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Abstract

In this paper we consider the diophantine equation x2 + 3m = yn, n > 2,m, n ∈ N. When
2 | m, we determine complete solutions of the equation with the help of a deep result due to
Bilu, Hanrot, and Voutier, and when 2 ! m, we rewrite a proof due to E. Brown in a little
different way.

1. Introduction

The diophantine equation x2 + k = yn, x, y, n ∈ Z, n > 2 has been studied extensively.
When n = 3, it is well known as Mordell’s equation, which Mordell discussed in detail in his
book [9]. When n > 3, there is now also a vast amount of literature. For small positive k, it
seems easier to determine the solutions. For example, V. A. Lebesgue [7] proved that there
are no nontrivial solutions when k = 1. Nagell [10] showed that there are no solutions when
k = 3 and 5. In the case k = 2, Ljunggren [8] proved that the equation has only one solution
x = 5. J. H. E. Cohn treated the equation for values of positive k under 100 and found
complete solutions for 77 values, see [4]. When k = cm, c a positive integer, m ∈ N unknown,
the equation is more difficult to treat, even for very small c. In the case c = 2, on the basis of
the work of Cohn [3], Le and Guo [5] found complete solutions with the aid of computers. In
this paper we consider the case c = 3. Brown [2] has found all solutions for 2 ! m, so we need
only to consider the equation for 2 | m. However for the sake of completeness we also give a
simple proof here which is just a rewriting of [2] in a little different way. Le conjectured in
[6] that the equation x2 + 32m = yn, (x, y) = 1, n > 2,m, n ∈ N has only one positive integer
solution (x, y,m, n) = (46, 13, 2, 3). Using the method E. Brown called “rough decent” [2],
we show this conjecture is true in all cases except when n is a prime of the form 12k− 1. To
complete the proof we use the result in [1] to cover the exceptional case.
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2. The equation x2 + 32m+1 = yn

We begin by considering the general equation x2 + 3m = yn, n > 2. If (x, y) #= 1, then
3 | x, 3 | y. Suppose 3s ‖ x, 3t ‖ y. If 2 ! m, we have m = tn < 2s or 2s = tn < m. So the
equation can be written as

3X2 + 1 = Y n (1)

or

X2 + 3m′
= Y n, (X,Y ) = 1, 2 ! m′ (2)

If 2 | m, then either m = tn ≤ 2s, or 2s = tn < m, or 2s = m < tn. The third case
is easily exclude, for then we have X2 + 1 = 3tn−mY n, hence X2 + 1 ≡ 0 mod 3, which is
impossible. For the former two cases the equation can be written as

X2 + 1 = Y n (3)

or

X2 + 3m′
= Y n, (X,Y ) = 1,m′ > 0, 2 | m′ (4)

Equation (3) has been treated in [7], and the equation x2+3 = yn, n > 2 has been treated
in [10], so we need only consider (1), (2) for m′ > 1 and (4). In this section we treat (1) and
(2).

Throughout the paper we will use freely the fact that Z[
√
−1] and Z[

√
−3] are unique

factorization domains.

Theorem 2.1. The equation 3x2 + 1 = yn, n > 2 has no positive integer solutions.

Proof. Since n > 2, arguing modulo 8, one obtains that if there exist integers x, y such
that 3x2 + 1 = yn, then y is odd and x is even. Hence the algebraic integers 1 + x

√
−3 and

1−x
√
−3 are coprime. If n = 4, there exist integers a, b such that 1+x

√
−3 = ±(a+b

√
−3)4.

Comparing the real part, we have 1 = ±(a4−18a2b2+9b4). Since 3 ! a, hence a2 ≡ 1 mod 3,
we see the minus case is rejected. So we have 1 = (a2 − 9b2)2 − 72b4. Consider the equation
X2 − 72Y 4 = 1. Suppose (x′, y′) is a nonnegative integer solution. Then x′+1

2
x′−1

2 = 18y′4.

