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Abstract

Question/Answer games (Q/A games) are a generalization of Ulam’s game and they model
information extraction in parallel. A Q/A game, G = (D, s, (q1, . . . , qr)), is played on a
directed acyclic graph, D = (V, E), with a distinguished start vertex s, between two players,
Paul and Carole. In the i-th round, Paul selects a set, Qi ⊆ V , of at most qi non-terminal
vertices. Carole responds by choosing an outgoing edge from each vertex in Qi. At the end
of r rounds, Paul wins if and only if Carole’s answers define a unique path from the root to
one of the terminal vertices in D.

We explore the complexity of determining if Carole wins a Q/A game G. We show that the
problem is NP-hard if the game is restricted to one question per round, except for the last
round. The problem remains NP-hard if we restrict the game to two rounds. The general
version of the game is PSPACE-complete.

1. Introduction and Definitions

Q/A games are motivated by the famous Twenty Questions and can be considered as a
generalization of Ulam’s game. A Q/A game is a perfect information game that is played
between two persons, Paul and Carole.1 It models how an algorithm can extract information

1Joel Spencer [13] has suggested that the players in these types of search games be called Paul and Carole:
Paul represents the great questioner Paul Erdős; whereas, Carole, being an anagram of “oracle”, represents
the notoriously obtuse oracle of Apollo at Delphi.
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Figure 1: A Q/A game: The grey vertex is the pseudo-root. The little black vertices are
the reachable terminal vertices. “?” represent Paul’s questions. Bold arrows represent the
choices made by Carole (Note that Carole wastes a question of Paul in the first round).
Unreachable part of the graph is dotted out.

by probing the input in parallel.

Formally, a Q/A game, G = (D, s, (q1, . . . , qr)), where:

1. D = (V, E) is a directed acyclic graph.

2. The vertex s ∈ V is a distinguished vertex called the root.

3. There are r rounds in the game and in the i-th round Paul is allowed to ask at most
qi questions.

We will refer to q = (q1, . . . , qr) as the question vector. We will also assume that qi > 0
for all i since it does not make sense to have a round with zero questions. If the maximum
number of questions in each round is same; that is, q1 = q2 = . . . = qr = q, we denote the
game by G = (D, s, q, r). Furthermore, when the root of D is clear from the context we may
ignore specifying it.

Most of the graph theoretic terminology is borrowed from Bollobás’ monograph [3]. For
a vertex v, we let N+(v) denote the set of all vertices w such that (v, w) is an edge in D.
d+(v) = |N+(v)| is the out-degree of the vertex v. I = {v : d+(v) > 0} denotes the set of
internal vertices of D, and T = V \ I denotes the set of terminal vertices of D.

Throughout this section we assume that G = (D, s, (q1, . . . , qr)) is the game under con-
sideration and I and T are the internal and terminal vertices of D, respectively.

In the i-th round, Paul chooses a set Qi ⊆ I, such that |Qi| ≤ qi. If v ∈ Qi we say that
Paul inquires or asks about the vertex v. We may also refer to v as a “question” posed in
the i-th round. Carole replies by declaring the value of fi(v) ∈ N+(v) for all v ∈ Qi. When
Carole declares fi(v) we say that she responds by fi(v) or Carole points v to fi(v). In this
case, we may also say that Carole chooses the edge (v, fi(v)).
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Let Ui denote the set of questions posed by Paul till the end of the i-th round; that
is, Ui =

⋃i
j=1 Qi. After the end of the i-th round, the pair (Ui, fi), where fi : Ui $→ V and

fi(v) ∈ N+(v), completely determines the state or position of the game. Let P = v0, . . . , vt be
a path in D. We say that P is consistent with the position (Ui, fi) if vj ∈ Ui ⇒ vj+1 = fi(vj)
for all 0 ≤ j < t. When the position is clear from the context we say that P is consistent with
Carole’s answers. To simplify the exposition we assume that Paul never repeats a question
(or equivalently we can require that Carole once having answered a vertex v, does not change
the value of fi(v)). At the end of r rounds, Paul wins G if there is a unique path that is
consistent with (Ur, fr), the final state after r rounds of the game.

An equivalent formulation of Q/A games is given by algorithms that probe information
in parallel. An input for G is a function f : I → V where f(v) ∈ N+(v). Note that each
input naturally defines a path Pf from the root to one of the terminal vertices of D. The
following theorem is easy to prove.

Theorem 1 Paul wins G = (D, s,q) if and only if there exists a decision tree algorithm (or
strategy) that probes qi values of f in the i-th step and at the end of k steps outputs Pf .

For a given directed graph D, we say that the vertex t is reachable from the vertex s if
there exists a path from s to t. Note that, if initially there is a vertex v which is not reachable
from s, then Paul, playing perfectly, will never inquire about this vertex. Similarly, after the
first round, if there is a vertex v such that there are is no path from s to v that is consistent
with Carole’s answers then Paul will not inquire about v in the subsequent rounds. Consider
G in position (Ui, fi) after i rounds. We call a vertex v reachable with respect to the position
(Ui, fi) if the path from the root to v is consistent with Carole’s answers.

In the rest of the paper, when the position (Ui, fi) is clear from the context, we will say
that a vertex is reachable instead of specifically saying that it is reachable with respect to
the position (Ui, fi).

Let R0 be the set of reachable vertices from s before the first round. Let Ri be the set of
reachable vertices with respect to the position (Ui, fi). Note that Ri ⊆ Ri−1 for i = 1, . . . , r.
Q/A-games can be interpreted as follows: In each round Paul presents Carole with a set Qi

of internal vertices of D with |Qi| ≤ qi. Carole deletes all but one outgoing edge from each
vertex v ∈ Qi. Let Ti = Ri∩T be the set of terminal vertices that are reachable with respect
to the position (Ui, fi) in round i. Paul wants to play the game in such a way that at the
end of the game Tr consists of a singleton set and Carole is trying to avoid this.

Example 1 Let us consider any game that is played on the a directed path Pn (see Figure
2). Since all internal vertices of Pn have exactly one edge coming out of them, Paul wins
this game without asking any questions.

Example 1 shows that if an internal vertex v has out-degree one then Paul will not inquire
about it at all. Indeed, we made sure that Paul inquires about internal vertices in Qn (when
Carole plays perfectly) by giving each internal vertex out-degree at least two.
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Figure 2: The Path P5 in Example 1

Example 2 Let us consider any game that is played on the graph Qn shown in Figure 3.
This graph consist of n internal vertices connected as a path. Each one of these vertices vi is
also connected to a terminal vertex wi. The last internal vertex is connected to two terminal
vertices wn and wn+1. Paul will win the game G = (Qn, (q1, . . . , qr)) if and only if

r∑

i=1

qi ≥ n.

To see this note that if the above inequality is satisfied then Paul can inquire about all the
internal vertices and win the game (Figure 3(c)). On the other hand if the above inequality
is not satisfied, then Carole can use the following strategy and win the game. If Paul inquires
about vi with i < n then she points to vi+1. If he inquires about vn then she point to wn+1.
Since,

r∑

i=1

qi < n

there is at least one internal vertex that Paul has not inquired about. Let k be the smallest
index such that Paul has not inquired about vk. It is now readily seen that

v1, . . . , vk, wk

and
v1, . . . , vk, vk+1, . . . , vn, wn+1

are two distinct paths that are consistent with Carole’s answers and she wins.

