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Abstract

In this paper we consider the diophantine equation z? + 3™ = y™,n > 2,m,n € N. When
2 | m, we determine complete solutions of the equation with the help of a deep result due to
Bilu, Hanrot, and Voutier, and when 2 { m, we rewrite a proof due to E. Brown in a little
different way.

1. Introduction

The diophantine equation 22 + k = 4", z,y,n € Z, n > 2 has been studied extensively.
When n = 3, it is well known as Mordell’s equation, which Mordell discussed in detail in his
book [9]. When n > 3, there is now also a vast amount of literature. For small positive k, it
seems easier to determine the solutions. For example, V. A. Lebesgue [7] proved that there
are no nontrivial solutions when k£ = 1. Nagell [10] showed that there are no solutions when
k =3 and 5. In the case k = 2, Ljunggren [8] proved that the equation has only one solution
x = 5. J. H. E. Cohn treated the equation for values of positive k£ under 100 and found
complete solutions for 77 values, see [4]. When k = ¢™, ¢ a positive integer, m € N unknown,
the equation is more difficult to treat, even for very small c¢. In the case ¢ = 2, on the basis of
the work of Cohn [3], Le and Guo [5] found complete solutions with the aid of computers. In
this paper we consider the case ¢ = 3. Brown [2] has found all solutions for 2 { m, so we need
only to consider the equation for 2 | m. However for the sake of completeness we also give a
simple proof here which is just a rewriting of [2] in a little different way. Le conjectured in
[6] that the equation x2 + 3™ = ¢y, (z,y) = 1,n > 2,m,n € N has only one positive integer
solution (z,y,m,n) = (46,13,2,3). Using the method E. Brown called “rough decent” [2],
we show this conjecture is true in all cases except when n is a prime of the form 12k — 1. To
complete the proof we use the result in [1] to cover the exceptional case.
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2. The equation 2% + 3?m+! = ¢

We begin by considering the general equation z? + 3™ = y", n > 2. If (z,y) # 1, then
3|z, 3|y. Suppose 3° || z, 3" || y. If 24 m, we have m = tn < 2s or 2s = tn < m. So the
equation can be written as

3X?24+1=Y" (1)
or

X243 =Y" (X,Y)=1,2¢/m’ (2)

If 2 | m, then either m = tn < 2s, or 2s = tn < m, or 2s = m < tn. The third case
is easily exclude, for then we have X? +1 = 3" "™Y™ hence X%+ 1 = 0 mod 3, which is
impossible. For the former two cases the equation can be written as

X?4+1=Y" (3)
or

X2 43" =YY" (X,Y)=1,m >0,2|m (4)

Equation (3) has been treated in [7], and the equation #2+3 = y™, n > 2 has been treated
in [10], so we need only consider (1), (2) for m’ > 1 and (4). In this section we treat (1) and

2).

Throughout the paper we will use freely the fact that Z[v/—1] and Z[\/—3] are unique
factorization domains.

Theorem 2.1. The equation 32% + 1 = y™, n > 2 has no positive integer solutions.

Proof. Since n > 2, arguing modulo 8, one obtains that if there exist integers =,y such
that 322 + 1 = y”, then y is odd and z is even. Hence the algebraic integers 1 + zv/—3 and
1—x+v/=3 are coprime. If n = 4, there exist integers a, b such that 1+x/—3 = £(a+byv/—3)%.
Comparing the real part, we have 1 = +(a* —18a?b?+9b). Since 3 1 a, hence > =1 mod 3,
we see the minus case is rejected. So we have 1 = (a? — 90?)? — 72b*. Consider the equation
X% —72Y" = 1. Suppose (7/,y') is a nonnegative integer solution. Then Z312=1 = 18y,

So there exist integers s, ¢ such that y' = st, 2 = 2s* and 25 = 9¢, or Z51 = 2s* and

’ ’ ’_ ,_ ’
TH = 9t or £ = 185" and 2 =t*, or =2+ = 18s* and £t = ¢*. For the former two

cases we have 2s* — 9t* = £1, for the latter two cases we have 18s* — t* = £1. It is easy to
see that 2s* — 9t* = 1 and 18s* — t* = 1 are impossible by considering modulo 3.