So there exist integers s, t such that y′ = st, x′+1
2 = 2s4 and x′−1

2 = 9t4, or x′−1
2 = 2s4 and

x′+1
2 = 9t4, or x′+1

2 = 18s4 and x′−1
2 = t4, or x′−1

2 = 18s4 and x′+1
2 = t4. For the former two

cases we have 2s4 − 9t4 = ±1, for the latter two cases we have 18s4 − t4 = ±1. It is easy to
see that 2s4 − 9t4 = 1 and 18s4 − t4 = 1 are impossible by considering modulo 3.

By Lesbegue’s result [7], 18s4 − t4 = −1 has only one solution (s, t) = (0,±1). Then
y′ = 0. So b = 0, hence x = 0. (We can also solve the equation 18s4 − t4 = −1 directly: we
have (t2+1)(t2−1) = 18s4. Hence 2 | (t2±1). Moreover we have 2 ‖ (t2+1), because otherwise
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t2 ≡ 3 mod 4, which is impossible. Suppose that t #= ±1. Since ( t2+1
2 )(t2 − 1) = (3s2)2 and

( t2+1
2 , t2 − 1) = 1, there is an integer z such that t2 − 1 = z2, which implies t = ±1. This is

a contradiction; therefore we have the only integer solutions t = ±1, s = 0.)

For 2s4−9t4 = −1, we have 3t2+1
2

3t2−1
2 = 8( s

2)
4. Then as above we get u4−8v4 = ±1 and

uv = s
2 for some integers u, v. The minus case is rejected by considering modulo 8. From

[9] (see p. 208) the equation u4 − 8v4 = 1 has only one solution (u, v) = (1, 0). Then we see
s = 0, hence 3t2 = 1, which is impossible.

Now we may assume n is an odd prime p. Suppose (x, y,m, p) is a solution. Then there
exist some integers a, b such that 1 + x

√
−3 = (a + b

√
−3)p and y = a2 + 3b2.

Comparing the real parts, we have

1 = a

p −1
2∑

k=0

(
p

2k

)
ap −(2k+1)(−3b2)k. (5)

Then we see a = ±1. So from (5) we have ±1 ≡ 1 mod 3; hence a = 1. Thus
p −1

2∑
k=1

(
p
2k

)
(−3b2)k = 0.

Let V2(·) be the standard 2-adic valuation. For k ≥ 2, let k = 2st, 2 ! t. Then when
s = 0, 2(k − 1) = 2(t − 1) ≥ 2 > 0 = V2(k); and when s > 0, 2(k − 1) = 2(2st − 1) ≥
2(2s − 1) ≥ 2s > s = V2(k). So 2(k − 1) > V2(k) for k ≥ 2.

From 3x2 + 1 = yp, we have 2 ! y. As y = a2 + 3b2 = 1 + 3b2, we see 2 | b. Since x > 0,
we have y > 1. So b #= 0. Then for k ≥ 2, we have

V2(
(

p
2k

)
(−3b2)k) = V2(

p(p −1)
2k(2k−1)

(
p −2
2k−2

)
(−3b2)k)

= V2(
(

p
2

)
(−3b2)) + V2(

1
k(2k−1)

(
p −2
2k−2

)
(−3b2)k−1)

≥ V2(
(

p
2

)
(−3b2)) + 2(k − 1)− V2(k) > V2(

(
p
2

)
(−3b2)).

But from 0 =

p −1
2∑

k=1

(
p
2k

)
(−3b2)k, we see there are at least two terms with smallest 2-adic

valuation. This is a contradiction. This completes the proof of the theorem. !

Theorem 2.2. The equation x2 +32m+1 = yn, (x, y) = 1, n > 2,m ≥ 1 has only one positive
integer solution (x, y,m, n) = (10, 7, 2, 3).

Proof. When n = 4, we have (y2 +x)(y2−x) = 32m+1. Then y2 +x = 32m+1 and y2−x = 1.
So 2y2 = 32m+1 + 1. Then 2 ≡ 2y2 ≡ 1 mod 3, which is impossible.

