the weight m — 1 and prove it for the
weight m. Admit on the contrary, that a nonzero quasipolynomial (7) with
the weight m has m (or more) roots. We can assume that each of the
polynomials pi(t), ..., px(t) is nontrivial (i.e., at least one of its coefficients is
nonzero) and all the exponents A1, ..., Ay are distinct. The quasipolynomial

g(t) = f(t)e M = pi(t) + pa(t)eP2 M 4 pr(t)ee M

also has m (or more) real roots. Consequently its derivative ¢'(¢) has no
less than m — 1 real roots. This derivative has the form

g’(t) = p'l (t) + q2(t)e(z\2—/\1)t ot (t)e(’\k_’\l)t,

where every polynomial ¢;(t) has the same power m; as p;(t), i = 2,..., k.
Hence the weight of the quasipolynomial ¢(t) is equal to m —1 (indeed, if
my > 0, then p)(¢t) has the power my; — 1 and if m; = 0, then p/(t) =0,
i.e., the number of exponents in g(¢) is equal to k — 1). Thus g(¢) is a
quasipolynomial of the weight m — 1 with m — 1 (or more) real roots,
contradicting the inductive assumption. This completes the proof of the
first assertion of the Lemma.

Assume now that f(¢) has m —1 real roots 0 < ... < 6,,—1. Then g(t)
has the same roots and hence ¢'(t) has a root in an interior point of every
segment [0;, 0;,11], i = 1,...,m — 2. If moreover f'(f;) = 0 for an index
k, then ¢'(6x) =0, i.e., ¢'(t) has m — 1 real, distinct roots, contradicting
what was proved above. O



6 V. BOLTYANSKI AND S. GORELIKOVA

Lemma 2. Let U(t) be the matriz solution of the equation W(t) = — WU (t)A
with the initial condition W(0) = I, where I is the identity matriz. Then
for tg < 01 < ... < 0,_1, the vectors

U(to)B, W(61)B, ..., U(6,_1)B (8)

are linearly independent.

Proof. Assume that the vectors (8) are linearly dependent, i.e., there exi-
sts a nonzero row-vector ¢ = (cp,c1,...,cp—1) such that ¢¥(¢t)B = 0 for
t = to,01,...,0,—1. In other words, the function c¥(¢)B has n real ro-
ots to,01,...,0,—1. But the row-function (t) = c¥(t) is a solution of the
equation (5) with the initial condition (0) = ¢. Hence ¢¥(¢)B is a qu-
asipolynomial of a weight no greater than n with n real roots. Therefore
it is equal to zero identically (by Lemma 1), i.e., (c¢¥(¢), B) = 0. Conse-
quently its derivative also is equal to zero identically: (c(—V(¢t)A), B) =
0, i.e., (c¥(t), AB) = 0. Taking the derivative once more, we obtain
(c¥(t), A2B) = 0 etc. Thus (c¥(t), APB) = 0 for p = 0,1,....,n — 1,
i.e., the row-function v (t) = ¢V (t) is orthogonal to every vector (4) for any
t. Since the vectors (4) are linearly independent, we conclude 1 (t) = 0,
contradicting ¢(0) = ¢ # 0. O

We now establish n-interval theorem (without the assumption that the
eigenvalues are distinct).

Theorem 1. Assume that the eigenvalues of the matriz A are real. Let
z(t), u(t), to < t < 1, be an admissible process for the controlled object
(1), |u| < 1, transiting an initial point xy = x(ty) to the origin. This
process is optimal if and only if the control u(t), to < t < t1, is piecewise
constant, takes only the values +1, and has no more than n intervals of
constancy (i.e., no more than n — 1 switchings).

Proof. First establish the part ’only if’. The matrix —A has real eigenva-
lues. Hence for any solution () = (¢1(¢),...,1n(t)) of (5), the function
blepy(t) + ... + ™, (t) is a quasipolynomial of a weight m < n with real
coefficients and real exponents.

Let now xz(t), u(t), to < t < 1, be an optimal process. Then wu(t)
satisfies the maximum condition with respect to a nontrivial solution 1 (t)
of the conjugate equation. The scalar product

(W(t), Bu) = S O = (Ba(t) + o+ 60 D))
i=1
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is a linear function of the variable u € R'. By (6), u = sign (bl (t) + ...
+b"1),(t)). Under ’sign’ we have a quasipolynomial of a weight < n. Accor-
ding to Lemma 1, the number of switchings (i.e., the number of real roots
of the quasipolynomial) is less than n.