Two consistent paths

w1
w2

w3

w4

w5 w6

v5

v4

v3

v2

v1

(c)(b)(a)

Unique Path

Figure 3: The Graph Q5 in Example 2
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Figure 4: The Graph Q̂5 in Example 3

Example 3 Let Q̂n be the graph in which the vertices {w1, . . . , wn} are merged into a single
vertex w, as shown in Figure 4. We invite the reader to modify the argument given in
Example 1.2 to show that Paul wins G = (Q̂n, (q1, . . . , qr)) if and only if

r∑

i=1

qi ≥ n.

We will use the digraphs like Qn as “gadgets” in the subsequent sections. It is possible
to use Q̂n thereby saving some terminal vertices. However, digraphs like Qn are clearer and
allow us to make less cluttered figures.

Paul, playing perfectly, will never inquire about any internal vertex of out-degree one.
This motivates the following definition. An internal vertex, v, is called open (with respect
to (Ui, fi)) if it is reachable and Paul has not inquired about v and the out-degree of v is at
least two. A vertex x is called the pseudo-root (with respect to (Ui, fi)) if x is open and all
predecessors of x are not open. Once again whenever the position is clear from the context
we will ignore specifying it.

Fact 2 Paul wins G = (D, s, (q1, . . . , qr)) if and only if the number of open vertices in the
last round is at most qr.

It is interesting to contrast Q/A games with the r round version of Ulam’s searching game
[16]. In Ulam’s game, U(n; (q1, . . . , qr)), Carole thinks of an “x” from the set S = {1, . . . , n}.
Paul tries to find this x by asking questions of the form: QA: “Is x ∈ A?” where A can be
any subset of {1, . . . , n}. The game proceeds in r rounds and in i-th round Paul is allowed
to ask qi questions. After r rounds Paul wins if he can determine x. The outcome of this
game depends only on the total number of questions asked; that is T =

∑r
i=1 qi. One can

easily show that Paul wins U(n; (q1, . . . , qr)) if and only if 2T ≥ n.

Ulam’s game becomes much more interesting if Carole is allowed to lie at times [11, 12, 13].
Let U(n, q, k) denote Ulam’s game where Paul asks q questions adaptively; that is, he poses
the i-th question after receiving the answer to the (i−1)-st question. Carole is allowed to lie
k times. Furthermore, let Û(n, q, k) be the game in which Paul asks questions a total number
of q questions in two batches and Carole is allowed to lie k times. Dumitriu and Spencer
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[5, 6] study Ak(q), the maximal n for which Paul wins U(n, q, k); and Âk(q), the maximal
n for which Paul wins Û(n, q, k) on an arbitrary channel (see [5, 6] for the definition of a
channel). They show that Ak(q) is asymptotically the same as Âk(q) (here the asymptotics
are taken for a fixed k as q → ∞). This feature of Ulam’s game is indeed desirable since
Ulam’s game has connections to error-correcting codes where adaptability is undesirable. It
would be extremely interesting indeed to find out the asymptotic when Paul asks all the
questions in one batch.

Ulam’s game is often compared [13] with the classical Twenty Questions. Note that few
would be willing to play Twenty Questions if they were required to ask all of the twenty ques-
tions at once! What makes Twenty Questions interesting is that “answers do help in posing
questions.” Ulam’s game does not capture this interesting aspect of Twenty Questions. Q/A
games are an attempt to model games that do capture this interesting aspect.

Since G is a perfect information game, either Paul or Carole have a winning strategy. In
that case we say G is a Paul-win or Carole-win game, respectively.

Q/A games on n-level, complete binary trees, Tn, have been analyzed in [1, 2], where it
was shown that

Theorem 3 ([1, 2]) (Tn, (q1, . . . , qr)) is Paul-win if and only if

r∑

i=1

+log(qi + 1), ≥ n.

One of the techniques used in analyzing trees is termed as generous play by Carole.
Suppose that we allow Carole to answer any number of questions without Paul inquiring
about them. Thus in any round i in the game, she answers all the questions posed by Paul,
and a few more which he has not inquired about. In this case, we will say that Carole
answers generously. It is readily seen that Paul wins a game, G, if and only if he wins G
with generous play allowed to Carole. As pointed out in [2], Carole’s generosity is never
intended towards Paul, it is only a book keeping tool that assists in analyzing the game.

The purpose of this paper is to analyze the complexity of these games on arbitrary
digraphs. Let us define the following languages:

C = {〈G〉 : G is a Carole-win game}
Ĉ = {〈G〉 : G = (D, s, (1, 1, . . . , 1, L)) is a Carole-win game}
C2 = {〈G〉 : G is a two round Carole-win game}

where 〈G〉 denotes a suitable “encoding” of the game G, and L denotes and arbitrary integer.

Many combinatorial games are known to be PSPACE-complete [7, 9]. In general, an-
alyzing Q/A games seems to be difficult also. We show that C is PSPACE-complete and
both Ĉ and C2 are NP-hard.
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The rest of the paper is organized as follows: In the next section we give an overview of
complexity theoretic terms that are used in our paper; this section can be easily skipped by
a reader who is familiar with complexity theory. In Section 3 we prove that Ĉ is NP-hard.
In Section 4 we prove that C2 is NP-hard. In the last section we present a proof that C is
PSPACE-complete.

2. Overview of Complexity Theory

In this section, we give some definitions from complexity theory that will be used in this
paper. Our overview is very basic and only introduces the concepts we require. For a more
thorough, general and rigorous treatment see [8, 10]. The central thesis in complexity theory
asserts that the intuitive notion of algorithms is captured by the mathematically precise
definition of a Turing machine. For the purpose of this paper we will not deal with Turing
machines and instead only talk about algorithms.

Let Σ = {0, 1} be the binary alphabet. Σ∗ is the set of all (finite) strings over Σ.
Intuitively Σ∗ is the set of all possible inputs. A language L over Σ is a subset of Σ∗. Let A
be an algorithm and let A(x) denote the output produced by A on the input x. An algorithm
decides a language L if for every x ∈ Σ∗,

A(x) =

{
1, if x ∈ L;
0, if x /∈ L.

We say that A runs in polynomial time if there is a k such that for every input string x the
algorithm halts in time O(|x|k), where |x| denotes the length of x. The class P is the set of
all languages that can be decided by some polynomial time algorithm.

A verification algorithm V takes as input a pair (x, y). We say that V verifies a language
L if

x ∈ L ⇒ V (x, y) = 1 for some y ∈ Σ∗, and

x /∈ L ⇒ V (x, y) = 0 for all y ∈ Σ∗.

We say that V verifies L in polynomial time if there exists an integer k such that on input
(x, y) the verifier V runs in time O(|x|k). It is important to note that V is not allowed to
take time polynomial in the length of its input (x, y); it must run in time polynomial in the
length of x only. The class NP is the set of all languages that can be verified in polynomial
time.

The class PSPACE is the set of all languages that can be decided by an algorithm that
requires polynomial space. The following inclusions are known (see [10]):

P ⊆ NP ⊆ PSPACE.
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It is widely suspected that the above inclusions are strict.

