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Often airfoil shapes are given by specification of camber line and thickness functions.
The camber line of an airfoil extends from the leading edge of the airfoil to the
trailing edge and its position is given as a function of distance measured along the
chord of the airfoil. The thickness function measures the perpendicular distance from
the upper and lower surfaces of the airfoil to the camber line. The inverse problem
where the upper and lower surfaces are specified and camber line and thickness
functions are to be determined give rise to a first order semi-explicit nonlinear
differential algebraic equation with boundary conditions. Examples are given where
there are no solutions and multiple solutions.
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1. INTRODUCTION

The subject of differential-algebraic equations (DAE) has seen ex-
plosive growth in recent years, especially when applied to problems in
constrained rigid body dynamics and chemical process simulation. As
both of these types of engineering problems typically lead to initial
value conditions much of the mathematical machinery that has been
developed for DAE’s has been concerned with local existence and
uniqueness issues and local error estimates and stability criteria for
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various numerical procedures. An excellent reference is [1]. The pro-
blems that are the focus of this paper lead to DAE’s with boundary
conditions so local existence and uniqueness considerations are in-
sufficient and non-local properties must be considered.

Here we will consider a problem motivated from the study of airfoils
that naturally leads to a first order semi-explicit nonlinear differential
algebraic equation with boundary conditions. The NACA four digit
series of airfoils is described by a camber line function and a thickness
function. The original motivation for use of the camber line holds true
today. Thin airfoil theory [2, for example], which depends on knowing
the camber line function, affords any easy method of calculating lifting
force and moments on airfoils by performing simple quadratures. Only
knowing the locations of the upper and lower surfaces poses a much
more difficult computation for the lifting force and moments. The
equations which describe the upper and lower surfaces given thickness
and camber line functions are:

Xy = X — yi(x) - sin(0)
— () + 7() - cos(0)
= X + y,(x) - sin(6)
Y1 =ye(x) = yi(x) - cos(t)

I

=
|

where x is measured along the chord from x = 0 at the leading edge to
x = ¢ at the trailing edge, y,(x) is the thickness function, y.(x) is the
camber line function, and tan(0) is the camber line slope [3, 4]. A de-
finition sketch is shown in Figure 1. It is not unusual to neglect the
camber line slope, which simplifies the equations and makes the reverse
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FIGURE 1 Definition sketch for airfoil coordinates.
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problem of extracting the thickness envelope and mean line for a given
airfoil straightforward. Indeed, most authors use the formulation:

Yu(x) = ye(x) + yi(x)

2)
yi(x) = ye(x) = yi(x)

which is equivalent in the limit of nearly symmetric airfoils which have
negligible camber and the inversion problem is trivial.

When the camber line slope is not neglected, which would be
appropriate in situations where more exact analysis is required, the
inversion problem is far from trivial in most cases and often the
inversion problem has no solution. Consider, for example, the
triangular region shown in Figure 2.

The camber line must start at 4 and end at F. Given a point
within the region ABD there is only one solution to the problem of
finding points on the upper surface (4BCEF) and the lower surface
(ADF) that are equidistant from that point. The camber line must be
perpendicular to the line segment that joins the points on the upper
and lower surface and hence the direction of the camber line is a
unique function of position within that region. Since the camber line
starts at A it is now clear that the camber line curve within the
region ABD is the bisector of the angle formed at A4. Similarly, the
camber line curve in region DEF must be the bisector of the angle
formed at F.
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FIGURE 2 A triangular airfoil.
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Given a point within the region BED there are two distinct solutions
to the problem of finding points on the upper surface (4BCEF) and
the lower surface (4DF) that are equidistant from that point. One of
the solutions has its point on the upper surface on 4BC and the other
solution has its point on the upper surface on CEF. The solution curve
entering BDE from the left has its point on the upper surface on ABC
while the solution curve that leaves BDE to the right has its point on
the upper surface on CEF. The only place where the solution can
smoothly change from one solution branch to the other is at the point
G. The bisector of the angle at 4 does not pass through G, however,
and so there is no smooth solution to the camber line problem for this
shape. Slightly rounding the corner at C does not change this fact, of
more later.