We now prove the part ’if’. Let x(t), u(t), to < t < 1, be a process
transiting a point zy to the origin such that the control w(t), top <t < t1,
is piecewise constant, takes only the values 41, and has switching points
01,....,0, € [to, t1], p < n. For definiteness, assume that u(t) = +1 as
to < t < 6y, further on u(t) = —1 as 61 <t <0y ete. If p<n-—1, we
choose arbitrary points 0,41,...,0,—1 with t; < 0,11 < ... <0p_1.

Denote by TI' the hyperplane spanned by all the vectors (8) except for
U(tg)B and by ¢ the row-vector orthogonal to this hyperplane with
(¢, U(to)B) = 1 (by Lemma 2, this is possible). Then (¢¥(6;), B) = 0
for i = 1,...,n — 1, i.e., the quasipolinomial f(t) = ¢¥(¢)B has the roots
01,...,0n_1. Moreover, f(ty) = ¢¥(t9)B = (¢, ¥(tp)B) = 1. Since f(t)
changes its sign at every point 6;, i = 1,....,n — 1 (by Lemma 1), we have
f(t) >0 as t < 0, further on f(t) < 0 as 6; < t < Oy etc. In other
words, u(t) = sign f(t) = sign (¢¥(t), B), i.e., u(t) satisfies the maximum
condition with respect to the nontrivial solution (t) = ¢¥(t) of (5). Con-
sequently by the maximum principle, the considered process is optimal. [

3. Optimal synthesis for nonoscillatory, nonlinear controlled
objects of second order. Under a condition of nonoscillation (defined
below), we describe here the synthesis of time-optimal trajectories for a
nonlinear controlled object

where y is a scalar variable. In phase coordinates z! = y, 22 = § the
object (9) is described by the system

it = 22, i’ = f(zt, 22, u), —-1<u<l. (10)

In the sequel, we assume that f has continues derivatives with respect

to z!, 22 and

f(07 07 1) > 0> f(07 07 _1) < Oa (11)

f(z!, 2%, u) increases with respect to u € [—1, 1]
for any fixed z', 2% (12)
By (11), (12), there exists a unique point ug € [—1, 1] such that f(0, 0, uy) =
0. Thus with u = ug, the origin is an equilibrium point of the system (10),

i.e., as we get the origin by an admissible control, we can stay there any
time, putting u = ug.
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Besides, we assume that the following two conditions are satisfied:

(A). No phase trajectory of the controlled object (10) goes to infinity in a
finite time. For example, this condition is satisfied if there exists a positive
constant M such that
of
ox!

of

<M, | 2L

o0z?

(B). There exists a function ¢(z!, z
tinuous and

<M forall z' 2% w.

2 dy

, u) such that ¢, %, F.z are con-

0 0 0 0
x28—§+f8—;;+(90)2—g08—$“2—8—3£ <0 for w==%1 andany uz', 2°
In particular, (B) is satisfied (putting ¢ = 0) if
0
—f >0 for u=+1 andany =z!, 22
Oxl
We remark that if the linear controlled object
i = ay + by + u, —1<u<l, (13)

has real eigenvalues, i.e., b + 4a > 0, then the conditions (11), (12), (A),
(B) are satisfied. Indeed to satisfy (B), we can take ¢ = 2. Thus nonlinear
controlled objects satisfying (11), (12), (A), (B) generalize linear ones with
real eigenvalues.

According to Theorem 1 for the linear controlled object (13), the synthesis
of optimal trajectories is realizable in an open set G C R? and every optimal
control has no more than two intervals of constancy. We show under the
conditions (11), (12), (A), (B), that every nonlinear object (10) possesses
the same properties. In the sequel, we consider the object (10) and assume
the conditions (11), (12), (A), (B) are satisfied.

Lemma 3. Fvery optimal control takes only the values uw = +1 and has
no more than two intervals of constancy, i.e., no more than one switching.

Proof. For the object (10), the Hamilton function takes the form
H(ﬂ% z, U) - ¢1$2 + wa(xla an U)

By (12), the function f(x!, 22, u) takes its maximal and minimal values
(with respect to u € [—1, 1]) at the points u = 1, u = —1 respectively.
This means that the maximum condition

H((t), x(t), u(t)) = max H((t), z(t), u)

—1<u<1

is equivalent to the relation

w=signis(t) as a(t) 0. (14)
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Let now xz(t), u(t), to < t < t1, be an optimal process transiting an
initial point zy to the origin. Then u(t) satisfies the maximum condition
with respect to a nontrivial solution ¥ (t) = (¥1(t), ¥(t)), to < t < 1y, of
the conjugate system

: OH af (x(t), ult
%:@:%w,

: O af (x(t), ult

o = T2 —n —1/12%- (15)

We have to prove that the function 5(¢) has no interval of constancy and
no more than one changing of sign.

