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Abstract
If ¢ is the Euler factor of an odd perfect number NV, then we prove that its so-called
index o(N/q%)/q™ = 3% x 5 x 7= 315. It follows that for any odd perfect number,
the ratio of the non-Euler part to the Euler part is greater than 3% x 5 x 7/2.

1. Introduction

The main motivation for studying the structure of an odd perfect number is ul-
timately to establish that such a number cannot exist. It is known that any odd
perfect number N must have at least 9 distinct prime factors [10], be larger than
10%500[12], have a squarefree core which is less than 2N % [9], and every prime di-
visor is less than (3N)3 [1]. These results represent recent progress on what must
be one of the oldest current problems in mathematics.

Following Dris [5], in this paper we define the index m of a prime power dividing
N. Using a lower bound for the index one can derive an upper bound, in terms of
N, for the Euler factor of N. Dris found the bound m > 3; then Dris and Luca
[6] improved this to m > 6. In [4] a list of forms in terms of products of prime
powers, which includes the results of Dris and Dris-Luca, is derived. We improve
the method of [4], obtaining an expanded list of prime power products which cannot
occur as the value of an index. This enables us to conclude, in the case of the Euler
factor, that m > 315; for any other prime, if the Euler factor divides N to a power
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at least 2 then m > 630, and if the Euler factor divides N to the power 1 then
m > 210.

Notations: Q(n) is the total number of prime divisors of n counted with mul-
tiplicity, w(n) the number of distinct prime divisors of n, wg(n) is the number
of distinct odd prime divisors of n, o(n) the sum of the divisors of n, d(n) the
number of divisors of n, log, n the logarithm to base 2, (a, b) the greatest common
divisor, p®||n means p° divides n but p®™' does not, v,(n) the highest power of
p which divides n, and ord, a is the smallest power of a which is congruent to
1 modulo p. The symbol [, when not being used to denote the end of a proof,
represents the square of an integer.

Let N denote an odd perfect number, and ¢ a prime divisor with ¢®||N say. We
write the standard factorization of N as

k s
)\i Aj
SRR | )
i=1 j=k+1

where for 1 <7 < k we have
o (pf‘) =mi¢™, B; >0, (miyq) =1, m;y > 1. (1)
These prime numbers p; are called primes of type 1. For k+1<j<s
a(p;‘j) =q¢"%, B; >0 (2)

and the p; are called primes of type 2.

One defines the index or perfect number index at prime ¢ to be the integer

o (N/q*
m = o (N/q") ; (3)
qa

in particular m =mq ---my.

In fact 4 ¥ m, g ¥ m, and if an odd prime p satisfies p¢ | m then p¢ | N.
Furthermore if ¢ is the Euler prime, then m is odd and each m corresponding to
any other prime is even. Lastly we have the fundamental equation

k

o ) u A 2N
mx o(¢¥) = QXHp;\’X H ;= — (4)
i=1 j=hk+1 4

2. Preliminary Results

First we state the theorem of Chen and Chen [4].
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Theorem 1 If N is an odd perfect number with a prime power q*|N, then the
index m := o(N/q%)/q® is not equal to any of the six forms

{pla pi p?, pzlla p1p2, P%p2}

where p1 and ps are any distinct primes.

The following lemma comes from [6]. Here we give an alternative proof.

Lemma 2 If for some j with k+1<j <s (so p; is a prime of type 2) and for
some v with 2 <y < \; we have p] | (¢*™ —=1)/(q—1), then p}_l |la+1.

Proof. Because p; (1 +pj+--- +p;-\j71) = ¢” —1 one deduces p}||q51 —1, in which

ord p; (q)

case p}||q — 1. However

a+1 ord (q)
| R AL | ( a+1 )
2 < < vy | ——— | =V, | —— | +v,. | ————— ). 5
0 p]( q—l ) PJ( q—l ) pj Ol"dpj(q) ( )

If ord,(q) = 1 then v <y (a+1) and p] | a + 1, whereas if ord,,(¢) > 1 one
has v <14 v, (a+ 1) and therefore p]-*l |a+1. O

Lemma 3 (Ljunggren, see [7]) The only integer solutions (x, n, y) with |z| >
1, n > 2 y > 0 to the equation (z™ — 1)/(x — 1) = y? are (7, 4, 20) and
(3, 5, 11), ice. (T4—1)/(7—1)=20% and (3° — 1)/(3 — 1) = 112.

Lemma 4 [7] The only solutions in non-zero integers with n > 1 to the equation
y"=a2>+x+1aren=3,y=7 and x =18 or x = —19.