Now we assume n is an odd prime p. Suppose (x, y,m, p) is a solution. Since (2, y) = 1
and (3, y) = 1(because (x, y) = 1), the algebraic integers x ± 3m

√
−3 are coprime. Then

there exist some integers a, b such that x + 3m
√
−3 = (a + b

√
−3)p and y = a2 + 3b2.
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Comparing the imaginary parts, we have 3m = b

p −1
2∑

k=0

(
p

2k+1

)
ap −(2k+1)(−3b2)k, so that

b | 3m. Let b = ±3l, 0 ≤ l ≤ m. Then ±3m−l =

p −1
2∑

k=0

(
p

2k+1

)
ap −(2k+1)(−3b2)k. So ±3m−l ≡

pap −1 ≡ p mod 3 (since 3 ! y implies 3 ! a).

If p = 3, we have ±3m−l = 3a2 − 3b2, or ±3m−l−1 = a2 − b2. If l > 0, then l = m − 1
since 3 ! a, hence ±1 = a2 − b2 ≡ a2 mod 3. So the minus case is excluded and we have
1 = a2− b2. Then a2 = 1+ b2 = 1+32(m−1) ≡ 2 mod 8, which is impossible. So l = 0, hence
b = ±1. Then we have ±3m−1 = a2 − 1 = (a + 1)(a− 1), so a + 1 = ±3m−1 and a− 1 = ±1,
or a − 1 = ±3m−1 and a + 1 = ±1. In both cases we have 3m−1 − 1 = ±2, hence m = 2.
Then we get a = ±2, so y = 7 and x = 10.

If p #= 3, then m = l. Hence, b = ±3m and p ≡ ±1 mod 3 accordingly.

Since x2 + 32m+1 = yp, by considering this modulo 8 we see that 2 ! y. Then from

y = a2 + 3b2 and 2 ! b, we have 2 | a. Thus ±1 =

p −1
2∑

k=0

(
p

2k+1

)
ap −(2k+1)(−3b2)k ≡ 1 mod 4. So

b = 3m and hence p ≡ 1 mod 3. This gives us p ≡ 1 mod 6.

Let N = p − 1. Then 6 | N . Suppose 3r+2m | N (here we do not assume that r ≥ 0,
but we have r + 2m > 0. We write this way just for convenience of computation in the
following), we will prove 3r+2m+1 | N , which leads to a contradiction. So the equation
x2 + 32m+1 = yp, (x, y) = 1, p ≡ 1 mod 6 has no integer solutions, thus finishing the proof
of the theorem.

Let α = a + 3m
√
−3. Let V3(·) be the standard 3-adic valuation. For k ≥ 2, let

k = 3st, 3 ! t. Then when s = 0, we have k − 2 = t − 2 ≥ 0 = V3(k); and when s > 0,
k − 2 = 3st− 2 ≥ 3s − 2 ≥ s = V3(k). So k − V3(k) ≥ 2 for k ≥ 2.

Then for k ≥ 2, we have

V3(
(

N
k

)
(3m

√
−3)k) ≥ V3(

N
k (3m

√
−3)k)) = V3(N)− V3(k) + (m + 1

2)k
≥ r + 2m + (m− 1

2)k + (k − V3(k)) ≥ r + 2m + (m− 1
2)k + 2 ≥ r + 4m + 1.

So

αN = (a + 3m
√
−3)N ≡ aN + NaN−13m

√
−3 mod 3r+4m+1.

Thus

αp = α · αN ≡ αaN + αNaN−13m
√
−3 = αaN + (a + 3m

√
−3)NaN−13m

√
−3

= αaN + NaN3m
√
−3−NaN−132m+1 ≡ αaN + NaN3m

√
−3 mod 3r+4m+1 (6)

Since x + 3m
√
−3 = (a + b

√
−3)p and b = 3m, we have

αp − ᾱp = (a + 3m
√
−3)p − (a− 3m

√
−3)p = (x + 3m

√
−3)− (x− 3m

√
−3) = 2 · 3m

√
−3,
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where ᾱ is the complex conjugate.