Assuming 2(t) = 0 on a segment [ C [to, t1], we obtain from (15),
¥1(t) =0 and hence ¥(t) =0 on [tg, t1], contradicting (t) is a nontrivial
solution of the conjugate system. Thus the equation 15(t) =0, to <t < ¢,
has a closed, 0-dimensional set of roots. Assume that this equation has more
than one root. Let a < 3 be two adjacent roots, i.e., () = Po(8) =0
and Yo(t) #0 for a <t < (. Assume 15(t) is negative as o < t < 3 (if it

is positive, the reasoning is similar). Then ¥y(a) < 0, ¥y(3) > 0. By (15),

Y1(a) = —thy(a) > 0, ¥1(8) = —ihy(B) <0.

Besides, ¥1(a) # 0, ¥1(8) # 0 (since the solution 1 (¢) is nontrivial) and
hence

Pi(e) >0, Pi(8) <O0.

The condition (14) implies u = —1 for a <t < . Consequently by (15),
(t) satisfies (for av < ¢ < [3) the relations

0f (=(t), —1)

of(z(t), —1)
Ozl ' '

by = —h1 — 2 52

Uy =~
We now put
0(t) = ¥1(t) +2(t) (' (¢), 2°(2), —1),
where ¢ is the function indicated in the condition (B). Then
. . . af af Op Oy
=11+ thap + thap = ﬂh@ - <¢1 +¢2W> + 2 (@ﬁ + wf)
O 9y of of
_ 200 0P 2 O] O\ _
=2 <m ozl * f@IQ + (%) Y or2 8301) -

Since by the condition (B), the expression in the last brackets is nonpositive
and 9(t) <0 for t € o, 8], we obtain

7.7 > —7790(951(75), 1_2(75)’ _1)7 a<t< ﬁ (16)
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Taking into account that () = ¥2(8) = 0, we find, according to
definition of 7(t),

n(a) =Y1(a) >0, n(B)=v1(B) <O,

and hence there is at least one root of the equation 7(t) = 0 between «
and (. Let v € [a, §] be the root nearest to «. Then

n(y) =0 and n(t) >0 for a<t<H.
By (16), this implies

Ts o@t), 22(), 1) for a<t<n.
n
Integrating, we find

Inn(t) — Inn(a) > —/t o(xl(t), 2%(t), =1)dt for a <t <~.

«

Hence
[Let @, 22, -1 ar

n(a) < n(t)e for a<t<~.
As t — ~y, this implies

[ et @2 @, -1 at

n(v)e ,
0. O

VAN

n(e)
contradicting n(vy) =0, n(«

~—

We now repeat Feldbaum’s synthesis construction for the nonlinear con-
trolled object (10). Denote by L(t) the semitrajectory of (10) for u = +1
with the endpoint at the origin. Furthermore, by S(=) denote the union of
all semitrajectories for u = —1 with endpoints belonging to L(*). Similarly,
denote by L{=) the semitrajectory for u = —1 with the endpoint at the
origin and by S™) the union of all semitrajectories with u = 41 and end-
points in L(7). Thus we can start from any point zy of the 2-dimensional
cell S and pass along the cells S(=), L(+) until the arrival to the origin.
We also can start from any point zo of the 2-dimensional cell S(+) and
pass along the cells S(*), L(=) until the arrival to the origin. Finally, we
can start from any point g # 0 of the one-dimensional cell L(+) (or L(-))
and move along this cell (with constant control u = £1) until the arrival to
the origin. We obtain the phase trajectories of the object (10) for u = +1
which contain no more than two intervals of constancy.

Put L = {0} ULB UL and G = LUSH U S In the set G,
we have the synthesis of trajectories for the object (10) with no more than
two intervals of constancy. The curve L is the switching line for these
trajectories. In the sequel, this synthesis is said to be Felfbaum’s synthesis
for the nonlinear controlled object (10).
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We are going to prove that this is the optimal synthesis in the set G
and moreover, G is the controllability region, i.e., if xo ¢ G, then it is
impossible to transit zo to the origin by any admissible control.

