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A stochastic model is found for the value of the peak flows of the Mistassibi river in Québec, Canada, when
the river is in spate. Next, the objective is to forecast the value of the coming peak flow about four days in
advance, when the flow begins to show a marked increase. Both the stochastic model proposed in the paper
and a model based on linear regression are used to produce the forecasts. The quality of the forecasts is
assessed by considering the standard errors and the peak criterion. The forecasts are much more accurate
than those obtained by taking the mean value of the previous peak flows.
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1 INTRODUCTION

The problem of forecasting the value of the flow of various rivers and/or hydrological basins
in Québec, Canada, has been considered by Labib ef al. [4] and by the author (see Lefebvre
[7], for instance), in particular. Their objective was to forecast the flow up to seven days
ahead. They compared the results obtained by making use of various stochastic models to
those obtained with a deterministic model known as PREVIS (see Refs. [1, 3, 5, 6]), which is
currently used by a number of companies in Canada. It was found that relatively simple
stochastic models could outperform PREVIS, which requires the evaluation of 18 para-
meters, for forecasts up to three and sometimes four days in advance. However, PREVIS
generally produces more reliable forecasts from five days ahead.

Next, Lefebvre [8] tried to model the maximum flow of the Mistassibi river during each of
the months of April, May and June, as well as to forecast the maximum flow in May, based
on the observed maximum flow in April. This three-month period is the time when the river
is in spate and the maximum value of the flow in May is also most of the time the maximum
flow over the three-month period.

In the present paper, instead of trying to forecast the maximum flow in May, based on the
maximum flow in April (which is very often observed on April 30th), we will attempt to
forecast the value of the various peaks of the river flow during the period when the river is in
spate. In some years, two or even three peaks that could cause flooding were observed. So,
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the problem is different from the one considered in Lefebvre [8]. Moreover, it was found in
Lefebvre [8] that the maximum flow in May usually happens around May 15th and that the
correlation between the maximum in April and that in May is rather weak. Therefore, it is
difficult to make use of the observed maximum flow in April to forecast the maximum flow
in May with high accuracy.

Here, we approach the problem of forecasting the peak flows of the Mistassibi river in a
different way. More precisely, we will seek to forecast an oncoming peak flow about four days
before its occurrence. Indeed, in most cases the river flow shows a marked increase at least three
days before a peak. Our objective is to arrive at quite accurate forecasts of these peaks quickly
enough so that the persons in charge can take action to prevent flooding if it is deemed necessary.

Other authors have tried to forecast peak flows of rivers, as well as the time of occurrence
of these peak flows. Rosbjerg [9], in particular, has proposed a model and an estimator for the
maximum flow (see also Ref. [2]). However, Rosbjerg’s estimator depends on the correlation
coefficient of two consecutive peaks. In our case, there are many years for which there is but
a single peak during the whole spring season. Hence, we cannot make use of the formula
developed by Rosbjerg.

In Section 2, stochastic models will be found for the peak flows of the Mistassibi river and
for the river flows on the previous days. Next, in Section 3 we will make use of the models
obtained in Section 2 to forecast the peak flows of the river. As will be seen, even better
forecasts will in fact be produced by another model, based on linear regression. Finally, a few
remarks will conclude this work in Section 4.

2 STOCHASTIC MODELS

The observed flows of the Mistassibi river are available to us for the period from 1953 to
1994. However, due to numerous missing values for the first years, we decided to limit our
study to the years 1963 to 1994. Over this time period, during the months of April, May and
June, we have identified 54 occurrences when the river flow has had a daily increase of at
least 90 m> /s, leading to a peak flow in the following days. The data are presented in Tables I
and II. We have included the value of the flow before the large increase (Flow), the size of the
increase (Increase), the value of the flow one and two days after the increase (Flow2 and
Flow3), and finally the value of the ensuing peak flow (Max) as well as the number of days
elapsed until the peak flow (). Moreover, Table I presents the data for the years 1963-1979,
while Table II does so for the years 1980-1994.