The following well known result [2, 3, 13] guarantees the existence of primitive
prime divisors for expressions of the form o™ — 1 with fixed a > 1.

Lemma 5 Let a and n be integers greater than 1. Then there exists a prime
P | a™ —1 which does not divide any of a™ —1 for each m € {2,...,n—1}, except
possibly in the two cases n = 2 and a = 2° — 1 for some 3 > 2, or n = 6 and
a = 2. Such a prime is called a primitive prime factor.

We complete this set of preliminary results by filling in the missing case from the
proof of the fundamental lemma [4, Lemma 2.4].

Lemma 6 Let N be an odd perfect number. Then d(a+ 1) < w(N) whenever a
prime power q“||N .

Proof. Let ny, no,..., n, denote all the distinct positive divisors of a + 1 which
are greater than 1.
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If 2| a+1 then « is odd, and thus ¢ = @ = 1 mod 4. Therefore ¢ cannot be
of the form 2% — 1 and must be odd. By Lemma 5 there exists a primitive prime
factor g; | ¢" —1; since 2 | ¢' — 1 the g; are all odd, and as they are primitive, one
finds ¢; 1 ¢* — 1 also. Hence

g —1
q—1

qoz+1 -1

(h'\

q—1

so that ¢n, - qn, | (¢*™ —1)/(¢—1). But m x o(¢®) = 2N/q® thus, including
the divisor 1 and recalling 2 | o(¢®), one obtains the inequalities

2y

dla+1)=w+1 < w(o(q®)) < w(mo(qg®)) w(qa

) = w(N).

Alternatively if 21 a+1 then « is even so, again by Lemma 5, we obtain distinct

odd primes g,, with
qa—i-l -1
q'rl,l .« .. qnw | ﬁ

Because in this case 2 | m and 21 o(q¢*), we deduce that
dla+1l)=14+w < 1+w(o(¢*) < w(mo(q®)) =w () =w(N)

which completes the proof of the lemma. O

3. The Proof
We now amend the proof of Theorem 1.1 of [4].

Lemma 7 Let N be an odd perfect number, and m the index at some prime divisor
of N. Then

Q(m) + wo(m) > w(N) — logy a(N) — 1
where n =1 if m is odd, n =
a power greater than 1, and 7
exactly to the power 1.

if m is even and the Euler prime divides N to
% if m is even and the Euler prime divides N

|| vol=

Proof. Whenever (m, pg+1-+-Ps) = Pk+1- - Ds, one has an inequality
s—k < wo(m)=t

and it follows that
k+t > s=w(N)—-1.
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Because k < Q(m), t = wo(m) and w(N) > 9, we quickly deduce
Q(m) +wo(m) > k+t > w(N)—2 > w(N) —logy, Vw(N) — 0.42.

The non-trivial case occurs when (m, pr41--+Ps) # DPr+1---Ps. By suitably
reordering the p;, we can always write for some [ with k£ <[ < s:

pk ...p
L = Pl+1° " DPs- (6)
(M, Prt1 - ps)

Applying [4] Equation (2.2) and (6), we see that
o(q%).

Moreover using [4] Equation (2.1) and [4] Lemma 2.3,

A1 Ao
Py - Ds

pf‘i71|oz—i—17 1+1<i<s

hence
Arp1—1 As—1
R | 4 1.

Now for k+ 1 < i < s one knows J(pf”‘) = ¢”% , and ¢ is odd so we must have \;

even. It follows for [+ 1 < i < s each \; > 2, thus p;y1---ps | @+ 1. Note also
that [ < s in which case s — 1> 1.
If s —1 =1 then because w(N) > 9,

Q(m)+wo(m) >k+t>1l=s5s—-1>w(N)—2>w(N)—log, vVw(N)—0.42

as in the previous case.
If s —1> 2 then we claim at most one of the \; = 2 and the remainder have
A; > 4. To see this, consider the equations

pi+pi+1=q"

If B; > 1 then, by Lemma 4, the only solution is §; =3, ¢ = 7 and p; = 18 which
is not prime, so the solution cannot occur in this context. Hence (3; = 1 and the
form of the equation is ¢ = x2 4+ = + 1. But this, for given ¢, has at most one
positive integer solution, therefore at most one prime solution p;.

By renumbering the p; if necessary, when s — 1 > 2 we can write

3 3 3
Pi1Pire  Ps_1Ps | @+ 1.