Lemma 4. Let z(t) = (x'(t), 22(t))T be a trajectory of (10) corresponding
to a constant control uw = +1. Then x(t) has no more than one common
point with ' -azis.

Proof. For definiteness, assume that x(t) corresponds to the control u =1
(for u = —1 the reasoning is similar). We can assume that x(t) is not an
equilibrium point, i.e., the relation x(t) = const does not hold. If z(7)
belongs to z'-axis, then

i'(r) =2%(r) =0, (1) = f(z'(1),0,1) £0, (17)
since z(7) is not an equilibrium point for (10). In other words, the trajec-
tory x(t) has at the moment 7 a vertical tangent and hence for ¢ close
to 7 the point x(t) is not situated in z'-axis. Thus the trajectory x(t)
intersects x'-axis only at isolated moments.

Assume that z(t) intersects z!-axis more than one time. Let a and
B be two adjacent intersectional moments, i.e., x%(a) = 2%(8) = 0 and
22(t) # 0 for a <t < 3. For definiteness, assume that x2(t) is positive for
a<t<p.

We now put

.2 .1
n(t) = a7 (t) — (o' (), 2°(t), 1)@ (1) =
f(Il(t), xQ(t)a 1) o @('Il(t)’ xQ(t)a 1) $2(t)7
where ¢ is the function indicated in the condition (B). Then

ﬁz—frz(t)(gf 2+—2f+( )Qsog—f%>+n<%w>-

Taking into account the condition (B) and the relation z2(t) > 0 for
a <t <3, we obtain
0
77_77<8—f ) for a<t<pg.

Besides,

)= (f—w®) = i"(a). %), 1) = (o),

)= (f-ee®) =160, 240), 1) = ).
Since ( ) #0, 2°(8) #0 (cf. (17)) and 22(t) is positive for a <t < f3,
we conclude that 2°(c) > 0, :E2(ﬁ) <0, ie., n(a) >0, n(8) < 0. Hence
there is at least one root of the equation n(t) = 0 between « and fS.

-2
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Now we come to a contradiction by just the same way as in the proof of
Lemma 3. ]

Lemma 5. The switching line L is situated in the union of 2-nd and 4-th
quadrants and is projected in a one-to-one manner into x'-axis.

Proof. At the origin, the semitrajectory L(*) has the phase velocity i 0) =
0, i (0) = f(0,0, 1) > 0, i.e., the phase point moves upwards. This means
that L(H) approaches to the origin from the lower half-plane. Moreover,
having a common point with z!-axis at the origin, the semitrajectory L(*)
cannot have other common points with z!-axis (by Lemma 4). Consequen-
tly this semitrajectory is completely contained in the open lower half-plane.
Now (10) implies i' =22 < 0 on the semitrajectory L(T), i.e., the phase
point moves along L) to the left. It follows that the semitrajectory is
situated in the interior of the 4-th quadrant and is projected in a one-to-one
manner into positive z'-semi axis.

Similarly, the semitrajectory L(~) is situated in the interior of the 2-nd
quadrant and is projected in a one-to-one manner into negative z'-semi
axis. Hence the switching line L is projected in a one-to-one manner into

xl-axis. At the origin, the switching line has vertical tangent. O

Lemma 6. Let X be a semitrajectory of (10) corresponding to the control
u= —1 and ending at a point a € L), Then X does not have any another
common point with L except a. For semitrajectories of (10) corresponding
to w=1 and ending at points of L\7), the similar assertion holds.

Proof. Since X and L(7) satisfy the same system
il = z2, i’ = flz!t, 22, —1),

they have no common points. Thus we have to prove that X and L)
have no common points except a. At the point a = (a', a®)T, the semi-
trajectories X, L(*) have the phase velocities (a2, f(a', a?, —1))T and
(a®, f(a', a?, +1))T, respectively. By (12), f(a', a2, +1) > f(a', a?, —1)
and hence at the point a, the semitrajectory X approaches to L(*) from
above.

Assume that there is a point b € X N L(T) distinct from a. Then X
intersects L from above at b and goes to the left under the arc of L(H) with
endpoints b and 0 (since &' = 2% < 0 under this arc). Hence after passing
through b, the semitrajectory X intersects negative x?-semi axis. Then (to
get the point a) X has to intersect negative x'-semi axis (for going to the
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right) and to intersect z'-axis once more (since a is situated in the lower
half-plane). But by Lemma 4, X cannot intersect z'-axis twice. ]

Lemma 7. The cells S and S have no common points outside
of L.

