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Abstract

We discuss the problem of constructing elements of multiplicative high order in finite fields
of large degree over their prime field. We prove that for points on a plane curve, one of the
coordinates has to have high order. We also discuss a conjecture of Poonen for subvarieties
of semiabelian varieties for which our result is a weak special case. Finally, we look at some
special cases where we obtain sharper bounds.

0. Introduction

We prove a theorem which gives information on the multiplicative orders of the coordinates
of points on plane curves over finite fields. In the special case where the curve is given by
x + y = 1 our result is related to the main results of [GS] and [ASV], although the results
there have stronger hypotheses and stronger conclusions, see section 5. Some of our arguments
extend those of the aforementioned papers. Our result can also be viewed as a weak form a
conjecture of Poonen in the case of two dimensional tori. We discuss Poonen’s conjecture in
section 4.

Throughout this paper Fq is a field of q elements where q is a power of the prime p. Our
main result is as follows:

Theorem. Let F (x, y) ∈ Fq[x, y] be an absolutely irreducible polynomial such that F (x, 0) is

not a monomial. Given ε > 0, there exists δ > 0 such that, for d sufficiently large if a, b ∈ F̄∗
q

satisfy F (a, b) = 0 and d = [Fq(a) : Fq] and r, the multiplicative order of a, satisfies r < d2−ε

then b has multiplicative order at least exp(δ(log d)2).

We also obtain a much better lower bound for the multiplicative order of b when F (x, y) = 0
admits a parametrization y = R(x) for R(x) ∈ Fq(x) (see section 5). Note that our result
applies only certain finite fields, namely those generated (as a field) by a root of unity of small
order. A result of Gao ([G]), using a different construction, produces elements of order at least
exp(δ(log d)2/ log log d) in Fqd for many (conjecturally all) values of d.
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1. Elementary Estimates

The following lemma is well-known and stated for convenience.

Lemma 1. For any ε > 0 we have that #{1 ≤ n ≤ N | (n, r) = 1} = Nφ(r)/r + O(rε).

Lemma 2. For fixed integers m, q ≥ 2 and real ε > 0 If r ≥ 2, (r,mq) = 1 is an integer and d

is the order of q mod r, then, given N < d, there is a coset Γ of 〈q〉 ⊂ (Z/r)∗ with

#{n | 1 ≤ n ≤ N, (n,m) = 1, nmod r ∈ Γ}' Nd1−ε/r − rε

Proof. There are φ(r)/d cosets of 〈q〉 in (Z/r)∗, so there exists a coset Γ1 of 〈q〉 with

#{n | 1 ≤ n ≤ N,nmod r ∈ Γ1} ≥ (d/φ(r))#{n | 1 ≤ n ≤ N, (n, r) = 1}.

For each n, 1 ≤ n ≤ N,nmod r ∈ Γ1 we can write n = un′, (n′,m) = 1 and n′ maximal. So
u is divisible only by primes dividing m and, since u ≤ n ≤ N ≤ d, there are O(dε) possibilities
for u, hence n′ belongs to one of O(dε) cosets of 〈q〉 ⊂ (Z/r)∗ and select for Γ the coset among
these cosets with the most values of n′ obtained from the above n. Note also that each n′

gives rise to at most O(dε) values of n, again because this in an upper bound for the number
of possible u’s. It follows that

#{n | 1 ≤ n ≤ N, (n,m) = 1, nmod r ∈ Γ}' (d/φ(r))#{n | 1 ≤ n ≤ N, (n, r) = 1}/d2ε

and Lemma 2 now follows from lemma 1.

2. Some Function Fields

Let K be the function field of F (x, y) = 0 (as in Section 0) contained in an algebraic closure of
Fq(x). Within this algebraic closure, for each n, (n, p) = 1, select an n-th root of x, x1/n and
consider Kn = K(x1/n). We now need to switch viewpoint as follows. Identify all the Fq(x1/n)
with Fq(t) by sending x1/n to t and embed the Kn in a fixed algebraic closure of Fq(t) and
denote the image of y ∈ Kn under this embedding by yn, thus F (tn, yn) = 0. Let m be the
degree of the divisor of zeros of x in K. If (n,mp) = 1 then the extension Kn/K is separable
of degree n and F (tn, y) is absolutely irreducible. For those values of n, the divisor of zeros of
yn is supported at the places where tn = α where α runs through the roots of F (x, 0) = 0 in
F̄q. Note that, by hypothesis, one of these roots is nonzero.

Lemma 3. The algebraic functions yn, (n, pm) = 1, are multiplicatively independent.

Proof. It is enough to show that if L is a function field containing the yn, n ≤ N, (n, pm) = 1,
that the divisors of the yn in L are Z-linearly independent. This follows by induction on N ,
since if (N, p) = 1, not all the N -th roots of α are n-th roots of α for n < N , for α )= 0.
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For a function field L/Fq and an element z of L, denote by degL z the degree of the divisor
of zeros of z in L, which is also [L : Fq(z)] if z in non-constant. We have that degKn

yn * n.