Case 1. Suppose that the index m is odd. Then ¢ is the FEuler prime, and
consequently 2 | o+ 1. Hence

2p:l3+1pl3+2 n 'pi—lps ‘ o+ 15
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and thus, by Lemma 6, we have
22728 < d(a+1) < w(N),
or in other words s — [ < log, \/m , which implies
I > w(N)—logy v/w(N) — 1.
As wo(m) = t then by Equation (6) we have | —k < ¢, so | < Q(m) + wo(m).
Lastly because w(N) > 9,
6.41 < w(N)—logy Vw(N)—1 < 1 < Q(m)+ wo(m).

Case 2. Here we assume the Euler prime divides N to a power at least 2. Let m
be even. Now m = my ---my, and 2||m so, for a unique ¢, one knows that 2 | m;.
We claim that 2 # m,. If not, then

O.(p;\i) _ 2q5i

whence p; is the Euler prime and A; + 1 is even; we can write

A +1 A +1

Ai+1

AU | R | ) 1

D; _ P o [P T =
2(p; — 1) pi—1 2

but this cannot hold since the two factors in the middle term are coprime and
greater than 1, thus 2 # m;.
It follows that k < Q(m) — 1. In this scenario with s — [ > 2, we also know

3 3 3
PlPive P 1Ps |+ 1

thus
925721 < d(a+1) < w(N),

which in turn implies
[ > s—%—log2\/m = w(N) —logy Vw(N) — 3"
It follows from the discussion that
W(N) —logy Vw(N) == <1 < k+t < Q(m) —1+wy(m)
and therefore
6.91 < w(N)—log, /w(N) - % < Q(m) + wo(m).

Case 3. We shall now assume the Euler prime divides N exactly to the power 1
and that m is even. Here we have only the weaker inequality k& < Q(m), and using
an identical argument to Case 2:

591 < w(N) —logy Jw(N) —

[\ GV

< Q(m) + wo(m). O
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Lemma 8 If the index m is a square, then a = 1.

Proof. If m =[O then necessarily ¢ is the Euler prime. We must have o(¢*) = 20
and « is odd. Assuming « > 1 then

1 at+l _ (a+1)/2 _ (a41)/2
L =1y _ (4 ) (4 1) _ g
2 q—1 q—1 2

and the two factors in the penultimate term are coprime, in which case

(a+41)/2 _ 1
£~ —- -0
q—1
By Lemma 3 one has (a+1)/2 <2, and as a = 1 mod 4 we deduce a = 1, thereby
yielding a contradiction. O

Lemma 9 If the index m is odd, then it cannot be the sixth power of a prime.

Proof. Firstly the index being odd means it corresponds to the Euler prime. Assume
m = p% = 0. By Lemma 8, we have @« = 1. If p = p; is of type 1 then
a(p}\f) = pYq¢° for some 6 > 0, which is false. Hence p; will be type 2. If

any other prime p; were also of type 2, then due to the equality o(¢%) = % we
I
xj+1
would have p? | o(g®) and also ¢% = pjp_q ! ; however from Lemma 2 there is a
J

divisibility p; ’ a+1 =2, which is clearly false as p; > 3.

Consequently there exists exactly one type 2 prime, p;. Note that A\; > 6. If
A; # 6 we would have A\; even and greater than 6, implying p? | o(¢®) and by
Lemma 2, p; | o+ 1 which is false. Hence A\; = 6 and we can write o(¢%) =
Qpi‘l --~p2’°. But m = p% = my ---m;, has at most 6 factors, in which case k < 6;
therefore 9 < w(N) =k+2 < 8 a clear contradiction, completing the proof that
m # pb. O

Applying Lemmas 7 and 9, we have shown

Theorem 10 If N is an odd perfect number and the odd prime q®||N then the
index o(N/q®)/q® is either odd when q is the Euler prime, or even but not divisible
by 4 when q is not the Fuler prime.

(i) If q is the Euler prime, it cannot take any of the 11 forms {p,p2,p37p4,p5,p6,

p1p2, Pip2, Pip2, PIP3, pipeps} where p is any odd prime and pi,pa,ps are any
distinct odd primes.

(ii) If q is not the Euler prime and the Euler prime divides N to a power greater
than 1, it cannot take any of the 7 forms {2, 2p, 2p?, 2p®, 2p*, 2pipa, 2pip2} .

(1ii) If q is not the Euler prime and the Euler prime divides N to the power 1, it
cannot take any of the 5 forms {2, 2p, 2p%, 2p3, 2p1p2} .
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Therefore the smallest possible value of the index m 1is, respectively:

32 x5x7=315 in case (i),

2x3%x5x7=630 in case (ii),
and 2Xx3x5xT =210 in case (iii).

Corollary 11 It follows directly that for any odd perfect number, the ratio of the
non-Euler part to the Euler part is greater than 315/2.
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