Proof. Assume, on the contrary, that there is a point p € SN S() which
is not belonging to L. Since p € S(=), there is a semitrajectory X’ through
p corresponding to u = —1 and ending at a point o’ € L(). Similarly since
p € S, there is a semitrajectory X” through p corresponding to u = +1
and ending at a point a” € L(7).

The point o’ € L) is situated in 4-th quadrant and hence X’ either is
situated completely in 4-th quadrant or comes into 4-th quadrant, intersec-
ting positive z'-semi axis. In both the cases, the point p € X’ does not
belong to negative x'-semi axis. Considering X”, we conclude similarly
that p does not belong to negative z'-semi axis.

For definiteness, assume that p is situated above z'-axis (if below, the
reasoning is similar). Then X’ goes firstly into the upper half-plane (and
passes through p) and then enters into the 4-th quadrant, intersecting po-
sitive z'-semi axis at a point ¢q. Consider the arc of X" with the endpoints
p, @ and the arc of L(=) with the endpoints a”, 0. The union of these arcs
denote by PO, By P denote the arc of X’ with the endpoints p, q.
Both the arcs P(), P(H) are situated in the upper half-plane and hence
' =22 >0 on them, i.e., phase points describing these arcs move along
them to the right. Consequently both the arcs are projected in one-to-one
manner into z!-axis.

The part Q of P(7) with the endpoints p, a” corresponds to u = +1 and
hence (by (12)) the phase trajectories corresponding to u = —1 intersect
Q from above. In particular, P(*) goes out of the point p, being situated
below Q. Going further to the right, P™) cannot intersect Q (since the
trajectories with u = —1 intersect @ from above) and also cannot intersect
L) (since P) and L) satisfy (10) with the same control u = —1).
But this contradicts the fact that P(H) arrives to the point ¢ situated in
positive x'-semi axis. O

1

For every point = € G, denote by w(x) the transit time along the tra-
jectory of Feldbaum’s synthesis starting at = and arriving to the origin
(Bellman’s function). We remark that, by Lemma 7, for any = € G, the
trajectory of Feldbaum’s synthesis going from z to the origin is defined
uniquely and hence w(z) is well-defined on G.
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Lemma 8. The set G C R? is open and Bellman’s function w(z) defined
in G is continuous. For every T > 0, the set ¥p ={z € G: w(z) <T}
s compact.

Proof. Consider the trajectory T' of the object (10) corresponding to the
control uw =1 and passing through the origin. The part of T' in the lower
half-plane coincides with L(H). The part of T in the upper halfplane is
situated in the first quadrant (since &' =22 >0 in the upper halfplane).
Hence the halftrajectory L(7) approaches to T' from the left.

Let p, ¢ € I be points in lower and upper half-planes correspondingly
and @ be a disk centered at ¢ and contained in the upper half-plane. By
Theorem on continuity of solutions of ordinary differential equation with
respect to initial condition, any trajectory of (10) with u =1 starting at a
point p’ close enough to p has common points with Q. Hence if p’ (close
enough to p) is situated under L), then the trajectory ~ of (10) with
u = 1 starting from p’ passes to the left from the origin and then enters
into the first quadrant. This means that -~ intersects L) at a point ¢
Thus if we move along ~ from p’ till ¢’ and then along L(7), we can get
the origin.

This reasoning shows that all the points close enough to L(H) and situ-
ated under L(T) belong to G, and also all the points close enough to the
origin and situated to the left from L belong to G. Similarly, all the points
close enough to L) and situated above L) belong to G, and also all the
points close enough to the origin and situated to the right from L belong
to G. Consequently the origin is an interior point of G.

Furthermore, near every point of L) distinct from the origin, the semi-
trajectories of (10) with u = —1 approach L) from above. Hence all the
points close enough to L) and situated above L) belong to G. Com-
paring with aforesaid, we conclude that every point of L(*) is an interior
point of G. Similarly for L(). Thus all the points of the switching line L
are interior ones for G.

Let finally, o € G\ L, say, z € S(-). Starting from z with u = —1,
we reach L) at a nonzero angle a and then get the origin with u = 1.
Since « # 0, moving from any point close enough to xg with v = —1, we
also reach L(*) and then can get the origin along L(*). This means that
all the points close enough to xy are contained in G, i.e., xg is an interior
point of G.

We have established that G is open. At the same time, this reasoning
shows that the function w(z) is continuous.

