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Abstract
We show that every integer can be written uniquely as a sum of Fibonacci numbers
and their additive inverses, such that every two terms of the same sign differ in
index by at least 4 and every two terms of different sign differ in index by at least
3. Furthermore, there is no way to use fewer terms to write a number as a sum of
Fibonacci numbers and their additive inverses. This is an analogue of the Zeckendorf
representation.

1. Main Results

The canonical way to write a natural number as a sum of Fibonacci numbers is
the Zeckendorf representation, which is a sum of distinct nonconsecutive Fibonacci
numbers [3]. Brown showed that every natural number can be represented uniquely
as a sum of distinct Fibonacci numbers in which no two consecutive Fibonacci
numbers smaller than the largest summand are omitted from the sum [1], and
Bunder showed that every integer can be represented uniquely as a sum of distinct
nonconsecutive Fibonacci numbers of negative index [2]. We present another way
to uniquely write integers as sums, in which the summands are Fibonacci numbers
and their additive inverses.

Define the Fibonacci word length of any integer x € Z to be the least r such that
T = 22:1 a;, such that a; or —a; is a Fibonacci number for each i. The Fibonacci
word length of 0 is 0.

Index the Fibonacci numbers by F; = 1, F» = 2, so that the number 1 is un-
ambiguously F} rather than Fy. Let a far-difference representation be any sum
of Fibonacci numbers and their additive inverses such that every two terms of the
same sign are at least 4 apart in index, and every two terms of different sign are at
least 3 apart in index.

Theorem 1. FEvery x € Z has a unique far-difference representation.
Proof. First define S(n) to be the quantity

S(n) = Z _F‘;r7474Z = F’I’L + F’I’L74 +Fn78 + e,

0<n—4i<n

For n < 0 we define S(n) to be 0.



INTEGERS: 9 (2009) 746

In any sum of Fibonacci numbers and their additive inverses, define the main
term to be the term of greatest absolute value in the sum. Notice that if x € Z
has a far-difference representation with positive F;,, as the main term, then F, —
S(n —3) <z < S(n). We claim that the positive integers are the disjoint union
over all positive n of [F,, — S(n — 3)..5(n)]. The first few such intervals are:
{1},{2},{3},[4..5],]6..9],[10..15], [16..24],[25..39)], . . .

Writing S(n) as Fy, + S(n — 4) and using the easily-proven fact that S(n —4) +
S(n—2)=F,_1—1, we find

(Fas1—=8(n=2))=S(n) = (Fup1—Sn—2)) - (Fu+5(n—4)
Fop1—Fy—(Fyy —1) =1

Thus, if € Z is positive, there is a unique n such that F,,—S(n—3) < x < S(n). Ifx
has a far-difference representation, then F;,, must be the main term. Symmetrically,
if x is negative, then there is a unique n such that F,, — S(n—3) < —z < S(n), and
then —F,, must be the main term of any far-difference representation of x. For the
remainder of the proof, we assume without loss of generality that x is nonnegative.

We show by induction on n that if 0 < z < S(n), then x has a unique far-
difference representation. As shown above, it is equivalent to show that out of the
far-difference representations with main term Fj for 0 < k < n, exactly one of these
representations is equal to x. As the base case, we see that for n = 0, the unique
far-difference representation of x = 0 is empty.

For the inductive step, suppose S(n — 1) < x < S(n). Equivalently, F,, — S(n —
3) <z < S(n). Inthe case F,,—S(n—3) <z < F,, wesee 0 < F,,—z < S(n—3), so
by the inductive hypothesis F,, — x has a unique far-difference representation with
main term at most Fj,_3. In the case F,, < x < S(n), wesee 0 < x— F,, < S(n—4),
so by the inductive hypothesis x — F;, has a unique far-difference representation
with main term at most F,_4. In either case, adding F, to the far-difference
representation of x — Fj, gives the unique far-difference representation of x. o

Theorem 2. The number of terms in the far-difference representation of x € Z
is the Fibonacci word length of x.

Proof. Let T be the set of ways to write z € Z as a shortest sum of Fibonacci
numbers and their additive inverses.

We define the following lexicographical ordering on T'. For each sum in 7', discard
the signs so that what remains is a multiset of positive Fibonacci numbers, and we
will order the multisets instead of the sums. Order these multisets first by greatest
element. Then among multisets with the same greatest element, discard one copy
of that greatest element; order the resulting multisets by greatest element, and so
on, until the multisets are totally ordered. We claim that T is finite and that its
greatest element in this order is a far-difference representation.
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In order to show that T is a finite set, we show that the main term of a sum
in T cannot be arbitrarily large. We show first that if 7" contains elements with
arbitrarily large main terms, then it contains elements with arbitrarily large main
terms in which all terms are distinct and more than 1 apart in index.

Every element of T has no two terms exactly 1 apart in index, because they could
be replaced by a single term to make a shorter sum. Similarly, any element of T
cannot have three of the same term, because those three terms could be replaced
by two terms using the identity

Fn+Fn+Fn:Fn72+Fn+2~

In any sum N € T, let F,, be the greatest absolute value of any repeated term in
N. Then we may use the identity

Fo+F,=F, o+ F,1

to replace the repeated F, and find a different sum N’ € T. In N’, there is no
repeated term of absolute value greater than or equal to F),, because F;, and F, 41
cannot both appear as summands of V. The main term of N’ is at least as large
in absolute value as the main term of N, so we may continue to replace repeated
terms to obtain an element of 7" in which all terms are distinct and more than 1
apart in index, in which the main term is at least as large in absolute value as the
main term of N.
Suppose N € T has no repeated terms and has main term F),,. Then

x> F, — Z F_o;.

0<n—2i<n
Again we have

Z Fro=F,1—1,

0<n—2i<n

sox > F, — (F,—1—1) = F,_2 + 1. Because x is fixed, we conclude that T" does
not have elements with arbitrarily large main term, and that T is finite.

Because T is finite, there is a greatest element in the lexicographical ordering
on T described at the beginning of the proof. We show that the greatest element
M € T is a far-difference representation. First, in M no two terms of the same sign
can be exactly 1 apart in index, and no two terms of different sign can be less than
3 apart in index, for otherwise M is not a shortest sum and cannot be in T":

F7L+Fn+1 :Fn+2a
FE,—F, =0,
Fn+1_Fn:Fn71;

Fn+2_Fn: n+1-
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Then, we see that no two terms of the same sign can be 0, 2, or 3 apart in index, for
if so we could replace them to make an element of T" greater than M in our order:

FnJan: n—2+Fn+17
FTL+F’IL+2 :Fn—i-?)_Fn—la
Fn+Fn+3:Fn+4_Fn+1'

So, indeed, M is the far-difference representation of x. O

Theorem 3. For every positive integer n, there exist infinitely many integers with
Fibonacci word length n.

Proof. For any nonnegative integer j, define

n—1

Tjn = Fanyj + Z Fy;.

=1

This sum is a far-difference representation of n terms, so the Fibonacci word length
of x5, is n. Then {xjm}?io is a strictly increasing infinite sequence of integers each
with Fibonacci word length n. O

For further research we would ask, with respect to a given sequence of natural
numbers, are there integers with arbitrarily large word length? This question has
been posed by Nathanson [4]. We would ask specifically about sequences satisfy-
ing linear recurrences; for which linear recurrences do the corresponding sequences
produce arbitrarily large word length?
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