Sufficient rounding can give rise to a problem with a smooth solu-
tion. Consider the airfoil shape shown in Figure 3. AF is the bisector of
the angle at A and BC is a circular arc centered at D. Even though the
upper surface is not smooth at B and C, there is a solution to the
camber line problem with continuous first derivatives consisting of the
bisector AF, the bisector of the angle at E that lies within CDE, and a
circular arc centered at D that joins the two.

These solutions for camber lines rely on geometric constructions.
The camber line problem can be cast into an analytical DAE
problem as well to allow the use of analytical and numerical
methods.
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FIGURE 3 A triangular airfoil with top corner rounded by a circular arc.
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2. FORMULATION OF THE INVERSION PROBLEM

Say we are presented with a description of the upper and lower sur-
faces in the form

yu(-xu) =f(-xu)

3)
yi(xr) = g(xi)
where the functions f and g are known functions and we wish to
construct a camber line and thickness function for the shape. Here we
explicitly use the variables x, and x; to emphasize that they are to-be-
determined functions of x which is measured along the chord of the
airfoil. Now imagine that the point (x, y.) is a point on the camber
line. We will not restrict attention to regions that look like practical
airfoils, but instead consider regions of any shape with boundaries
formed by two continuous functions.
Since it is on the camber line, the following equality must hold:

Yu(X + Ax) = ye(x) = pe(x) — yi(x — Ax) 4)

for some Ax (see Fig. 4). From this the slope of the camber line is
found to be:

dy, _ —Ax (5)
dx  yu(x + Ax) — ye(x)
Ax Yu
"y 4
y
t(x)
A}’ yc
x
Yy
X

FIGURE 4 Definition sketch. The camber line and thickness functions are specified as
functions of chord position, x.
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where Ax is a function of x and y. given by the equality above. Ax is
often a multivalued function of x and y,, even in very simple situations
like we have seen earlier. In principle any point on the camber line can
be used as an initial condition for solving the differential equation as
long as there is a solution for Ax at that point.

The problem posed is of the form

dy

E;ZK&%Aﬂ

g(x,y,Ax) =0

(6)

which is a semi-explicit nonlinear differential algebraic equation
(DAE) [1].

Determination of the thickness function poses no additional diffi-
culties and is given by:

Pi() = 100) = A+ (o Ax) — () )

3. STRAIGHT LINE EXAMPLES

Linear Surfaces—Non-parallel

The case with straight surfaces is one that can be analyzed exactly to
a large degree, approximates conditions in a thin airfoil at least
locally, and demonstrates some very important properties of the
solution.

Consider the case where both the upper and lower surfaces are
straight, non-parallel lines. Without loss of generality, one can move
the point of intersection to the origin by simple shifts of coordinate.
We will define the upper and lower surfaces by

Yu =My - Xy, Y1 =My X; (8)
where

Xy =Xx+Ax, x;=x-—Ax (9)
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Here we can solve for Ax exactly:

_ 2 pe(x) = (mi+mp) - x

Ax 10
(my — my) (10)

which gives rise to the differential equation
dye — 2-pe(x) = (my +my) - x (1n)

dx  2-my-my-x— (my+my) - ye(x)

This differential equation admits exact general solutions in implicit
form after the substitution v = xy.(x). Explicit solutions can be ob-
tained if mym; = —1, that is the lines are perpendicular, because in
that case the equation becomes an exact differential. The resulting
solutions are:

2-m - x 2-my-x\’ 4-xy-po-m
A = — :t 2 2 _ 2.
yelx) mi— 1 \/< m2—1)+x tht m? —1 Yo
(12)

The solution which bisects the angle is the one where

— xo-tan(Z— tan! (-
Yo =Xo tan<4 tan (m|>>' (13)

Notice that only this solution passes through the origin. All other
solutions initially between the two lines diverge from the bisector as
the origin is approached.