Let now T be a positive number. Denote by X;H (0) the arc of the
trajectory with u = 1 ending at the origin and corresponding to the time
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T. In other words, we consider the process z(t), u(t) =1, 0 <t < T, with
the endpoint x(7) = 0 and denote by Xgr) (0) the set of all phase points of

these processes. Similarly, denote by X;_) (0) the arc of the trajectory with

= —1 ending at the origin and corresponding to the time 7. Furthermore
for every point z € X(T+)(0), denote by Xg) (o) the arc of the trajectory
with u = —1 ending at zy and corresponding to the time 7. Similarly, for

every point xo € X:(;) (0), denote by X:(FH (z9) the arc of the trajectory with
u =1 ending at zy and corresponding to the time 7. The union M7 of
all these arcs is compact. Indeed, by the condition (A), every arc X(T+) (z0)

is a compact set depending continuously on zg; similarly for Xé_)(xo).

It remains to remark that the set X = {x € G: w(z) < T} is contained
in Mp and is closed in My (since w(x) is continuous on the set My C G
and the inequality w(x) < T defines its closed subset). O

Lemma 9. Any process of the Feldbaum’s synthesis for nonlinear control-
led object (10) satisfies the maximum condition with respect to a nontrivial
solution of the conjugate system.

Proof. For definiteness, consider a process u(t), z(t), to <t < t1, transiting
xo to the origin and satisfying u(t) = 1 as top <t < 7, u(t) = —1 as
T <t <t1, where tg < 7 < t1. Denote by ¥(t) = (¢1(t), 12(t)) the solution
of the conjugate system (15) corresponding to the considered process with
P1(1) =1, 1o(7) = 0. Then by (15), 15(7) = —21(7) = —1. Consequently
(since 19(t) can change sign no more than one time, cf. the proof of
Lemma 3),

Pa(t) >0 as to<t<t and Yo(t) <0 as 7 <t<t.

This means that the process u(t), z(t), to <t < t;, satisfies the maximum

’

condition with respect to (t). O

To formulate further lemmas, we remark that for every zy € G\ L,
the trajectory of Feldbaum’s synthesis going from xzg to the origin meets
the switching line L at a nonzero angle. Consequently w(z) is a smooth
function on G\ L, i.e., the derivatives agif), ng(‘;:) exist and are continuous
in G\ L. In other words, in G \ L the function w(z) has a nonzero,

continuous gradient

Ow (o) 3w($0)> _

gradw(xg):< ErS i
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If now we start from a point z € G\ L under action of a control w(t),
then change of the function w(z) along the corresponding trajectory z(t)
is described by the derivative

dw(z(t)) _ (eradw(x), i()) = Ow(x) 5 Ow(x)

dt arl * * Ox? I, 2%, ).
Along the trajectories of Feldbaum’s synthesis this derivative is equal to
—1 (by definition of the function w(x)). It is naturally to expect (assuming
that Feldbaum’s synthesis is in fact optimal) that for any other trajectory,
the module of this derivative is less than 1, i.e., the following Bellman’s
equation holds:

B &.u(x)xQ B ow(x)

flat,2? v(2))

ot o0z?
_ Ow(z) o Ow(x) . 1 - _
= _{%au,);l (— 8])1 Tr — 8352 f(]? , L ,u)) = ]., (18)
where v(x) is the control for Feldbaum’s synthesis, ie., v(z) = 1 as

zeSH) and v(z) =—1 as z € S,

Lemma 10. For nonlinear controlled object (10), Bellman’s equation holds
in G\ L.

Proof. Let xo € G\ L, and wug(t), zo(t), to < t < t1, be the process
belonging to Feldbaum’s synthesis and transiting zg to the origin.

Consider the level curve of the function w(z) through z; and let z.
be the point of this level curve at the distance e from zy. Then z. =
xo+ev+o(e), where v is the unit tangent vector of the level curve. Denote
by us(t), z-(t) the process belonging to Feldbaum’s synthesis and transiting
. to the origin. Since the points xzg, . are situated on the same level
curve of w(x), the transit time for z. is the same as for zg, i.e., we may
assume that the process u.(t), zc(t), is defined on the same time-segment
to <t <tj. The control u.(t) has the form