By Lesbegue’s result [7], 18s* — t* = —1 has only one solution (s,t) = (0,41). Then
y' =0. So b= 0, hence z = 0. (We can also solve the equation 18s* — t* = —1 directly: we
have (£2+1)(t?—1) = 18s. Hence 2 | (t241). Moreover we have 2 || (£241), because otherwise
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#2 =3 mod 4, which is impossible. Suppose that t # 1. Since (£51)(t2 — 1) = (35%)2 and
(tQT“, t? — 1) = 1, there is an integer z such that t* — 1 = 22, which implies ¢ = +1. This is
a contradiction; therefore we have the only integer solutions ¢t = +1,s = 0.)

For 2s* — 9t* = —1, we have 313021 — §(5)4 Then as above we get u! —8v* = £1 and
uv = 3 for some integers u,v. The minus case is rejected by considering modulo 8. From
9] (see p. 208) the equation u* — 8v* = 1 has only one solution (u,v) = (1,0). Then we see
s = 0, hence 3t> = 1, which is impossible.

Now we may assume n is an odd prime p. Suppose (z,y, m,p) is a solution. Then there
exist some integers a, b such that 1 + zv/—=3 = (a + by/=3)? and y = a® + 30°.

Comparing the real parts, we have

%
p _
1 = az (2k) aP (2k+1)(—3b2)k. (5)
k=0

Then we see a = +1. So from (5) we have £1 = 1 mod 3; hence @ = 1. Thus

pT—l
S (4) (- .
k=1

Let V5(+) be the standard 2-adic valuation. For k > 2, let k = 2°¢,2 4 t. Then when
s=0,2k—1) =2(t—1) > 2 >0 = Va(k); and when s > 0, 2(k — 1) = 2(2%¢t — 1) >
2(2° —1) > 2s >s=Va(k). So2(k—1)> Va(k) for k > 2.

From 322 + 1 = 9?, we have 2t y. Asy = a®> + 3b* = 1 + 3b%, we see 2 | b. Since z > 0,
we have y > 1. So b # 0. Then for k > 2, we have

Va((3) (=30)") = Va(gitasy (5,5) (—30°)")
= Va((5) (=30%)) + Va (g (5,23) (=30°)% 1)

> Va((5)(=3b)) + 2(k — 1) — Va(k) > Va((3)(—3b%)).

p—1

2
But from 0 = Y (})(—3b%"*, we see there are at least two terms with smallest 2-adic

valuation. This is a contradiction. This completes the proof of the theorem. O

Theorem 2.2. The equation z%+ 3™ = ¢" (z,y) = 1,n > 2,m > 1 has only one positive
integer solution (x,y, m,n) = (10,7,2, 3).

Proof. When n = 4, we have (y? +xz)(y? —z) = 3*™*1. Then y* +x = 3*"" and 3> — 2z = 1.
So 2y? = 3*™*1 4+ 1. Then 2 = 2y? =1 mod 3, which is impossible.

Now we assume n is an odd prime p. Suppose (x,y, m,p) is a solution. Since (2,y) =1
and (3,y) = 1(because (x,y) = 1), the algebraic integers x £+ 3™/—3 are coprime. Then
there exist some integers a, b such that x 4+ 3™y/—3 = (a + by/—3)? and y = a® + 3b*.
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p—1
2

Comparing the imaginary parts, we have 3™ = b > (2k€r1)ap ~(kH1)(—3b?)* so that
k=0

p -1

—Ci1) (_32)k, Go +3m1 =

b| 3™ TLetb=+3,0<<m. Then £3"" = Z (2441)0”

pa? ~' = p mod 3 (since 3 1y implies 31 a).

If p =3, we have 3" = 3a® — 302, or £3™ "1 =2 — 0% If [ > 0, then [ = m — 1
since 3 { a, hence +1 = a*> — b?> = a®> mod 3. So the minus case is excluded and we have
1 =a>—b. Thena? =1+ =1+3%""1D =2 mod 8, which is impossible. So I = 0, hence
b= =+1. Then we have 3™ ' =a?*—-1=(a+1)(a—1),s0 a+1=+3""1and a — 1 = £1,
ora—1=4+3""1and a +1 = £1. In both cases we have 3™ ! —1 = 4+2, hence m = 2.
Then we get a = £2, so y = 7 and = = 10.

If p # 3, then m = [. Hence, b = £3™ and p = 1 mod 3 accordingly.

Since x? + 3?™*T1 = yP by considering this modulo 8 we see that 2 { y. Then from
p—1

y=a’+3b* and 21 b, we have 2 | a. Thus £1 = " (,,7,)a? ~@*D(=3b?)F =1 mod 4. So
k=0

2%+ 1)
b= 3™ and hence p =1 mod 3. This gives us p =1 mod 6.