Explicit exact solutions that pass through the point (x¢, yo) can also

be obtained for the case m; = —m, where now the equation is separ-
able. These solutions are:
x ~1/m?
@) =y (=) (14)
X0

Here we have the solution y.(x) =0 for yp =0 and xp # 0 and all
other solutions initially between the two lines do not pass through the
origin.
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The fact that there is only one solution that enters the origin is not
an artifact of the special choices made here. It can be shown either
through inspection of the implicit solution for the general case or by
simple geometrical argument that there is only one such solution in
general. This result has far reaching consequences for the existence of
solutions, of more later.

Linear Surfaces—Parallel

Parallel surfaces have an obvious solution for the camber line, but the
formulation of the mathematical problem is interesting. Without loss
of generality we can look at the problem where

)’I(X): 17

15

ya(x) = —1. =

All other problems can be converted to this by suitable rotations,
stretches, and translations of the coordinate system.

We find that solutions for Ax only exist if y. = 0 and then there are
an infinite number of solutions. Furthermore, the value of the slope of
the camber line can take on any value. Of course solution can only
proceed if the zero slope is chosen otherwise the solution curve is
forced off of the y. =0 line and no solution is possible. Hence all
points on the camber line are singular points of the inversion problem.

4. TRIANGULAR SHAPES

Let’s take a closer look at triangular regions. Consider the region
bounded by

x+1, -1<x<0
wmx)=¢ —x+1, 0<x<I,
undefined, otherwise (10)

0, —-1<x<lI
yi(x) =

undefined, otherwise.
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The constraint equation becomes

2. —(x+Ax+1)=0 if —-1<x+Ax<0
and —-l<x-Ax<1

2.+ (x+Ax—-1)=0 if O0<x+Ax<l1 (17)
and —1<x—-Ax<l1

No solution otherwise.

For this triangular shape (see Fig. 2) we have the following properties
of the solution(s) to the constraint equation: in region ABD there is
one solution corresponding to points on the upper surface AC and
points on the lower surface AF, in region DEF there is one solution
corresponding to points on the upper surface CE and points on the
lower surface AF, in region BDE there are two solutions (one corre-
sponding to AC and one corresponding to CF), and in BCE there are
no solutions. The fact that the line segments BD, BE, and DE form the
boundaries of these regions can also be deduced from the behavior of
the partial derivative of the constraint equation with respect to Ax,
that is by going through the exercise of computing the index of the
system.

Since our solution is required to go from A4 to F, the solutions in
regions ABD and DEF must be the bisectors of the angles formed by
the surfaces at the points 4 and F, respectively. Clearly there is no
smooth solution curve that joins the bisectors.

Now consider the consequences of the behavior at the leading and
trailing edges. Each one is at least locally a pair of intersecting lines
and hence there is a single solution curve in the neighborhood of the
leading and trailing edges. As long as the local solutions for Ax are
distinct, smoothness of the solution requires that the local solution can
be determined from a local linearization of the upper and lower sur-
faces about the points corresponding to the camber line position, i.e. if
discrete, multiple Ax’s are possible the one which varies only in-
crementally from the previously used one is allowed as the others will
cause a discontinuity in slope for the camber line solution. This gives
rise to unique solution curves coming out of both the leading and
trailing edges until a point is reached where the upper and lower
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surfaces become parallel to the camber line (distinction solutions
merge) or the camber line solution curves meet. If the solution curves
meet where the upper and lower surfaces are parallel to both camber
line solutions, then there is a smooth solution. Therefore a necessary
condition on a smooth solution is that it must pass through a point
where the upper and lower surfaces are parallel to the camber line
before the solutions cross. Assuming that the point C in the triangle
example just given can be considered a place where the slope is zero,
which is fully justified if that apex is slightly rounded in a very small
neighborhood of C, then the line BE is the locus of points where a
camber line could exist that is parallel to both the upper and lower
surfaces. We will call a curve with this property the parallel surfaces
camber line locus. The solutions leaving A and F, which are the bi-
sectors, cross before reaching BE and hence there can be no smooth
solution to the problem.