Let f : Σ∗ → Σ∗. We say an algorithm T computes f if on input x, it produces f(x) as
an output. A LOGSPACE-transducer for f : Σ∗ → Σ∗ is an algorithm T that computes f
and only uses O(log |x|) workspace. In this case, the algorithm is allowed to read its input
several times. The output is written on a write only output device. If f can be computed
by a LOGSPACE-transducer we say that f is LOGSPACE-computable.

A language A is LOGSPACE-reducible to B, written as A ≤L B, if there exists a
LOGSPACE-computable function f such that

x ∈ A if and only if f(x) ∈ B.

The relation ≤L is reflexive and transitive [10]. A language L is called NP-hard (resp.
PSPACE-hard) if for all languages L′ ∈ NP (resp. L′ ∈ PSPACE), L′ ≤L L. A language
L is called NP-complete (resp. PSPACE-complete) if L ∈ NP (resp. L ∈ PSPACE) and
L is NP-hard (resp. PSPACE-hard).

2.1 TQBF and SAT

We now discuss some basic definitions from propositional logic. We will identify the values
1 and 0 with the boolean constants true and false, respectively. Let x1, . . . , xn be a set of
boolean variables. ¬xi or xi denotes the negation of the variable xi.

A mapping t : {x1, . . . , xn} → {0, 1} is called an assignment of the variables {x1, . . . , xn}.
If the order of the variables x1, . . . , xn is clear from the context then we may some times
denote an assignment t with (t(x1), . . . , t(xn)). A literal l is a variable or its negation. The
literal xi is satisfied by all assignments t with t(xi) = 1 and the literal xi is satisfied by all
assignments with t(xi) = 0.

A clause C is a disjunction of literals; that is, C = l1 ∨ l2 . . .∨ lt where each lj is a literal.
A clause is satisfied by an assignment t if t satisfies at least one literal in C.

A formula is φ in conjunctive normal form (CNF) is a conjunction of clauses; that is,
φ = C0 ∧ C1 . . . ∧ Cm−1, where each Ci is a clause. An assignment t satisfies φ if it satisfies
all the clauses of φ. In this paper we will assume that all boolean formulae are in CNF.

Let us define
SAT = {〈φ〉 : φ is in CNF and φ is satisfiable }.

The following theorem of Cook and Levin established the existence of NP-complete problems
and is one of the most celebrated results in complexity theory:

Theorem 4 (Cook-Levin[4, 15]) SAT is NP-complete.
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Let φ be a boolean formula with n variables x1, . . . , xn. Let φ|xi=0 (resp. φ|xi=1) denote
the formula obtained by substituting 0 (resp. 1) for the variable xi. A fully quantified boolean
formula2 ψ is a formula of the form

Q1x1Q2x2 . . . Qnxnφ,

where φ is a boolean formula over {x1, . . . , xn} and Qi ∈ {∀, ∃}. ∀ (resp. ∃) is called the
universal (resp. existential) quantifier. If Qi = ∀ (resp. Qi = ∃), we say that xi is universally
quantified (resp. existentially quantified) .

A fully quantified boolean formula φ evaluates to 0 or 1 as follows:

1. A fully quantified boolean formula with no variables is a formula over the constants 0
and 1. It evaluates to 0 or 1 by interpreting ∧,∨ and ¬ in the natural way.

2. If ψ = ∀xψ0 then ψ evaluates to 1 if and only if both ψ0|x=0 and ψ0|x=1 evaluate to 1.

3. If ψ = ∃xψ0 then ψ evaluates to 1 if and only if at least one of ψ0|x=0 or ψ0|x=1 evaluate
to 1.

For the purpose of our paper we will assume the quantifiers in any fully quantified boolean
formula start with the existential quantifier and always alternate; that is,

Qi =

{
∃, if i is odd;
∀, if i is even.

We define the language TQBF as follows:

TQBF = {〈ψ〉 : ψ is a fully quantified boolean formula in CNF that evaluates to 1}.

Theorem 5 (Stockmeyer and Meyer[14]) TQBF is PSPACE-complete.

3. Complexity of Ĉ

The game G = (D, s, 1, r) is trivial. Paul wins G if and only if the length of the longest
path starting from s in the directed acyclic graph D is at most r, which can be checked in
polynomial time. If we allow more questions in the last round, the game becomes hard to
solve and we have the following theorem.

2In logic ψ would be a fully quantified boolean formula in prenex normal form with the quantifier free
part in CNF. However, we omit the discussion of normal forms in our paper.
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Theorem 6 Ĉ is NP-Hard.

In order to prove the theorem we will show that SAT is reducible to Ĉ. As SAT is NP-
complete and LOGSPACE-reducibility is transitive this shows that Ĉ is NP-hard. Towards
this end we show that given a boolean formula φ in conjunctive normal form, we can compute
a Q/A game Gφ in LOGSPACE such that φ is satisfiable if and only if Carole wins Gφ.
Let φ be a boolean formula in conjunctive normal form on n variables {x1, . . . , xn}. Let m
be the number of clauses in φ; that is,

φ = C0 ∧ C1 ∧ · · · ∧ Cm−1.

The game Gφ is played on a directed graph Dφ and consists n + 1 rounds.

Gφ = (Dφ, s = v0
1, (1, . . . , 1︸ ︷︷ ︸

n times

, L)),

where L = nm + m− 1. In the first n rounds Paul is allowed to ask one question and in the
last round he can ask nm + m − 1 questions.

3.1 Construction of Dφ

We assume that m ≥ n (otherwise, we can just add n clauses with each variable and its
negation to φ). The graph Dφ corresponding to the game Gφ consists of 2n(m+1)+3m+2
vertices.

For each clause Ci there is a clause vertex labeled ci. Each clause vertex is connected to
two terminal vertices labeled li and ri. This guarantees that if ci is open in the last round
then Paul must inquire about ci. There are three more special terminal vertices labeled p, q
and z in the graph.

For each variable xi, other than x1, we have two value selection vertices v0
i and v1

i in the
graph. For x1 we have only one value selection vertex v0

1. Each value selection vertices v0
i

(and v1
i when i > 1) is connected to two paths Pi(0) and Pi(1).

Pi(0) consists of m internal vertices wi(0), . . . , wi(m−1) connected as a directed path. If
xi appears in Cj then wi(j) is connected to the clause vertex cj . If xi does not appear in Cj

then wi(j) is connected to z. Note that if we do not connect wi(j) to z then its out-degree
will be one and Paul, playing perfectly, will never inquire about it. Similarly, Pi(1) consists
of internal m vertices wi(0), . . . , wi(m − 1) connected as a directed path. If xi appears in
Cj then wi(j) is connected to the clause vertex cj. If xi does not appear in Cj then wi(j) is
connected to z.

The last vertices, wi(m − 1) and wi(m − 1), of the paths Pi(0) and Pi(1) are connected
to both v0

i+1 and v1
i+1 for i = 1, . . . , n − 1. The last vertices wn(m − 1) and wn(m − 1) are

connected to p and q respectively. Figure 5 shows the entire graph for

φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3).
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Figure 5: The graph Dφ. Not all the edges to the vertex z are shown.
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Figure 6: (a) The graph Dφ after normal play with assignment (1, 0, 0). Unreachable part
of the graph is dotted out. Note that C2 is not satisfied by the assignment hence c2 is not
reachable. (b) The graph Dφ when Paul plays non-normally. He manages to cut off c1 at a
high cost. The vertex z is not shown in both the cases.