Remark The value of 90m®/s was chosen so that the peak flow could be forecasted with
enough accuracy and early enough to advise the administrators to take action if needed. A
50m?>/s increase, for instance, leads to too many “false alarms” or lack of precision, whereas
a 150m>/s increase as a warning signal would entail missing some peak flows or leaving too
little time to the administrators.

First, we find that the peak flows occurred on average approximately 3.5 days after the
90m>/s (or more) increase. Therefore, if we could produce accurate enough forecasts of the
peak flows when this large increase is observed, it would leave a few days to act in order to
prevent floodings.

Next, we have tested the hypothesis that the variables Flow, Flow2, Flow3 and Max in
Tables I and II combined follow a Gaussian distribution, as well as the variable

Flowl := Flow + Increase;



TABLE I Data for the years 1963-1979.

PEAK FLOWS OF A RIVER

Date Flow Increase Flow2 Flow3 Max N
63/05/19 660 150 949 971 971 3
64/05/01 510 136 745 801 1240 11
65/05/09 220 131 487 575 728 5
65/05/17 731 161 1000 1030 1030 3
66/05/17 219 109 459 711 1010 6
67/05/27 425 105 617 674 668 4
68/04/22 411 99 600 711 1000 5
69/05/18 580 97 750 818 818 3
69/06/04 663 96 799 793 813 4
70/05/01 382 170 878 997 997 3
70/05/17 430 97 682 714 739 4
70/06/11 402 139 651 595 651 2
71/05/10 597 94 756 841 960 5
72/05/15 268 97 515 671 1060 7
73/04/24 300 91 467 504 748 7
73/05/04 773 164 1050 1030 1050 2
74/05/12 408 158 733 892 1030 6
74/06/01 1080 130 1300 1320 1350 5
75/05/04 272 96 411 476 762 9
75/06/01 405 110 578 561 578 2
76/04/29 484 99 614 674 1010 6
76/05/12 685 300 1250 1300 1300 3
76/05/18 1350 130 1530 1560 1560 3
77/04/24 125 97 419 504 544 5
77/05/07 580 100 680 629 680 1
77/05/17 782 113 991 1000 1000 3
77/05/23 997 93 1150 1150 1150 2
78,/05/09 438 136 757 988 1160 8
78/06/13 417 336 985 1070 1070 3
79/04/27 449 285 1090 1380 1480 4
79/05/13 584 149 896 862 896 2
79/06/12 448 100 575 573 701 7
TABLE II Data for the years 1980-1994.
Date Flow Increase Flow2 Flow3 Max N
80/04/25 246 121 419 489 911 9
81/05/06 437 105 621 614 621 2
81/05/14 853 132 1130 1170 1230 4
82/05/07 550 133 871 1050 1200 5
82/06/01 391 116 685 689 689 3
83/04/30 600 163 905 939 961 5
83/05/14 584 135 882 960 960 3
84/04/25 321 100 515 583 986 8
85/05/17 528 134 837 950 1100 5
85/06/02 696 132 826 763 826 1
86/04/27 493 158 857 1010 1290 7
87/04/02 352 97 414 373 449 2
87/04/19 361 90 504 530 580 5
89/05/01 115 96 250 289 854 10
90/05/11 635 130 884 833 884 2
91/05/01 437 110 654 691 691 3
92/05/09 422 124 665 720 1280 6
92/05/18 1170 170 1380 1320 1380 2
93/04/13 188 98 340 302 616 7
93/05/04 528 159 979 1250 1300 4
93/06/02 531 102 692 660 692 2
94/05/06 284 143 591 646 848 8
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TABLE III p-Values associated with the
normality tests.

Variable p-Value
Flow 0.003
Flow1 0.023
Flow2 0.358
Flow3 0.212
Max 0.410

TABLE IV p-Values associated with the
normality tests applied to the logarithms of
the variables in Table IIL.

Variable p-Value
LnFlow 0.153
LnFlow1 0.490
LnFlow2 0.892
LnFlow3 0.507
LnMax 0.433

we have used the Anderson-Darling test (as well as the Ryan-Joiner test actually). The
p-values of the tests, that is, the smallest values of the level a of the tests that can be used to
reject normality, are shown in Table III.