us(t) =1 as to<t<te, ue(t) = -1 as t. <t <ty,

where ¢ is the switching moment. Since the trajectory z(t) meets the
switching line L at a nonzero angle, we have t. = 7 + ¢k + o(e), where k
is a constant not depending on e. Let, for definiteness, k£ > 0 (if £ < 0,
the reasoning is similar). Then xo(t) = z.(¢) for t. <t < ¢y, since on this
time interval both the trajectories correspond to the same control u = —1
and zo(t1) = z-(t1) = 0. Furthermore,

xO(te) = 370(7) + € kwo + 0(5)v ms(te) = ZES(T) + e kw, + 0(5)a (19)
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where wy, w. are the phase velocities at the point zo(7) for v = —1, u =
1 respectively, ie., wy = (z2(1), flzl(r), 22(7), =1)", we = (22(7),
f(zd(7), 2d(7), 1))T. Since z¢(t.) = z(t.), we conclude from (19)

zo(7) — (1) = —ek(wy — we) + o(). (20)

By Lemma 9, the process wug(t), zo(t) satisfies the maximum condition
with respect to a nontrivial solution (©) (t) of the conjugate system. In
particular, for typ <t <7, we have

WO, (220). flag (1), 220, D))

v

holds. Consequently (/) (1), wo) = (O (1), w.), i.e.,

(@O(r), wo — we) = 0. (21)

We now consider the trajectories xo(t), z-(t) for to < ¢t < 7. On this
time interval, both the trajectories correspond to the same control u = 1.
Hence on this time interval,

xo(t) — xe(t) = e0x(t) + o(e), (22)

where 6z(t) = (6z1(t), 522 (t))T is the solution of the system of variational
equations

-1 5 2 22 _ 8f($1,l'2, 1) 1 8f(£€1,l'2, 1) 2
ox” =odx*, 2" = 5 o + 922 ox (23)
with the initial condition 0z(7) = —k(wp — w.) (cf. (20)). Moreover, on

considered time interval the relation ((0)(t), dz(t)) =const holds, since
ox(t) satisfies the system (23) and ¢(9(¢) satisfies the conjugate system
(15) with w = 1. In particular,

(WO (to), 62(t0)) = (¥ (r), 82(7)) = (W7 (7), —k(wo —w:)) =0 (24)

(cf. (21)).
Finally by (22), we have edxz(to) = zo(to) — z(to) + o(e) = xo — xz +
o(e) = —ev + o(e), i.e., d0x(tp) = —v. Now the relation (24) means that

WO (tg), v) = 0, i.e., the vector t(to) is orthogonal to the level curve of
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the function w(z) at the point z(. The vector grad w(zg) also is orthogonal
to this level curve at xg. Hence

P(to) = Agrad w(wo) (25)
with a suitable real number .
By the maximum condition,

H = @O0), (23(), F(zd (), 2d(1), 1)) =

Jmax @O0), (s3(0), S (0), 7}(0). W) ) >0, <t

In particular, this relation holds for t = ¢y, i.e.,
T
WO (to), W) = max @O (to), (af, flag, adsw)) ) >0,
—1<u<l

where W = (zd, f(zd, =, 1))T is the phase velocity along the trajec-
tory zo(t) at the point xg. At the same time, (gradw(zg), W) < 0, since
the vector gradw(zg) indicates the direction of mazximal increasing for the
function w(zx), whereas along the trajectory z((t), i.e., in the direction of
the vector W, the function w(z) decreases. This means that A < 0 in the
relation (25). Thus

1

= WW)(O) (to), W) =

(—grad w(zg), W)

1 T
W 711123521@!](0) (tO)a (3302, f(xOlv £E027 u)) > =

T
_{I%%);l<_gradw(x0)a (x02> f(xola I027 u)) >

In other words, at the point = = x¢ the equality
ow(r) 5 Ow(x)

1,2 4y _
8$1 x 8332 f(iE,J},l)—
dw(z) 5 Ow(x) 1,2 _
o, (T~ G ) =1
holds, where 1 is written on the right, since the left-hand side is equal
to *% = 1. Thus Bellman’s equation (18) holds at any point xy €
S\ L.
Similarly, for every point zo € S()\ L, Bellman’s equation (18) holds
too with v(zg) = —1 instead of v(zg) = 1. O

Lemma 11. Let z(t), u(t), to <t < t1, be an admissible process transiting
a point xq to the origin, where the trajectory x(t) is situated in the set G.
Then the estimate t; —ty > w(xg) holds.
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Proof. Let & be an arbitrary positive number. Since the function w(x) is
continuous and w(0) = 0, there is a neighborhood U C G of the origin
such that w(z) < e for any z € U.