3.2 Normal Play

We first describe the normal play for the game Gφ.

Carole picks an assignment t = (t1, . . . , tn) of variables. In the first round, Paul asks the
root v0

1 and Carole points to the root of P1(t1). In the i-th round (for i = 2, . . . , n), Paul
inquires about the value selection vertex vti−1

i . Carole points vti−1
i to the root of Pi(ti).

Lemma 7 If Paul and Carole play normally then the number of open vertices in the last
round is nm+µ, where µ is the number of clauses satisfied by Carole’s assignment (t1, . . . , tn).

Proof. Paul inquires about v0
1 in the first round hence it is not open. At the end of normal

play all the m vertices on the path Pi(ti) are open. Furthermore, all the m vertices of
Pi(1 − ti) are not reachable. The vertex vti−1

i is reachable but inquired about and therefore
not open. The vertex v1−ti−1

i is not reachable. Hence there are nm non-clause vertices that
are open.

Now, suppose that a clause Cj is satisfied by the assignment t. Then either there is a
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variable xi that appears in Cj and ti = 1 or there is a variable xi whose negation appears
in Cj and ti = 0. In the first case, all the vertices in Pi(1) are open. In particular wi(j) is
open. Since there is an edge from wi(j) to cj hence cj is also open. In the second case, all
the vertices in Pi(0) are open. In particular wi(j) is open. Since there is an edge from wi(j)
to cj hence cj is also open.

In case, Cj is not satisfied by the assignment t then for every variable xi (resp. its
negation xi) that appears in Cj, ti = 0 (resp. ti = 1). Thus all the vertices of Pi(1 − ti) are
not reachable. Hence, cj is not reachable. !

Lemma 8 If Paul and Carole play normally then Carole wins Gφ if and only if φ is satis-
fiable.

Proof. Follows from Fact 2 and Lemma 7. !

3.3 Non-normal Play

Note that if φ is not satisfiable then Paul can play normally and Carole has no way of
winning. In the first n round her answers define a variable assignment. In the last round
if there are strictly less than m clause vertices reachable, Paul has enough questions to ask
all the open vertices to win the game. On the other hand if the formula is satisfiable, Paul
cannot win by using normal strategy. We complete the proof of Theorem 6 by showing that
if the formula is satisfiable, Paul cannot win even if he deviates from the normal strategy.

Let us assume the formula is satisfiable and Paul deviates from the normal strategy. The
deviation can only come in the first n rounds, and he can deviate in the following ways in
the i-th round.

Case 1 He can ask the question on a value selection vertex below v0
i or v1

i . In this case,
Carole would lead him to the appropriate vertex according to her satisfying assignment
of the variable xi.

Case 2 He can ask some questions on a path Pi(0) or Pi(1). If he inquires about wi(j)
Carole leads him to wi(j + 1) (or v0

i+1 if j = m − 1). Similarly, if he inquires about
wi(j) Carole leads him to wi(j + 1) (or v1

i+1 if j = m− 1). Lastly, if he inquires about
wn(m − 1) (resp. wn(m − 1)) she leads him to p (resp. q).

Case 3 He can ask the question on a clause vertex. In this case Carole answers arbitrarily.

Let α be the number of questions asked on the value selection vertices in the first n
rounds. Let β be the number of questions asked on some Pi(b) where b ∈ {0, 1}. Lastly, let
γ be the number of questions asked on the clause vertices in the first n rounds, so that

α + β + γ = n.
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We first deal with the case α = n. In this case, Paul inquired about n value selection vertices.
If he asks exactly one question on each of {v0

i , v
1
i }. It is easy to see that all the vertices of

Pi(ti) are reachable for each i (in fact, it is possible all the vertices of both Pi(0) and Pi(1)
are reachable). In this case, the same analysis as one for the normal strategy shows that
Paul cannot win.

If α < n then there is at least one i such that neither v0
i nor v1

i is inquired about. Let k
be the smallest such i. In this case all the vertices in both Pj(0) and Pj(1) are reachable for
any j ≥ k. Hence we can count the number of open vertices after n rounds as follows:

no. of open value selection vertices ≥ n − α = β + γ

no. of reachable vertices on Pi(b) = 2(n − k + 1)m + (k − 1)m

= 2nm − km + m

no. of open vertices on Pi(b) = 2nm − km + m − β

no. of open clause vertices ≥ m − (β + γ)

Total no. of open vertices ≥ β + γ + m − (β + γ) + 2nm − km + m − β

= nm + m + (nm − km + m − β)

≥ nm + m (because n ≥ k and m ≥ n ≥ β)

> nm + m − 1

This shows that Paul does not have enough question to determine the path completely.

To complete the proof of Theorem 6 we have to argue that Gφ can be computed from φ
in LOGSPACE. Note that the vertex set of Dφ can be computed by counting the number
of variables and clauses in φ which require LOGSPACE. The detailed algorithm that
computes the edges in Dφ is given in Algorithm 1. We only point out that this algorithm
uses a few counters and thus requires LOGSPACE. It is easy to see that the question
vector can also be computed in LOGSPACE.

4. Complexity of C2

To prove that C2 is NP-hard, we again reduce SAT to C2. We use the same graph Dφ from the
previous section. However, now the game, G2

φ, has only two rounds. The first round consists
of 2n − 1 questions and the second round consists of L questions, where L = nm + m − 1.
Thus G2

φ = (Dφ, (2n − 1, L)).

Theorem 9 C2 is NP-Hard.

In order to prove the theorem, we again describe the strategies in terms of normal and non-
normal play. Note that the notion of the normal play holds only for the first round, as in
the second, Paul will have to ask all the open vertices.
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Input: φ
Output: The graph, Dφ

begin
output (v0

1 , w1(0)), output (v0
1, w1(0));

foreach i = 2 . . . n do
output (v0

i , wi(0)), output (v0
i , wi(0));

output (v1
i , wi(0)), output (v1

i , wi(0));
end
foreach i = 1 . . . n do

foreach j = 0 . . .m − 2 do
output (wi(j), wi(j + 1)), output (wi(j), wi(j + 1));

end
if i /= n then

output (wi(m − 1), v0
i+1), output (wi(m − 1), v1

i+1);
else

output (wn(m − 1), p), output (wn(m − 1), q);
end

end
foreach j = 0 . . .m − 1 do

output (ci, li), output (ci, ri);
end
foreach i = 1 . . . n do

foreach j = 0 . . .m − 1 do
if xi appears in Cj then

output (wi(j), cj), output (wi(j), z);
else if xi appears in Cj then

output (wi(j), cj), output (wi(j), z);
else

output (wi(j), z), output (wi(j), z);
end

end
end

end
Algorithm 1: LOGSPACE algorithm to compute the edges of Dφ
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4.1 Normal Play

We now describe the normal play for our game G2
φ for the first round. Carole picks an

assignment t = (t1, . . . , tn) of variables. Paul asks all the 2n − 1 value selection vertices
v0

1, . . . , v
0
n and v1

2 , . . . , v
1
n. Carole responds in such a way that if ti = 0 then the path Pi(0)

is reachable in the next round and Pi(1) is unreachable in the next round and the case is
reversed if ti = 1. More formally,

1. Carole selects the outgoing edge from v0
1 to P1(t1).

2. She also selects the outgoing edge from vti−1
i to Pi(ti) for i = 2, . . . , n.

3. She selects an outgoing edge from v1−ti−1
i arbitrarily.

The following lemma is immediate.