We see that, apart from the variables Flow and Flow1, the normality assumption cannot be
rejected with a small «. However, we have also applied the Anderson-Darling test to the
natural logarithms of the same variables. The corresponding p-values are given in Table IV.

It is obvious that the lognormal distribution is a better model than the Gaussian distribution
for the data.

Then, we have computed the correlation coefficient of LnMax and each of the variables
LnFlow, LnFlowl, LnFlow2 and LnFlow3 (see Tab. V).

As could be expected, the correlation coefficient of LnMax and the natural logarithm of the
observed flow increases when the observed flow is closer to the maximum.

In the next section, the various Flow variables will be used to try to forecast the peak flows as
accurately as possible. For the moment, we are looking for a stochastic model for the peak
flows. Based on what precedes, we can state that the natural logarithm of the peak flow seems
to follow a Gaussian distribution with mean and standard deviation approximately equal to
6.8148 and 0.2814. Similarly, the variables LnFlow, LnFlow1, LnFlow2 and LnFlow3 also
seem to have a Gaussian distribution with means and standard deviations given in Table VI.

TABLE V Correlation coefficients of
LnMax and the logarithms of the flows.

Variable Correlation coefficient
LnFlow 0.505
LnFlowl 0.578
LnFlow2 0.669

LnFlow3 0.782
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TABLE VI Means and standard deviations of
the variables LnFlow, LnFlowl, LnFlow2 and

LnFlow3.

Variable Mean Standard deviation
LnFlow 6.1313 0.4949
LnFlowl 6.3936 0.4058
LnFlow2 6.5744 0.3704
LnFlow3 6.6467 0.3657

Finally, given that the Gaussian distribution is a good model for the variable LnMax, it is a
simple matter to compute estimates of the flow values that the peak flow exceeds with
probability 1% or 0.1%, etc.

3 FORECASTING THE PEAK FLOW VALUES

We now turn to the problem of forecasting the value of the peak flow, based on the observed
flow, together with the value of the 90" m3/s increase. Moreover, because the peak flow
actually occurs, on average, about 3.5 days after the large flow increase has been noticed, it is
interesting to try to forecast the value of the peak flow once the actual flows one and even two
days after this large flow increase are known. We will make use of the data in Table I, that is
for the years 1963-1979, to arrive at an estimator, and then we will attempt to forecast the
peak flows that have been observed over the years 1980 to 1994.

A first formula can be obtained by remembering that if the random vector (X;, X;) has a
bivariate Gaussian distribution, then

o
E[Xp| Xy =x] = py, + Px, x, ﬁ(x = Ix,)s
1

where iy is the mean of X;, oy, is its standard deviation and py, , is the correlation coef-
ficient of X; and X;. Hence, computing the various quantities needed to estimate the mean of
the variable Max, based on the value of the variable Flow, we obtain the following formula
(see Tabs. VII and VIII):

0.2652
Gaus := exp{6.8344 + 0.556 (0—49—25) (LnFlow — 6.1674)}.

TABLE VII Means and standard deviations
of the variables LnFlow, LnFlowl, LnFlow2,
LnFlow3 and LnMax using the data in Table I.

Variable Mean Standard deviation
LnFlow 6.1674 0.4932
LnFlowl 6.4294 0.4075
LnFlow2 6.6181 0.3435
LnFlow3 6.7053 0.3136

LnMax 6.8344 0.2652
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TABLE VIII Correlation coefficients of
LnMax and the logarithms of the flows
using the data in Table L.

Variable Correlation coefficient
LnFlow 0.556
LnFlowl 0.635
LnFlow2 0.718
LnFlow3 0.853

Similarly, the forecasts based on LnFlow1 and on the observed flows one and two days after
the 90* m3/s increase are respectively

0.2652
= . . L - .42 N
Gausl exp{6 8344 +0 635(0‘4075)( nFlowl — 6 94)}
0.2652
Gaus2 := exp{6.8344 + 0.718(m)(LnFlow2 —6.6181)¢,
and
Gaus3 := exp{6.8344 + 0.853 (%) (LnFlow3 — 6.7053) ¢.