Let now p < 1 be a positive number. Denote by z,(t), to <t < ti,
the phase trajectory with the initial point x,(t9) = x¢ corresponding to
the control wu,(t) = pu(t). If p is close enough to 1, then the endpoint
xp(t1) is arbitrary close to the origin. We fix a number p < 1 such that
zp(t1) € U ie., w(zy(t)) <e.

Assume that at a moment t', the trajectory z,(t) intersects the switching
line L, i.e., zp(t') € L. Since |u,(t)| = p|u(t)| < 1, the phase velocity @, (¢)
(at the moment ¢ and close moments) does not touch the line L. Hence t/
is an isolated time moment at which z,(t) € L. This means that there are
only finitely many moments t € [tg, t;] with z,(t) € L, i.e., z,(t) € G\ L
almost everywhere in [tg, t1]. Consequently by Bellman’s equation,

dw(zp(t ow(xp(t Ow(xp(t

nO) 00 0) oy - 2D 1), 2(0) .y (0) < 1
almost everywhere in [tg, t1]. Integrating this inequality (and taking into
consideration that z,(t) ia absolutely continuous), we obtain

—w(xp(t1)) + w(zp(to)) < t1 —to,

ie, —e+ w(rg) < t1 — ty. By arbitrariness of ¢ > 0, this means that
w(.I()) < tl — to. O

Finally, for considered nonoscillatory nonlinear object we establish that
Feldbaum’s synthesis is in fact the optimal synthesis.

Theorem 2. Assume that a nonlinear controlled object (10) satisfies the
conditions (11), (12), (A), (B). A process z(t), u(t), to < t < t1, transiting
a point xo to the origin is time-optimal if and only if the control u(t) is
piecewise constant, takes only the values +1, and has no more than two
intervals of constancy. The set G = LU ST USE) s open and coincides
with the controllability region. The synthesis of optimal controls is realized

in G by the following synthesis function v(z) :
v(z)=—-1 as ze ST UL, v(z)=+1 as zeSH UL,

In other words, a trajectory x(t) is optimal if and only if it satisfies the
system

it =22, i = fzt, 22, v(z)).

Proof. First we establish that G coincides with the controllability region.
Assume, on the contrary, that there is an admissible process u(t), x(t), to <
t < t;, transiting a point xy ¢ G to the origin. Since xy = z(ty) ¢
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G, z(t;) = 0 € G, the trajectory z(t) intersects the boundary bdG of
the open set G. Let ¢’ be the last moment of intersection of the trajectory
z(t) with bd G (the moment t' exists, since bd G is a closed set). The
point z(t') does not belong to G, since G is an open set and z(t') is
its boundary point. At the same time, z(t) € G for any ¢ > t'. Denote
the number ¢; —t' by T and consider the set Y7 as in Lemma 8. Then
z(t') ¢ Yp (since Xp C G, z(t') ¢ G). By compactness of X7, we can
choose a moment t* > ¢’ such that z(t*) ¢ Y. The process u(t), z(t), t* <
t < t;, transits the point z(t*) to the origin (inside the set G). Hence
by Lemma 11, w(z(t*)) < t; — t*, ie., w(z(t*)) < T. But this means
that z(t*) € Xp, contradicting the aforesaid. Thus G coincides with the
controllability region.

Finally, let a(t), Z(t), to <t < {1, be a process belonging to Feldbaum’s
synthesis, i.e., this process transits the point zy = z(¢y) to the origin and
the control @(t) takes the values +£1 and has no more than two intervals
of constancy. By definition of the function w(z), we have w(Zy) = t1 — to.
If now wu(t), z(t), to < t < t1, is an another process transiting Z; to
the origin, then the trajectory xz(t¢) is contained in G (since G is the
controllability region), and by Lemma 11, t; — ty > w(Zo), i.e., t1 —ty >
t1 — tp. This means that the process u(t), z(t), to <t < t1, transits T to
the origin in the shortest time, i.e., it is time-optimal. Thus all the processes
of Feldbaum’s synthesis are optimal. Conversely, every optimal process is
contained in Feldbaum’s synthesis (Lemma 3). O

REMARK. This result is contained in [1]. But in [1] the proof is very
complicated (using regular synthesis introduced in [2]). Moreover, in [1]
there are some skips in the proofs of lemmas. Thus the proof offered above
is more correct, short, and preferred.

It would be interesting to generalize Theorem 2 for nonlinear controlled
objects in R", introducing a class of "nonoscillatory” objects.
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