Lemma 10 In normal play the number of open vertices in the second round is

nm + the number of clauses satisfied by the assignment (t1, . . . , tn).

In the second round, Paul has nm+m−1 questions. This tells us that Carole wins in normal
play if and only if φ is satisfiable. Hence we get the following result.

Lemma 11 If Paul plays normally then Carole wins G2
φ if and only if φ is satisfiable.

4.2 Non-normal Play

Paul has a winning strategy if φ is not satisfiable, therefore he will choose to play normally.
Note that, Carole cannot deviate from normal strategy if Paul is playing normally. Answers
given by Carole, to the normal strategy questions in the first round by Paul, always determine
an assignment (t1, . . . , tn) of the variables.

On the other hand if the formula is satisfiable, Paul cannot win by normal strategy.
In this section we will complete the proof of Theorem 9 by showing that if the formula is
satisfiable, Paul cannot win even if he deviates from the normal strategy.

Let us assume the formula is satisfiable and Paul deviates from the normal strategy. Paul
has 2n − 1 questions in the first round. He can use the questions using non-normal play
strategy as follows:

Case 1 He can ask some questions on the vertices of Pi(0) or Pi(1). If he inquires about
wi(j) Carole leads him to wi(j + 1) (or v0

i+1 if j = m − 1). Similarly, if he inquires
about wi(j) Carole leads him to wi(j + 1) (or v1

i+1 if j = m− 1). Lastly, if he inquires
about wn(m − 1) (resp. wn(m − 1)), she leads him to p (resp. q).
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Case 2 He can ask some questions on clause vertices. In this case, Carole answers arbitrarily.

Let α, β and γ be the number of questions asked on the value selection vertices, vertices
on paths, and the clause vertices, respectively, in the first round. We have α+β+γ = 2n−1.
If Paul plays with non-normal strategy then α < 2n − 1. We define k = 1 if Paul did not
inquire about v0

1. Otherwise, there is i such that Paul inquires about at most one vertex in
{v0

i , v
1
i }. Let k be the smallest index such that one of the vertices v0

k and v1
k has not been

inquired about. Carole follows the following strategy:

1. If k > 1 and v0
k is not inquired about (this includes the case when both v0

k and v1
k are

not inquired about), answer v0
k−1 and v1

k−1 to the root of Pk−1(0).

2. If k > 1 and v0
k is inquired about and v1

k is not inquired about then answer v0
k−1 and

v1
k−1 to the root of Pk−1(1).

3. For all i /= k − 1, if v0
i (resp. v1

i ) is inquired about then answer it to the root of Pi(0)
(resp. Pi(1)).

It is readily seen that:

1. All the vertices on the path Pi(0) is reachable and none of the vertices on Pi(1) are
reachable i = 1, . . . , k − 1.

2. All the vertices on the paths Pi(0) and Pi(1) are reachable for i = k, . . . , n.

The number of reachable vertices on paths is (k − 1)m + 2(n − k + 1)m = 2nm − mk + m.
Out of these at least 2nm−mk +m−β are open in the second round. The number of value
selection vertices that are open is 2n−1−α = β+γ. Hence the total number of open vertices
is at least 2nm − mk + m + γ = L + 1 + (n − k)m + γ. As k ≤ n, this quantity exceeds L
which is the number of questions allowed in the second round. Therefore, Paul cannot win
by playing non-normally. We record the results of this section in the following lemma.

Lemma 12 Carole wins G2
φ if and only if φ is satisfiable. !

Again, we see that G2
φ can be computed from φ in LOGSPACE, thereby establishing

Theorem 9.

5. C is PSPACE-complete

In this section we show that the general question of establishing the winner by looking at a
Q/A game, G = (D, s,q), is indeed very hard to answer.
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Theorem 13 C is PSPACE-complete.

Let ψ be a fully quantified boolean formula,

ψ = ∃x1∀x2∃x3 · · ·∀xn−1∃xn φ,

where φ is the quantifier free boolean formula in CNF over n variables, x1, . . . , xn, consisting
of m clauses. We assume that the quantifiers alternate between existential and universal
ones and ψ starts with an existential quantifier. Furthermore, we also assume that the last
quantifier is existential; that is, n is odd (TQBF is known to be PSPACE-complete with
these restrictions also). We describe a Q/A game, Gψ = (Dψ, s,q) such that:

1. Gψ can be computed from a quantified boolean formula ψ using LOGSPACE.

2. Carole wins Gψ if and only if ψ is true.

Let d = 15n, h = 15n and r = 8n be the three other parameters that will be used to
describe the game. (Note that here r is not the number of rounds in the game.) In fact,
any large enough values of d, h and r will work in the construction. In order to reduce
TQBF to Q/A games we can use the ideas of Theorem 6. However, we have to over come
many problems. Firstly, the order in which the variables selected by Paul and Carole has
to alternate. Secondly, we have to build a gadget that can perform the task of universal
quantification. It is possible to make such gadgets, however, the resulting Q/A game is more
elaborate then the previous ones.

5.1 Construction of Dψ

We define the construction of digraph Dψ on which Gψ will be played. Dψ contains m × d
clause vertices. For each clause Ci there are d vertices labeled c0

i , . . . , c
d−1
i . Each clause

vertex ck
i is connected to two terminal vertices labeled lki and rk

i . Note that we have d copies
of each clause vertex as opposed to a single copy.

For each variable, xi, other than x1, we create r strands, S1
i , . . . , S

r
i , and for x1 we only

create one strand, S1
1 . Let us define the c-th strand, Sc

i , of xi. It is rooted at the value
selection vertex vc

i . The vertex vc
i is connected to the roots of the two paths P c

i (0) and
P c

i (1). The vertex v1
1 is the root s of the graph Dψ. In the previous proof we used just one

copy of a strand instead of r copies.

P c
i (0) consists of md + 1 vertices, namely, wc

i(0), . . . , wc
i(md). If xi appears in clause Cj

then wc
i(jd + k) is connected to ck

j for k = 0, . . . , d − 1. If xi does not appear in clause Cj

then each wc
i(jd + k) is connected to a new terminal vertex uc

i(jd + k) for k = 0, . . . , d − 1.

Similarly, P c
i (1) consists of md + 1 vertices, namely, wc

i (0), . . . , wc
i (md). If xi appears in

clause Cj then wc
i (jd + k) is connected to ck

j for k = 0, . . . , d − 1. If xi does not appear
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in clause Cj then each wc
i (jd + k) is connected to a new terminal vertex uc

i(jd + k) for
k = 0, . . . , d − 1.

The vertices wc
i (md) and wc

i(md) are the output vertices of this strand and are connected
to the value selection vertices of all the r strands for the next variable. The output vertices

P 0
2 (0)

. . .. . .

to r strands for x3to r strands for x3

P 0
2 (1)

...

...

...

...

...

...

...

...

...