Let N =p — 1. Then 6 | N. Suppose 3’2" | N (here we do not assume that r > 0,
but we have r + 2m > 0. We write this way just for convenience of computation in the
following), we will prove 3""?™*1 | N which leads to a contradiction. So the equation
22 + 32t = y? (z,y) = 1,p =1 mod 6 has no integer solutions, thus finishing the proof
of the theorem.

Let @« = a + 3™y/—3. Let V3(:) be the standard 3-adic valuation. For k > 2, let
k = 3°,3 t t. Then when s = 0, we have k —2 =t —2 > 0 = V5(k); and when s > 0,
k—2=3%—2>3 —2>s="Vsk). Sok— Vi(k) > 2 for k > 2.

Then for &k > 2, we have

Va((3) (3™v/=3)%) > V3 (X (3my/=3)F)) = V5(N) — Vs(k

>r+2m+ (m—35)k+ (k—V3(k)) > r+2m+ (m

)+ (m+ 3)k
%)k+2>7’+4m+1

So
oV = (a+3m/=3)N =a" + Na¥"13m\/=3 mod 3H4mtL,

Thus
of =a-a =ad + ozNaN’13m\/—3 = aa” + (a + 3"V—3)Na"~13m\/=3
= aa” + Na"¥3™/=3 — Na" 713" = 0™ + Na”3™y/=3 mod 3"+ (6)

Since x + 3"y/—3 = (a + b\/—3)P and b = 3™, we have
o — &P = (a+ 3"V 3 — (a— 3"V 3 = (x+3"V=3) — (z — 3"/—3) = 2 3"/—3,
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where @ is the complex conjugate.

Taking the conjugate of (6), and then subtracting from (6), and substituting the above

equation, we get 2-3™/—3 = 2-3"/—=3a" +2-3™/—=3Na" mod 37Tl Thus, 37+2m+1 |
N

((a¥ — 1) + Na"). Since 3 | (a> — 1) and V3((2)3%) > V3(N) — Va(k) + k > r+2m + 1 for
N

2
k>1,froma’ —1=(2-1)+1)2—-1=3 (%)(a2 — 1)k, we have 372"+ | (o —1).
k=1

Hence 3721 | NV, Therefore 3" 2m+1 | N. This completes the proof the theorem. O

3. The Equation 2% + 3*" =y, p=1 mod 12

In this section, we treat Case (4). At first we consider some simple cases.
Theorem 3.1. The equation 2 + 3*™ = y*, (z,y) = 1 has no positive integer solution.

Proof. Since 3t zy, from (y* + z)(y? — z) = 3™, we have y> + x = 3*" and y* —z = 1. So
2y% = 3?" + 1. Thus 2 = 2y?> =1 mod 3, which is impossible. O

Theorem 3.2. The equation 2%+ 3*™ = 3 (z,y) = 1 has only one positive integer solution
(x,y,m) = (46,13, 2).

Proof. Suppose (x,y,m) is a solution. Since y is odd and (3,y) = 1 (because (z,y) = 1), we
have x 4+ 3™¢ and x — 3™ are coprime. Then there exist integers a, b such that x 4 3™ =
(a+ bi)® and y = a® + b*. Comparing the imaginary parts we have 3™ = 3a?b — b, so 3 | b.

Now let b = 43", 1 > 0. Then +3™""1 = 2 — 3?71, Since 3 { y and 3 | b, we have 3 a.
So I =m — 1. Hence 1 = a* — 3?73, Since a> =1 mod 3, the minus sign is rejected. So
a?—1=3>"3 Thena+1=+3"3anda—-1==xl,ora—1=%3*"3and a+ 1 = £1.
In both cases we get 323 — 1 = £2. So m = 2, hence a = 42. Therefore we have the
solution (x,y, m) = (46, 13,2). O

In view of the above discussion, we need only consider z% + 3?™ = ¢, (z,y) = 1,m > 1,
where p > 3 is a prime. Suppose (x,y, m,p) is a solution. Then there exist integers a and b
such that y = a® + b? and x + 3™ = (a + bi)?. Comparing the imaginary parts we have

(21;1 1> @ TP (=) (7)

p—1

3" =10
k=0
Since 3 1 zy, we have 2 = y*> = 1 mod 3, hence from z? + 3™ = y?, we get y = 1
mod 3. If b = +1, then from y = a® + > = a®> + 1 mod 3, we have 3 | a. But from (7),
we get 3™ = b(—bQ)pT_1 mod a, so we have 3 | b. This is a contradiction. So 3 | b. We

may assume b = 43’1 > 0. Again from (7), we obtain +3™"! = pa? ~! = p mod 3. Since
p > 3, we get m = [ , hence b = £3™. Moreover p = +1 mod 3 according as b = £3™.
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Accordingly, we also have

N » )
:|:1 — D (2k+1) 12 k:‘
;(Qk+1)a (=6 (8)

p—1
2

From (8) we have +£1 = (—b?) 2 = (—l)pT_1 mod p. Hence, p = 1 mod 4 accordingly.
Thus, p = £1 mod 12 according as b = +3™.