Taking the conjugate of (6), and then subtracting from (6), and substituting the above
equation, we get 2 ·3m

√
−3 = 2 ·3m

√
−3aN +2 ·3m

√
−3NaN mod 3r+4m+1. Thus, 3r+2m+1 |

((aN − 1) + NaN). Since 3 | (a2 − 1) and V3(
(N

2
k

)
3k) ≥ V3(N)− V3(k) + k ≥ r + 2m + 1 for

k ≥ 1, from aN − 1 = ((a2 − 1) + 1)
N
2 − 1 =

N
2∑

k=1

(N
2
k

)
(a2 − 1)k, we have 3r+2m+1 | (aN − 1).

Hence 3r+2m+1 | NaN . Therefore 3r+2m+1 | N . This completes the proof the theorem. !

3. The Equation x2 + 32m = yp, p ≡ 1 mod 12

In this section, we treat Case (4). At first we consider some simple cases.

Theorem 3.1. The equation x2 + 32m = y4, (x, y) = 1 has no positive integer solution.

Proof. Since 3 ! xy, from (y2 + x)(y2 − x) = 32m, we have y2 + x = 32m and y2 − x = 1. So
2y2 = 32m + 1. Thus 2 ≡ 2y2 ≡ 1 mod 3, which is impossible. !

Theorem 3.2. The equation x2 +32m = y3, (x, y) = 1 has only one positive integer solution
(x, y,m) = (46, 13, 2).

Proof. Suppose (x, y,m) is a solution. Since y is odd and (3, y) = 1 (because (x, y) = 1), we
have x + 3mi and x − 3mi are coprime. Then there exist integers a, b such that x + 3mi =
(a + bi)3 and y = a2 + b2. Comparing the imaginary parts we have 3m = 3a2b− b3, so 3 | b.

Now let b = ±3l, l > 0. Then ±3m−l−1 = a2 − 32l−1. Since 3 ! y and 3 | b, we have 3 ! a.
So l = m− 1. Hence ±1 = a2 − 32m−3. Since a2 ≡ 1 mod 3, the minus sign is rejected. So
a2 − 1 = 32m−3. Then a + 1 = ±32m−3 and a− 1 = ±1, or a− 1 = ±32m−3 and a + 1 = ±1.
In both cases we get 32m−3 − 1 = ±2. So m = 2, hence a = ±2. Therefore we have the
solution (x, y,m) = (46, 13, 2). !

In view of the above discussion, we need only consider x2 + 32m = yp, (x, y) = 1,m ≥ 1,
where p > 3 is a prime. Suppose (x, y,m, p) is a solution. Then there exist integers a and b
such that y = a2 + b2 and x + 3mi = (a + bi)p. Comparing the imaginary parts we have

3m = b

p −1
2∑

k=0

(
p

2k + 1

)
ap −(2k+1)(−b2)k. (7)

Since 3 ! xy, we have x2 ≡ y2 ≡ 1 mod 3, hence from x2 + 32m = yp, we get y ≡ 1
mod 3. If b = ±1, then from y = a2 + b2 = a2 + 1 mod 3, we have 3 | a. But from (7),
we get 3m ≡ b(−b2)

p −1
2 mod a, so we have 3 | b. This is a contradiction. So 3 | b. We

may assume b = ±3l, l > 0. Again from (7), we obtain ±3m−l ≡ pap −1 ≡ p mod 3. Since
p > 3, we get m = l , hence b = ±3m. Moreover p ≡ ±1 mod 3 according as b = ±3m.
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Accordingly, we also have

±1 =

p −1
2∑

k=0

(
p

2k + 1

)
ap −(2k+1)(−b2)k. (8)

From (8) we have ±1 ≡ (−b2)
p −1

2 ≡ (−1)
p −1

2 mod p. Hence, p ≡ ±1 mod 4 accordingly.
Thus, p ≡ ±1 mod 12 according as b = ±3m.

Theorem 3.3. The equation x2 + 32m = yp, (x, y) = 1, p ≡ 1 mod 12 has no integer
solution.