...

to c0
m−1

to c1
m−1

to cd−1
m−1

u0
2(d)

u0
2(d + 1)

u0
2(2d − 1)

u0
2(d − 1)

u0
2(1)

u0
2(0)

w0
2(md)

w0
2(md − 1)

v0
2

w0
2(d + 1)

w0
2(md − d + 1)

w0
2(md − d)

w0
2(2d − 1)

w0
2(d)

w0
2(d − 1)

w0
2(1)

w0
2(0)

w0
2(d − 1)

w0
2(md − d + 1)

w0
2(md − 1)

w0
2(md)

w0
2(2d − 1)

w0
2(d + 1)

w0
2(d)

w0
2(1)

w0
2(0)

w0
2(md − d)

u0
2(md − d + 1)

u0
2(md − d)

to c1
0

u0
2(2d − 1)

u0
2(d + 1)

to c0
0

u0
2(d)

to cd−1
0

u0
2(md − 1)

x2 does not appear in C1

x2 does not appear in C1

x2 appears in C0

x2 does not appear in C0

x2 appears in Cm−1

x2 does not appear in Cm−1

Figure 7: A strand corresponding to the variable x2. The corresponding literal x2 appear in
C0 and x2 appear in Cm. None of the corresponding literal appear in C1.

of the strand S1
1 ; that is, w1

1(md) and w1
1(md), are connected to v1

2, . . . , v
r
2, which are the

variable selection vertices of the strands, S1
2 , . . . , S

r
2 , for the second variable, x2. Similarly,

for i = 2, . . . , n−1 the output vertices of the strand S1
i , . . . , S

r
i ; that is, w1

i (md), . . . , wr
i (md)

and w1
i (md), . . . , wr

i (md) are connected to v1
i+1, . . . , v

r
i+1 (Figure 7 shows a strand for x2).

The last and one of the most important ingredients of this graph is a collection of 4r
path like structures called the demotivating paths. Each one of these paths has h internal
vertices connected as a path. Each internal vertex is also connected to a terminal vertex
except for the last internal vertex which is connected to two terminal vertices. These paths
will be used to demotivate Carole from playing non-normally. The last vertices in Sc

n; that
is, wc

n(md) and wc
n(md), for c = 1, . . . , r, are connected to two demotivating paths each. The

entire picture looks like Figure 8.

The game consists of 2n rounds. The number of questions for each round is specified by
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paths to the md clause vertices

Edges connecting vertices on the

demotivating paths

r strands

· · ·

· · ·

...
...

...

· · ·

· · ·· · ·

· · · ...
...

...

· · ·

· · ·

Figure 8: Zoomed out view of the graph Dψ.

the vector:
q = ( 1︸︷︷︸

∃x1

, 1, 2︸︷︷︸
∀x2

, 1, 1︸︷︷︸
∃x3

, 1, 2︸︷︷︸
∀x4

, . . . , L).

We let
L = 2h + nmd + (m − 1)d + 1.

Note that for the variable x1 there is one round in the game. For each 1 < i ≤ n:

1. if xi is existentially quantified then there are two rounds with one question each.

2. if xi is universally quantified then there are two rounds with one question in the first
and two in the second round.

In the last round Paul is allowed to ask L questions.
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5.2 Normal Play

Let us now define normal play for this game. Normal play corresponds to Carole and Paul
selecting the values of the variables alternately. Carole selects the values of the existentially
quantified variables, whereas Paul selects the value of the universally quantified ones. This
is done as follows: At the start, the current strand for variable x1 is S1

1 . Hence, we set
c1 = 1. In the first round, Paul asks about v1

1 and Carole can reply by pointing to the path
P 1

1 (0) or P 1
1 (1) thereby setting the value of x1 = 0 or 1 respectively. We denote the value by

t1. (At this point, the path not selected by Carole can be deleted.) P c1
1 (t1) is set to be the

current path. Next, Paul inquires about the last vertex of the current path. He asks w1
1(md)

if t1 = 1, and w1
1(md) if t1 = 0. Carole points him to the value selection vertex vc2

2 on a
strand for the variable x2. Now, the current strand is set to c2. x2 is universally quantified
and Paul has two questions in this round. He uses the second question to dictate the value
of x2. Suppose Paul wants to set the value of x2 to 0. In this case, he inquires about vc2

2

and the last vertex, wc2
2 (md), of P c2

2 (1). In normal play, Carole points him to P c2
2 (0) thereby

setting x2 = 0 according to his wishes. It should be noted that the last vertex wc2
2 is not

answered. In the next round Paul inquires about wc2
2 and Carole points it to a new variable

selection vertex vc3
3 thereby setting the current strand to c3. Normal play continues like this

till the value of all the variables have been selected. Formally, normal play is specified by
the following procedure:

Normal Play:

Let c1 = 1.

1. In round 2i + 1, if i is even then xi+1 is existentially quantified. Paul has one question
in this round and he inquires about the value selection vertex vci+1

i+1 . Carole points
him to either P ci+1

i+1 (0) or P ci+1
i+1 (1). In this way, she sets the variable xi+1 to be 0 or 1

according to her choice. We denote this value by ti+1.

2. In round 2i + 1, if i is odd then xi+1 is universally quantified. Paul has two question
and he inquires about the value selection vertex vci+1

i+1 and

(a) if he wishes to set xi+1 = 0, he inquires about the last vertex, wci+1
i+1 (md), of

P ci+1
i+1 (1). Carole points vci+1

i+1 to the root of P ci+1
i+1 (0), setting the variable xi+1 to

0 according to his choice. We let ti+1 = 0. Carole points wci+1
i+1 (md) to the root of

some strand arbitrarily.

(b) if he wishes to set xi+1 = 1, he inquires about the last vertex, wci+1
i+1 (md), of

P ci+1
i+1 (0). Carole points vci+1

i+1 to to the root of P ci+1
i+1 (1), setting the variable xi+1

to 1 according to his choice. We let ti+1 = 1. Carole points wci+1
i+1 (md) to the root

of some strand arbitrarily.

3. In round 2i, if i < n Paul inquires about the last vertex of P ci
i (ti). Carole leads him

to a value selection vertex vci+1
i+1 . The current strand is set to ci+1.
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With normal play, after 2n − 1 rounds, Paul has discarded all but one strand for each
variable. Furthermore, only one path is reachable in each strand according to the values of
the variables selected. Let us count the total number of open vertices in the game. There are
n paths, P ci

i (ti) for i = 1, . . . , n, reachable on the strands. Each one, except the last, has the
last vertex answered. Hence, the total number of open vertices on these paths is nmd + 1.
Furthermore, there are two demotivating paths, consisting of 2h vertices, reachable from the
last vertex of P cn

n (tn). Lastly, the following claim is straightforward to verify.

Lemma 14 The number of clause vertices that are open after normal play is

d × (number of clauses of ψ statisfied by the assignment (t1, . . . , tn))

We summarize our observations as follows:

Lemma 15 If (t1, . . . , tn) satisfies ψ then the number of open vertices is

2h + nmd + md + 1;

otherwise, the number of open vertices is at most

2h + nmd + (m − 1)d + 1.

In the last round, Paul has L = 2h + nmd + (m − 1)d + 1 questions. The above discussion
proves the following result.

Lemma 16 With normal play, Carole wins Gψ if and only if the ψ is true.