To assess the quality of the forecasts produced by the estimators above, we will compute the
correlation coefficients of the forecasts and the observed peak flows. However, two more
important criteria are the standard error defined by

12
STD = [ﬂ] ,
n—1

where SSQ is the sum of the squares of the forecasting errors and #» = 22 in our case, and the
peak criterion:

[ZZI Xk — Xi)*X? ] v
[ZZZ )(2]1/2 - )
i=14%

in which X; is the kth observed peak flow and X; is the corresponding forecasted peak flow.
This last criterion enables us to measure the capacity of the estimator for forecasting very
high flows, which is really important. Moreover, we can show that the peak criterion PC is in
the interval [0,1] and that the closer to 0 the quantity PC is, the better the forecasts are.

Next, to get a better idea of the quality of the forecasts produced by the formulae Gaus,
Gausl, etc., we will also compute the values of the criteria above obtained with other esti-
mators. A “naive” estimator of the next peak flow is the average value of all the previous peak
flows observed. Therefore, we can estimate the first peak flow in Table II by computing the
average value of the 32 peak flows in Table I; then, we estimate the second peak flow in Table II
by computing the mean of the 33 previous peak flows, etc. We denote this estimator by MEAN.

Since the maximum flow occurs on average between four and five days after the variable
Flow has been observed, another simple estimator of the peak flow is given by

PC:=

LIN1 := Flow + 5 x Increase.
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Remarks (1) Notice that this estimator doesn’t make use of the data in Table 1. (2) Because
the mean value of the variable N is approximately equal to 4.6, we could have set
LIN1 = Flow + 4.6 x Increase instead. However, as will be seen below, this estimator isn’t
very reliable and its performance is actually worse when we replace 5 by 4.6.

In a similar way, once the values of Flow2 and Flow3 are known, we can estimate the
coming peak flow by

LIN2 := Flowl + 4 x (Flow2 — Flow1)
and
LIN3 := Flow2 + 3 x (Flow3 — Flow2).

Finally, a technique that has been used successfully by the authorin previous papers is that of linear
regression. The various regression equations obtained with the data in Table I are the following:

Max = 414 + 0.550 x Flow + 1.86 x Increase := Regl,
Max = 368 — 0.599 x Flow — 0.69 x Increase + 1.27 x Flow2 := Reg2

and

Max = 248 + 0.724 x Flow + 0.983 x Increase — 1.85 x Flow2 4 1.93 x Flow3 := Reg3.

Remark These regression equations are quite reliable. Indeed, the corresponding coeffi-
cients of determination R? are given by 55.3%, 62.0% and 85.7% respectively. Moreover, if
we include the variable N into the model, we get a coefficient of determination (approxi-
mately) equal to 92.9%. Of course, the value of N is not known when we want to forecast the
next peak flow, so it cannot be used in the forecasting formulae.

First, Table IX presents the correlation coefficients of Max and the various estimators
proposed above.

We see that the LIN and Reg estimators have the best correlation coefficients, the Gaus
estimators being a little less correlated with the variable Max. Although the important criteria
are the standard error and the peak criterion, as mentioned above, we may immediately
conclude that the MEAN estimator is really not reliable at all.

Next, we compute the standard errors obtained with each of the estimators in Table IX.
The results are shown in Table X.

TABLE IX Correlation coefficients of
Max and its various estimators.

Estimator Correlation coefficient
MEAN —0.389
LIN1 0.666
LIN2 0.749
LIN3 0.825
Gaus 0.498
Gausl 0.555
Gaus2 0.667
Gaus3 0.779
Regl 0.638
Reg2 0.734

Reg3 0.837




560 M. LEFEBVRE

TABLE X Standard errors (in m/s)
obtained with the various estimators of

Max.

