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Abstract

Let G ∼= Zn where n is a positive integer. A finite sequence S = {g1, . . . , gk} of not necessarily
distinct elements from G for which

∑k
i=1 gi = 0 is called a zero-sequence. If a zero-sequence

S contains no proper subzero-sequence, then it is called a minimal zero-sequence. The notion
of the index of a minimal zero-sequence (see Definition 1) in Zn has been recently addressed
in the mathematical literature. In this note, we offer a characterization of minimal zero-
sequences in Zn with index 1.

Let G be an additive abelian group and S = {g1, . . . , gk} a finite sequence of not nec-
essarily distinct elements from G. Denote by | S |= k the number of elements in S (or the
length of S) and let supp(S) = {g | g ∈ G with g = gi for some i} be the support of S.
Various properties of the sequence S have been considered over the last several years in the
mathematical literature. Some of these properties are among the following.

1. S is zero-free if
∑

i∈I gi #= 0 for any nonempty subset I ⊆ {1, 2, . . . , k}.

2. S is a zero-sequence if
∑k

i=1 gi = 0.

3. A zero-sequence S is a minimal zero-sequence (or MZS) if for every nonempty I !
{1, 2, . . . , k}, the sequence {gi}i∈I is zero-free.

1Part of this work was completed while the first author was on an Academic Leave granted by the Trinity
University Faculty Development Committee.
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4. A zero-sequence S which is not an MZS is an almost minimal zero-sequence (or AMZS)
if for every nonempty I ! {1, 2, . . . , k} where the sequence {gi}i∈I is a zero-sequence,
then {gi}i∈I is a minimal zero-sequence.

In this article, we will consider a property of minimal zero-sequences in finite cyclic groups
which was introduced in the literature in [2] and consequently considered in greater detail
in [4] and [7]. Some notation will be necessary before giving a formal statement describing
this property. Since the ordering of the elements in a sequence S does not matter, we will
view sequences as elements of F(G), the free abelian monoid on G. Hence, we write

S =
∏

g∈G

gng

where only finitely many of the ng are not zero.

Our goal is to offer a characterization of index 1 minimal zero-sequences in Zn. This will
be done in terms of almost minimal zero-sequences (see [3, Chapter 5] for more information
on AMZSs). We will find the language of block monoids useful for expressing and applying
some of our arguments. For a finite abelian group G, let B(G) represent the set of elements
in F(G) which are zero-sequences. Further, let U(G) be the subset of B(G) consisting of the
minimal zero-sequences of G. If S1 =

∏
g∈G gmg and S2 =

∏
g∈G gsg are in B(G), then B(G)

can be considered as a commutative cancellative monoid under the operation

S1 ∗ S2 =
∏

g∈G

gmg+sg

and is commonly called a block monoid (more information on block monoids can be found
in [6]). The irreducible elements of B(G) are merely the elements of U(G) and the empty
block (i.e., S = ∅) acts as the identity of B(G). An interpretation of an almost minimal
zero-sequence in terms of block monoids can be stated as follows: B ∈ B(G) is an almost
minimal zero-sequence if and only if B = B1 · · ·Bt with each Bi in U(G) implies that t = 2.

Definition 1. Let G be an abelian group.

(1) Let g ∈ G be a non-zero element with ord(g) = n > 1. For a sequence S =
(n1g) · · · (nlg), where l ∈ N0 and n1, . . . , nl ∈ [1, n], we define

‖S‖g =
n1 + . . . + nl

n

to be the g-norm of S. If S = ∅, then set ‖S‖g = 0.

(2) Let S be a zero-sum sequence for which 〈supp(S)〉 ⊂ G is a nontrivial finite cyclic
group. Then we call

index(S) = min{ ‖S‖g | g ∈ G with 〈supp(S)〉 = 〈g〉} ∈ N0

the index of S.
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Notice that the index of a sequence S depends only on S and not the choice of the cyclic
group G which contains supp(S). Theorem 2 of [2] indicates that as n increases, there
exist minimal zero-sequences of Zn of arbitrarily high index. The papers [7] and [4] have
both shown that for a fixed value of n, “long” minimal zero-sequences must have index 1.
In particular, [4, Section 2] shows for n ≥ 10 that a minimal zero-sequence S in Zn with
| S |> 2n

3 must have index 1.

When restricting our attention to cyclic groups, the g-norm of an zero-sequence can be
used to draw some helpful conclusions. We determine some basic properties of the g-norm
in the next proposition.

Proposition 2. Let G be an abelian group, g ∈ G a nonzero element and S, T ∈ B(〈g〉).

(1) ‖ · ‖g : B(〈g〉) → N0 is a monoid homomorphism (i.e., ‖S ∗ T‖g = ‖S‖g + ‖T‖g).

(2) ‖S‖g = 0 if and only if S = ∅.