Remark 17 Paul has 2h+nmd+(m−1)d+1 questions in the last round. If ψ is satisfiable
and Paul and Carole play normally then the number of open vertices in the last round is
2h + nmd + md + 1. Thus Paul has a deficit of d = 15n questions. In Section 5.4 we show
that Paul cannot reduce this deficit to 0 by playing non-normally although he maybe able to
reduce it somewhat.

5.3 Non-normal Play for Carole

If ψ is false then Carole has no motivation to play normally as she knows that she will
lose. Can she try some non-normal strategy to beat Paul? In this section, we prove that
this is not possible. Let us suppose that ψ is false. Note that the initiative is always with
Paul as he poses the questions. Carole only has the discretion of answering. Hence, the
only non-normal move she can make is when Paul is trying to set the value of a universally
quantified variable xi+1 in round 2i + 1 where i is odd. Suppose Paul wants to set xi+1 = 1.
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He inquires about the value selection vertex of the current strand and the last vertex on the
path P ci+1

i+1 (0), hoping that Carole will “waste” his second question by answering the first
question in the direction of P ci+1

i+1 (1). Instead, Carole selects the start vertex of P ci+1
i+1 (0).

However, she also answers the last vertex of P ci+1
i+1 (0) thereby selecting a strand Sci+2

i+2 for the
next variable. From this point onwards, Paul is one round ahead. He simply ignores the
variable assignments for the rest of the game and inquires alternately about the value of xi+2

and then the root of the strand Sci+3
i+3 of xi+3 and so on. After exactly 2n− 2 rounds, he is in

the same position as he would be after 2n−1 rounds if Carole had played normally. The only
difference is that he has completely lost control of the assignment (t1, . . . , tn) of variables. In
the penultimate round, Paul can now inquire about the last vertex of P cn

n (tn) thereby forcing
Carole to select one demotivating path. This one question eliminates an entire demotivating
path. Thus, h + 1 vertices are made unreachable. Hence, the total number of open vertices
is h + nmd + d × (number of clauses satisfied by (t1, . . . , tn)) ≤ h + nmd + md < L.

In the last round, he can inquire about all the open vertices. Hence, he wins the game.

Remark 18 The demotivating paths ensure that Carole cannot afford to let Paul get ahead
by even by one round. This ensures that she plays normally or loses.

We record the result of this section in the following lemma.

Lemma 19 If ψ is false, Paul wins. !

5.4 Non-normal Play for Paul

In this section, we show that if ψ is true then Paul cannot win Gψ even if he plays non-
normally. As Paul has the initiative, he can pose questions anywhere in the graph. This gives
him considerable freedom and we have to carefully argue that he cannot use this freedom
to win the game when ψ is satisfiable. As stated earlier in Remark 17 he has a deficit
of d questions if ψ is satisfiable. We show that he cannot bridge this deficit by playing
non-normally.

In particular, in round 2i − 1, if i is even, he has two questions. The two questions are
used to dictate the value, ti, of the universally quantified variable xi. However, he knows that
either value, ti = 0 or ti = 1, will lead him to lose the game. Hence, he can ask one question
about vci

i and the second question somewhere else in the graph. This way he “gives up” his
privilege of selecting the value ti and lets Carole choose the value for him. He can hope to
use the second question in a meaningful way. Indeed, asking this question, for example, on
the path P 1

1 (t1) is more meaningful. Playing this way may reduce the deficit of questions
that he faces in the last round. However, the game is so robust that such moves do not allow
Paul to win the game.
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When Paul plays non-normally, we argue that Carole can afford to be generous in her
play at times. However, Carole will never answer more than two questions generously in any
round.

We say that P c
i (0) (resp. (P c

i (1)) is clean if wc
i(md) (resp. wc

i (md)) has not been inquired
about. For i < n, Sc

i is called clean if no vertex in {vc
i , w

c
i(md), wc

i (md)} is not inquired about.
Sc

n is considered clean if there are no answered questions on Sc
n and none of the vertices on

the four demotivating paths reachable from the root of Sc
n have been inquired about. We

say these subgraphs are dirty, if they are not clean.

Let us first observe the following simple fact:

Fact 20 In any round, for all i = 1, . . . , n, there exist c and c′ such that both the strands,
Sc

i and Sc′
n , are clean.

Proof. This is a simple consequence of the pigeonhole principle. Paul asks at most 3n
questions in the first 2n − 1. Carole answers at most 4n − 2 questions generously in the
entire game. A question can make at most one strand dirty. Since there are r = 8n strands
for each i, thus there are at least n + 2 ≥ 2 clean strands. !

By a default answer to a question we mean the following choices made by Carole when a
question v is posed by Paul:

1. If v = wc
i (j) (resp. wc

i(j)) and j < md then Carole points it to wc
i (j + 1) (resp.

wc
i(j + 1)).

2. If v is on a demotivating path or v is a clause vertex then Carole answers it arbitrarily.

Note that the default choices are not defined for the value selection vertices and the output
vertices of a strand.

After round 2i − 1 (equivalently before round 2i), we say that Paul is behind if there
exists c1, . . . , ci and t1, . . . , ti−1 such that:

1. All the vertices on paths P c1
1 (t1), . . . , P

ci−1
i−1 (ti−1) are reachable.

2. The value selection vertices, vc1
1 , . . . , vci−1

1−1 are answered.

3. Sci
i is clean and all the vertices of Sci

i are reachable.

After round 2i (equivalently before round 2i + 1), we say that Paul is behind if there
exists c1, . . . , ci and t1, . . . , ti such that:

1. All the vertices on paths P c1
1 (t1), . . . , P

ci
i (ti) are reachable.
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2. The value selection vertices vc1
1 , . . . , vci

i are answered.

3. P ci
i (ti) is clean.

Lemma 21 If Paul is behind at any point in the game then Carole wins.

Proof. We first show that if Paul is behind before round 2i − 1 then Carole can make sure
that he remains behind after round 2i − 1 for i ≤ n. Consider the (2i − 1)-st round. If i is
odd Paul has two questions, and if i is even then Paul has only one question. In any case
Carole answers Paul’s questions using the default strategy, if required. She also answers the
last vertex of P ci−1

i (ti−1) (possibly generously) to the root of the strand Sci
i which is clean.

Note that such a strand always exists by Fact 20. Thus Paul remains behind after round
2i − 1.

Similarly, we argue that if Paul is behind before round 2i then Carole can make sure
that he remains behind after round 2i for i < n. In 2i-th round, Paul has only one question.
If required, she answers Paul’s questions using default strategy. If Paul inquires about any
vertex in Sci

i then she answers vci
i to the root of P ci

i (0) or P ci
i (1) according to where he has

not placed his questions (possibly generously). Once again it is easy to see that Paul remains
behind after round 2i.

Thus we may assume that Paul is behind before the last round. Hence, all the vertices
on P1(t1), . . . , Pn−1(tn−1), Scn

n and the four demotivating paths reachable from the root of
Scn

n are reachable. Furthermore, Scn
n is clean. Thus a total of 4h + nmd + md vertices are

reachable in the last round, out of which:

the number of open vertices ≥ 4h + nmd + md − 7n > L,

and Paul loses. !

Carole can maintain the following invariant before the start of (2i − 1)-st round and
1 < i ≤ n or make sure that Paul falls behind.

Invariant: There exists c1, . . . , ci and t1, . . . , ti−1 such that:

1. v
cj

j point to the root P
cj

j (tj) for all j = 1, . . . , i − 1.