3. Proof of the Main Theorem

With notation as in the statement of the theorem, let N = [d1−ε] and Γ = γ〈q〉 be the coset
given by lemma 2. Choose an element c ∈ F̄q such that a = cγ . Note that c is also of
multiplicative order r. If n ≤ N, (n, q) = 1, nmod r ∈ Γ then n ≡ γqj(mod r) for some j and
let J be the set of all such j. Thus, for j ∈ J , 0 = F (a, b)qj

= F (aqj
, bqj

) and aqj
= cnj , where

nj ≤ N, (nj , q) = 1, nj mod r ∈ Γ gives rise to j. It follows that there is a place of Knj above
t = c where ynj takes the value bqj

. Let T = [η log d], where η > 0 will be chosen later. If
I ⊂ J , let bI =

∏
j∈I bqj

.

We now claim that the bI are distinct for distinct I ⊂ J, |I| ≤ T . If bI = bI′ for two distinct
such subsets I, I ′, then the algebraic function z = (

∏
j∈I ynj /

∏
j∈I′ ynj )−1 vanishes at a place

of the field L, compositum of the Knj , j ∈ I ∪ I ′ above t = c, but, denoting by D the degree of
F ,

degL z ≤
∑

j∈I∪I′

degL ynj =
∑

j∈I∪I′

[L : Knj ] degKnj
ynj * TD2T N

which is smaller than d = [Fq(c) : Fq] for a suitably small choice of η and all d sufficiently
large and that is not possible, unless z = 0 and therefore the ynj , j ∈ I ∪ I ′ are multiplicatively
dependent. This contradicts lemma 3. It follows that there are at least

(|J|
T

)
distinct powers of

b. Now lemma 2 (with ε/3 instead of ε) gives that

|J |' d2−ε/3/r − rε/3 ' d2ε/3 − (d3/2−ε)ε/3 ' d2ε/3,

hence
(|J|

T

)
≥ (|J |/T−1)T ' exp(δ(log d)2), for some suitably small δ > 0, proving the theorem.

4. A Conjecture of Poonen

Conjecture (Poonen). Let A be a semiabelian variety defined over a finite field Fq and X a

closed subvariety of A. Let Z be the union of all translates of positive-dimensional semiabelian

varieties (over F̄q) contained in X. Then there exists a constant c > 0 such that for every

nonzero x in (X − Z)(F̄q), the order of x in A(F̄q) is at least (#Fq(x))c, where Fq(x) is the

field generated over Fq by the coordinates of x.

Our result corresponds to the special case A = Gm ×Gm but our bound is much weaker
than the prediction of the conjecture. Our hypothesis that F (x, 0) is not a monomial is a bit
stronger than requiring that X )= Z, which would have been a more natural condition. Finally,
our result is not symmetric in the x and y coordinates. A symmetric result would be that the
order of (a, b) as in the theorem is at least d3/2−ε, which follows immediately from our theorem.
However, it follows from the proof of Liardet’s theorem (as e.g. given in [L]), that the order of
(a, b) is at least d2.
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5. Rational functions

In this section we discuss the special case where our plane curve can be described by y =
R(x), R(x) ∈ Fq(x), R(x) not a monomial. In this case, we can obtain much better bounds.
Indeed, following the proof of the theorem, we have that yn = R(tn) so Kn = Fq(t) and we get
the much smaller estimate degL z * TDN . We can, therefore choose a much larger value of T ,
say T = [dη] for some small η > 0 and the proof of the theorem yields that b has multiplicative
order at least exp(dδ) with the same notation and assumptions. In [GS] and [ASV] better
estimates are obtained (essentially δ = 1/2) when R(x) = 1− x and r = d + 1

6. Gauss Periods

Let r be prime and a a primitive r-th root of unity in F̄q of degree r − 1 over Fq. If H is a
subgroup of Z/r we define the Gauss period b =

∑
h∈H ah and we’d like to estimate the order

of b by the above methods. We need the following lemma proved in [BR].

Lemma 4. There exists γ ∈ Z such that, for all h ∈ H, there exists uh ≡ γhmod r, |uh| ≤
r1−1/#H .

By choosing c with cγ = a we can write b =
∑

h∈H cuh . We now use the same strategy as
been used twice before and, as in the previous section, obtain the estimate deg z * TDN with
D ≤ r1−1/#H . So we choose N = [r1/(2#H)] and lemma 2 yields J with #J ' r1/(2#H)−ε and
we can take T = #J so we get that the order of b is at least 2#J , i.e., 2r1/(2#H)−ε

.

The experimental results of [GV] and [GGP] suggest that the order of Gauss sums are
probably a lot larger than what we can prove.
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