Proof. Suppose (x, y,m, p) is a solution. Then there exist integers a, b such that x + 3mi =
(a + bi)p and y = a2 + b2. Since p ≡ 1 mod 12, we have b = 3m. Let N = p − 1 so that
3 | N . Suppose 3r+2m | N , we will prove that 3r+2m+1 | N , which leads to a contradiction,
as desired. !

Now let α = a + 3mi, i =
√
−1. Recall that in last section we proved that, for k ≥ 2, we

have k − V3(k) ≥ 2. Since
(

N
k

)
= N

k

(
N−1
k−1

)
, we have, for k ≥ 2,

V3(

(
N

k

)
3mk) ≥ V3(

N

k
3mk) = V3(N)− V3(k) + mk ≥ r + 2m + (m− 1)k + 2 ≥ r + 4m.

So αN = (a + 3mi)N ≡ aN + NaN−13mi mod 3r+4m. Thus,

αp = α · αN ≡ αaN + αNaN−13mi = αaN + (a + 3mi)NaN−13mi

= αaN + NaN3mi−NaN−132m ≡ αaN + NaN3mi mod 3r+4m. (9)

Since x + 3mi = (a + bi)p and b = 3m, we have αp − ᾱp = (a + 3mi)p − (a − 3mi)p =
(x + 3mi)− (x− 3mi) = 2 · 3mi, where ᾱ is the complex conjugate.

Taking the conjugate of (9), and then subtracting from (9), and substituting the above
equation, we get 2 · 3mi = 2 · 3miaN + 2 · 3miNaN mod 3r+4m.

Thus, 3r+3m | ((aN − 1)+NaN). Since 3 | (a2− 1) and V3(
(N

2
k

)
3k) ≥ V3(N)−V3(k)+ k ≥

r + 2m + 1 for k ≥ 1, from aN − 1 = ((a2 − 1) + 1)
N
2 − 1 =

N
2∑

k=0

(N
2
k

)
(a2 − 1)k, we have

3r+2m+1 | (aN − 1). Hence 3r+2m+1 | NaN . Therefore 3r+2m+1 | N . !

4. The Equation x2 + 32m = yp, p ≡ −1 mod 12

Theorem 4.1. The equation x2 + 32m = yp, p ≡ −1 mod 12 has no integer solution.

Before giving the proof, we introduce the following notions; see [1].
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Definition 4.2. Let α,β be two algebraic integers such that α + β and αβ are nonzero
coprime rational integers and α

β is not a root of unity. Then we call (α,β) a Lucas pair and
define the corresponding sequence of Lucas numbers by

un = un(α,β) = αn− βn

α − β , n = 0, 1, 2, . . ..

Definition 4.3. Let (α,β) be a Lucas pair. A prime p is a primitive divisor of un(α,β) if p
divides un but does not divide (α− β)2u1u2 · · · un−1.

Definition 4.4. A Lucas pair (α,β), such that un(α,β) has no primitive divisors, is called an
n-defective Lucas pair. If no Lucas pair is n-defective, then n is called totally non-defective.

Lemma 4.5. ([1]) Every integer n > 30 is totally non-defective.

Proof of Theorem 4.1. Suppose (x, y,m, p) is a solution of the equation x2+32m = yp, (x, y) =
1, p ≡ −1 mod 12. Then as before we get x+3mi = (a+bi)p and y = a2+b2 for some integers
a, b. Since p ≡ −1 mod 12, we have b = −3m(see the paragraph above the statement of
Theorem 3.3). Let α = a+3mi, β = a−3mi. Then we have αp−βp = (a+3mi)p −(a−3mi)p =
(x + 3mi)− (x− 3mi) = −2 · 3mi = −(α− β). So up(α,β) = αp− βp

α − β = −1. It is obvious that
(α,β) is a Lucas pair, so by Lemma 4.5 up(α,β) always has a primitive divisor when p > 30.
When p = 11 or 23, we see from Table 1 of Theorem C in [1] that 11 and 23 are also totally
non-defective, so the above argument can be applied. Thus |up(α,β)| > 1 for a prime p of
the form 12k − 1. This is a contradiction. This completes the proof of the theorem. !

Acknowledgement. The author is very grateful to the referee for helpful suggestions.
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