2. if tj = 0 (resp. tj = 1) then w
cj

j (md) (resp. w
cj

j (md)) points to v
cj+1
j+1 for all j =

1, . . . , i − 1.

3. if ti−1 = 0 (resp. ti−1 = 1) then P ci−1
i−1 (0) (resp. P ci−1

i−1 (1)) is clean.

4. For odd values of j and j ≤ i− 1, tj ’s are chosen by Carole after knowing the value of
t1, . . . , tj−1.
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Clearly, the invariant holds for i = 1 with c1 = 1 (i.e., at the beginning of the first round)
since no ti’s are chosen and no vertices of S0

1 are answered. Let us assume that the invariant
has been maintained before the beginning of the (2i − 1)-st round and Paul has not fallen
behind. Let us see how this invariant can be maintained after the (2i − 1)-st round.

Let i be odd. In this case Paul has one question in the round 2i− 1 and one question in
the 2i-th round.

Case 1 Paul does not inquire about any vertex in {vci
i , wci

i , wci
i (md)}. In this case she

answers the questions posed by Paul using the default strategy and Paul falls behind.

Case 2 Paul inquires about vci
i in round 2i − 1. In this case, Carole chooses ti and points

vci
i to P ci

i (ti) and waits for Paul to play the second round. If Paul inquires about the last
vertex of P ci

i (ti) she points it to the root of a strand Sci+1
i+1 that is clean. This is possible by

Fact 20. If Paul does not inquire about wci
i (md) then she uses the default strategy and Paul

falls behind.

Case 3 Paul inquires about wci
i (md) (resp. wci

i (md)) in round 2i− 1. In this case she points
wci

i (md) (resp. wci
i (md)) to the root of a clean strand Sc+1

i+1 . If Paul does not inquire about
wci

i (resp. wci
i (md)) then she can make sure that he falls behind by pointing vci

i to wci
i (md)

(resp. wci
i (md)). If he does inquire about wci

i (md) (resp. wci
i (md)) then she picks a ti and

points vci
i to the root of P ci

i (ti) generously, and maintains the invariant.

For i even, Paul has two questions in round 2i − 1 and one question in the 2i-th round.

Case 1 Paul inquires about vci
i . If Paul has also inquired about wci

i (md) (resp. wci
i (md))

then Carole points vci
i to the root of P ci

i (0) (resp. P ci
i (1)). She waits for the next round and

expects Paul to inquire about wci
i (md) (resp. wci

i (md)). If he does not, she uses the default
strategy and he falls behind. On the other hand, if he does inquire about wci

i (md) (resp.
wci

i (md)), she can answers it to a vci+1
i+1 such that the strand Sci+1

i is clean and maintain the
invariant.

Case 2 Paul inquires about both wci
i (md) and wci

i (md). In this case, she picks two different
strands Sc

i+1 and Sc′
i+1 that are clean and points wci

i (md) and wci
i (md) to the root of Sc

i+1

and Sc′
i+1, respectively. In the next round if Paul does not inquire about any vertex in Sc

i+1

then Carole points vci
i to the root of P ci

i (1). Otherwise, she points vci
i to the root of P ci

i (0).
It is clear that the invariant is maintained.

Case 3 Paul does not inquire about vci
i and inquired about at most one of the vertices

from {wci
i (md), wci

i (md)}. We assume that Paul inquires about wci
i (md) the other case being

similar. Carole uses the default strategy for the other question that Paul has asked. In the
next round, if he does not inquire about wci

i (md) then she points vci
i to the root of P ci

i (0)
and Paul falls behind. If Paul does inquire wci

i (md) then she points vci
i to the root of P ci

i (0)
(thereby picking ti = 0 for Paul arbitrarily) and the invariant is maintained.

Lemma 22 If ψ is true and Paul plays non-normally then Paul loses.
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Proof. Let us consider round 2n−1. Let us assume that Paul has not fallen behind (otherwise
he would loose due to Lemma 21) and the invariant is maintained. Thus the all vertices on
the paths, P c1

1 (t1), . . . , P
cn−1
n−1 (tn−1), and the strand Scn

n are reachable. Further more Scn
n is

clean. Paul has one question in the penultimate round. If he does not inquire about vcn
n , he

can make the root of at most one of the four demotivating paths unreachable. In that case,
the number of open vertices in the last round is at least 3h+nmd+md+2>L, and he loses.

Thus we only have to analyze the case when he inquires about vcn
n . In this case Carole

picks her assignment tn and points vcn
n to the root of P cn

n (tn). As ψ is true we assume that
Carole picks tj ’s in such a way that φ|(t1,...,tn) is true.

Let us count the total number of open vertices in the game. There are n paths, P ci
i (ti)

for i = 1, . . . , n, that are reachable. Furthermore, there are at least two demotivating paths,
consisting of 2h vertices, reachable from the last vertex of P cn

n (tn). There can be at most 7n
vertices which are answered on these paths. A question placed on a path can eliminate at
most 2 open vertices, one is the vertex itself and other may be the clause vertex that it leads
to. On the other hand, a question placed on the clause vertex can only eliminate one open
vertex; that is, the clause vertex itself. All other clause vertices are reachable since φ|(t1,...,tn)

is true.

Thus, the number of open vertices is at least 2h+nmd+md−14n > L and Paul loses.!

The above analysis shows that Paul does bridge some gap by playing non-normally.
However, it is not enough to win the game.

It is not hard to see that Gψ can be computed from ψ in LOGSPACE using an algorithm
similar to Algorithm 3.1. Indeed, with some minor changes and addition two counters one
catering for r copies of the strands and the other catering for several copies of the clauses
allows us to come up with a LOGSPACE-algorithm for computing Dψ from ψ. This shows
that C is PSPACE-hard.

Algorithm 2 (SolveQAGame) decides C in polynomial space. It takes as input a game
G = (D, (q1, . . . , qr)) and a set Z of internal vertices of D. Note that we ignore specifying
the root s of the graph D in the algorithm. A variable turn indicates if the next move is
to be made by Carole or Paul. In case, it is Carole’s move, the questions posed by Paul are
given by the set Z. The algorithm return a value win from the set {Paul-win, Carole-win}.
This establishes Theorem 13.
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ReduceGame:
Input: (D = (V, E), Q, f)
Output: (G = (D,q)
begin

E ′ = E \ {(u, v)|u ∈ Q, v ∈ N+(u) and v /= f(u)};
D′ = (V, E ′);
G′ = (D′, (q2, . . . , qr));
return G′;

end
SolveQAGame:
Input: (G = (D = (V, E), (q1, . . . , qr)), turn, Z)
Output: (win)
begin

if turn = Paul then
if the number of open vertices in G ≤ q1 then

return Paul-win;
else

if r > 1 then
foreach set Z of q1 internal vertices of D do

if SolveQAGame(G, Carole, Z)=Paul-win then
return Paul-win;

end
return Carole-win;

end
else

return Carole-win;
end

end
end
if turn = Carole then

foreach f : Z → V do
G′ := ReduceGame(D, Z, f);
if SolveQAGame(G′, Paul, ∅)=Carole-win then

return Carole-win;
else

return Paul-win;
end

end
end

end
Algorithm 2: Polynomial space algorithm to decide the winner of a Q/A game.
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