Estimator Standard error
MEAN 274.8
LIN1 310.7
LIN2 3103
LIN3 239.2
Gaus 234.6
Gausl 225.4
Gaus2 203.6
Gaus3 180.9
Regl 208.9
Reg?2 184.2
Reg3 162.8

TABLE XI Peak criteria obtained
with various estimators of Max.

Estimator Peak criterion
MEAN 0.2451
Gaus 0.2611
Gausl 0.2254
Gaus2 0.2632
Gaus3 0.2378
Regl 0.2184
Reg2 0.2040
Reg3 0.1977

Table X enables us to discard the LIN estimators, since the corresponding Gaus and Reg
estimators are clearly better.

Finally, another important criterion is the peak criterion defined in (1). We computed this
criterion for the estimators MEAN, Gaus and Reg, as shown in Table XI.

Surprisingly, the naive estimator MEAN has a smaller value of PC than Gaus and Gaus2.
At any rate, it is now obvious that the best forecasts are produced by the Reg estimators.
Indeed, the Reg estimators always have the smallest standard errors and the smallest values of
the peak criterion. We see that, compared to the accuracy of the MEAN estimator, there is a
decrease of 24% to over 42% in the standard error.

The Gaus estimators do quite well as far as the standard error is concerned; however, they
don’t seem to be able to forecast (very) high flows very well, which is a serious flaw. Notice
that these estimators are all based on a bivariate Gaussian distribution, whereas Regi involves
i+ 1 variables, for i =1, 2, 3.

4 CONCLUDING REMARKS

In this paper, a simple stochastic model was first proposed for the peak flows of the Mistassibi
river, in Québec, during the months of April to June, that is, when the river is in spate. We saw
in Section 2 that the variable Max seems to have a lognormal distribution (although a Gaussian
distribution would also have been acceptable for this variable). This model enables us to
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compute flow values that will only be exceeded with a given (small) probability. Confidence
intervals could also be obtained from this model for the mean peak flow.

Next, we turned to the problem of forecasting the peak flows of the river once an important
increase in the daily flow has been observed. We found in Section 3 that a very good esti-
mator of the coming peak flow is obtained by making use of linear regression. Of course, the
more observations of the actual flow we have, the more accurate the forecasts are. Since the
peak flow occurs on average approximately three and a half days after an increase of 90 or
more m>/s, we considered the estimators based on the flows before and after the large
increase, as well as the flows one and two days after the large increase. Although the estimator
based on all these variables at the same time is naturally the most accurate, it might often be
too late to act if we wait two days after having noticed a large increase in the daily flow.
Therefore, the other estimators (Regl in particular) are also useful. The administrators can
always react and change their decision if the forecast produced by Reg?2 is less alarming than
that provided by Regl, for instance.

Now, to improve further the accuracy of the forecasts, we could try to incorporate at least
another variable into the regression equation, such as the amount of precipitation on the day
when the large flow increase was observed. This was done in Lefebvre [8] without much
success; however, as mentioned previously, there is not enough correlation between the
maximum flow in April and that in May. In the present case, knowing the amount of pre-
cipitation a few days before the peak flow could prove to be useful.

Finally, it has been found in other works that another way of improving the forecasts is to
take the arithmetic mean of the forecasts produced by various estimators. Here, if we define

MEAN + LIN3 4 Gaus3 4 Reg3

Ave3 == 4 )

we find that the correlation coefficient of Max and Ave3 is 0.827, the standard error computed
with this estimator is 156.1 m>/s, and the peak criterion is 0.1951. These values of the standard
error and of the peak criterion are better than those obtained with any single estimator. So, even if
some estimators (such as MEAN) considered individually do not provide reliable forecasts, they
can nevertheless be used to improve the quality of the forecasts. Actually, if we define instead

_ LIN3 + Gaus3 + Reg3

Ave3 )
ve 3

we find that the correlation coefficient of Max and Ave3 increases to 0.829; however, the
standard error and the peak criterion also increase, to 177.6m>/s and 0.2042 respectively.
Thus, rather surprisingly, it is better here to leave MEAN in the formula.
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