Theorem 3.3. The equation z? + 3*" = y? (z,y) = 1, p = 1 mod 12 has no integer
solution.

Proof. Suppose (x,y, m,p) is a solution. Then there exist integers a, b such that = + 3™i =
(a4 bi)P and y = a® + b*. Since p =1 mod 12, we have b = 3™. Let N =p — 1 so that
3| N. Suppose 3"2™ | N, we will prove that 3”2+ | N which leads to a contradiction,
as desired. O

Now let o = a + 3™i,7 = /—1. Recall that in last section we proved that, for k > 2, we

have k — V3(k) > 2. Since (],Z) = %(]Z:ll), we have, for k > 2,

N N
Vg((k>3mk) > \/3(?3”““) =V3(N) = V3(k)+mk >r+2m+ (m—1k+2>r+4m.

So o = (a + 3mi)N = a™ + Na™~13™i mod 3"T*™. Thus,
o =a-a =ad +aNa" 13" = ad” + (a + 3™i)Na™¥13™i
= aa” + Na"¥3™i — Na"13*™ = aa®™ + Na™3™i mod 37", (9)
Since x + 3™i = (a + bi)? and b = 3™, we have o? — a? = (a 4+ 3™i)? — (a — 3™)P =
(x +3™mi) — (x — 3™i) = 2 - 3™, where & is the complex conjugate.

Taking the conjugate of (9), and then subtracting from (9), and substituting the above
equation, we get 2 - 3™i = 2 - 3™ia” +2-3"iNa" mod 374",

Thus, 373™ | ((a® — 1)+ Na). Since 3| (a2 — 1) and Vy((3)3%) > V3(N) — Va(k) + k >

N

r+2m41fork>1 froma¥ —1=((a®2=1)+1)2 —-1=13 (%)(aQ—l)k, we have
k=0
3rt2m+l | (gV —1). Hence 3"+?™+1 | Na¥. Therefore 372m+1 | N. O

4. The Equation 22 +3>" = 4?, p= —1 mod 12

Theorem 4.1. The equation 22 + 3?™ = ¢, p = —1 mod 12 has no integer solution.

Before giving the proof, we introduce the following notions; see [1].
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Definition 4.2. Let o, be two algebraic integers such that a + § and «af are nonzero
coprime rational integers and % is not a root of unity. Then we call («, 3) a Lucas pair and
define the corresponding sequence of Lucas numbers by

un:un(a,ﬁ):%, n=20,1,2,....

Definition 4.3. Let (a, 3) be a Lucas pair. A prime p is a primitive divisor of u,(«, 3) if p
divides u,, but does not divide (o — 3)?usug « « * Up_1.

Definition 4.4. A Lucas pair («, 3), such that u,(«, 3) has no primitive divisors, is called an
n-defective Lucas pair. If no Lucas pair is n-defective, then n is called totally non-defective.

Lemma 4.5. ([1]) Every integer n > 30 is totally non-defective.

Proof of Theorem 4.1. Suppose (x,y, m, p) is a solution of the equation x2+3%™ = y?, (x,y) =
1,p = —1 mod 12. Then as before we get x+3™i = (a+bi)? and y = a*+b? for some integers
a,b. Since p = —1 mod 12, we have b = —3™(see the paragraph above the statement of
Theorem 3.3). Let a = a+3™i, f = a—3™i. Then we have o’ — 3 = (a+3™)P —(a—3™4)P =
(x4+3M) —(x —3™1) = =2-3™i = —(a— (). So uy(a, f) = O‘j:ﬁﬁp = —1. It is obvious that
(e, ) is a Lucas pair, so by Lemma 4.5 u,(c, 3) always has a primitive divisor when p > 30.
When p = 11 or 23, we see from Table 1 of Theorem C in [1] that 11 and 23 are also totally
non-defective, so the above argument can be applied. Thus |u,(c, 3)| > 1 for a prime p of

the form 12k — 1. This is a contradiction. This completes the proof of the theorem. O

Acknowledgement. The author is very grateful to the referee for helpful suggestions.
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