(3) ‖0‖g = 1.

(4) If ‖S‖g = 1, then S is a MZS.

(5) If ‖S‖g = 2, then S is an AMZS.

Proof. The proofs of (1)-(3) are clear. For (4), if S = S1 ∗S2 with S1 and S2 in B(〈g〉), then
1 = ‖S‖g = ‖S1‖g +‖S2‖g ≥ 2, a contradiction. For (5), if S is neither an MZS or an AMZS,
then S = S1 ∗ S2 ∗ S3 for S1, S2 and S3 in B(〈g〉). The argument now follows as in (4).

We note that index one MZSs satisfy several interesting properties. Two of these prop-
erties follow. Recall that if S =

∏
g∈G gng is an MZS in Zn, then the cross number of S is

defined as k(S) =
∑

g∈G
ng

ord(g) where ord(g) represents the order of g in G (more information

on the cross number can be found in [1]). For S ∈ B(G) consider these properties.

(P1) S ∗ S is an AMZS in Zn.

(P2) k(S) ≤ 1.

It follows directly from Proposition 2 that S =
∏

g∈G gng an MZS in Zn with ‖S‖g = 1 satisfies
(P1). That ‖S‖g = 1 implies k(S) ≤ 1 can be seen as follows. Suppose S = (n1g) · · · (nlg)
is written as in Definition 1 with n = ord(g). Then

k(S) =
l∑

i=1

1

ord(nig)
=

l∑

i=1

1
n

gcd (ni,n)

≤
k∑

i=1

ni

n
= ‖S‖g = 1.

Hence we have the following.

Proposition 3. If S is a MZS of Zn with index(S) = 1, then S satisfies properties (P1)
and (P2).
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Example 4. Properties (P1) and (P2) do not characterize MZSs of index 1. Notice that
all of the index 2 MZSs in [2] do not satisfy (P1) (see in particular the proof of [2, Theorem
2]). A slight modification of the construction used in [2] yields the following example. Let
G = Z23 and set S = 2 · 7 · 9 · 11 · 17. It is a routine calculation to check the 22 possible
values of ‖S‖g and determine that index(S) = 2. Since k(S) ≤ 1, S satisfies (P2). For
considering property (P1), note that ‖S‖1 = 2 and so ‖S ∗S‖1 = 4. To establish that S ∗S
is an AMZS, one needs only observe that if it were not, then S ∗S = A ∗B ∗C for some zero
sequences A, B, and C. It follows that this has to be done (with the proper choice of g) so
that ‖A‖g = ‖B‖g = 1 and ‖C‖g = 2. The key then to observing such a decomposition is
impossible is to note that 72 · 9 is the only subsequence of S ∗ S that sums to 23.

While (P1) and (P2) do not offer the characterization of index 1 MZSs we desire, a
relatively simple condition involving the AMZS’s which contain an MZS S does provide a
characterization.

Theorem 5. Let G be an abelian group and S a minimal zero-sequence over G such that
supp(S) generates a cyclic group H of order n ≥ 2. Then the following statements are
equivalent:

(a) There exists some AMZS A ∈ F(H) of length |A| = |S|+n where S divides A in B(G).

(b) There exists some g ∈ H such that gnS is an AMZS.

(c) index(S) = 1.

Proof. (a) ⇒ (b) Let A = ST be an AMZS of length |S|+ n for some T ∈ F(H). Then T is
a minimal zero-sum sequence of length n. Thus, for example by [5, Lemma 13], there exists
some g ∈ H such that T = gn.

(b) ⇒ (c) Let g ∈ H and A = gnS an AMZS. Then there are m1, . . . , ml ∈ [1, n − 1]
with m1 ≤ . . . ≤ ml such that S =

∏l
i=1(mig). We assert that ‖S‖g = 1. Assume to the

contrary that

‖S‖g =
m1 + . . . + ml

n
= k with k ≥ 2.

Since S is a minimal zero-sum sequence, there exist u, v ∈ [1, l − 1] such that

(k − 2)n < m1 + . . . + mu < (k − 1)n < m1 + . . . + mu + mu+1

and

mu+1 + . . . + mv < n < mu+1 + . . . + mv + mv+1.

We set

r = (k − 1)n − (m1 + . . . + mu),
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s = n − (mu+1 + . . . + mv)

and we define

N1 = gr
u∏

i=1

(mig), N2 = gs
v∏

i=u+1

(mig) and N3 = gn−(r+s)
l∏

i=v+1

(mig).

By construction, N1, N2 and N3 are zero-sum sequences with A = N1N2N3, a contradiction
to the fact that A is an AMZS.

(c) ⇒ (a) Let g ∈ H such that ‖S‖g = 1. We set A = gnS, and since ‖A‖g = 2, it follows
that A is an AMZS.
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