The smooth solution curve cannot contact just any point on the
parallel surfaces camber line locus for a smooth solution. An even
more stringent necessary condition arises when the surfaces are lo-
cally parabolic, namely that if the camber line solutions join
smoothly at that point they must also be tangent to the parallel
surfaces camber line locus. It is not difficult to show that the parallel
surface camber line locus is also a curve that separates regions where
the camber line can exist within the shape from regions where it
cannot if the appropriate parts of the upper and lower surfaces can
be approximated with parabolas. (See Section 7 for details.) That
means that as the solutions approach the parallel surfaces camber
line locus from each direction they must be on the same side and so
the only way to smoothly join the two curves is if they become
tangent to the parallel surfaces camber line locus. That can only
happen at points where the normal to the camber line is also normal
to the parallel surfaces camber line locus. In this example the only
point that meets this criteria is the point G which does not lic on
either bisector.

Now let us reconsider the case where there is a finite curvature of the
upper corner of the triangle (see Fig. 5).

Here the altitude of the triangle is @ and once the upper corner is
rounded the height becomes . The point F is the only point on the
parallel surfaces camber line locus where its slope matches the slope of
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FIGURE 5 Triangular airfoil with rounded apex.

the surfaces and hence any smooth solution must go through F. If the
line joining 4 to F lies above the bisector of angle BAD, then the
camber line solution starting at 4 cannot reach F. Hence a necessary
(but not a sufficient) condition that a smooth camber line solution
exists for this problem is that

/a2 —
b < vatl-1 (18)
vaz+1+1

A sharper bound probably exists.

5. PARALLEL SURFACES CAMBER LINE LOCUS

The role of the parallel surfaces camber line locus and in particular
the point where its slope matches the slope of the corresponding
upper and lower surfaces plays a crucial role as described earlier.
The locus of camber line positions where the upper and lower sur-
faces are parallel to the camber line can be written as the collection
of points

(xl-!- Ax, (Yulx1 +2 - Ax) +y1(x1))>

: (19)
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subject to the condition

d
(v +2Ax) = d% (x). (20)

dyy
dx,

In general this locus and any points where the slope of the locus
matched the associated surface slopes should be identified first before
attempting to calculate solutions numerically. Any solution curve that
passes through this locus switches from a region where the upper and
lower surfaces are diverging to one where they are converging. Solu-
tion curves in the regions where the upper and lower surfaces converge
are unstable as described in Section 3 making numerical solution im-
possible.

6. SEMICIRCULAR SHAPES

Now consider the semicircular shape (see Fig. 6):

VI-x —1<x<1
yu(x) =

undefined, otherwise

0, —-I<xx<l
yi(x) = .
undefined, otherwise

A c E

FIGURE 6 Semicircular airfoil. The large semicircle is the airfoil shape.
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which leads to the constraint equation

2-yc—\/l—(x+Ax)2=0 if —1l<x+Ax<1
and—-1<x—-Ax<1 (22)

No solution otherwise.

In the semicircular regions 4BC and CDE there is only one solution
for Ax, in BCD there are two solutions and above the curve ABDE
there are no solutions. The line segment BD is the parallel surfaces
camber line locus. The solution must pass through the point F as it is
the only point on the parallel surfaces camber line locus where the
slope matches the slope of the corresponding camber line.

The camber line solution starting at 4 solves the differential equa-
tion and initial condition

dy. _x+/T=2 7209

—a—; - )’r(x)

The substitution

w(x) = __________\,1-—4}/%(96) (24)

X

leads to the separable differential equation

dw —4—-w(x)—-4
X a—; = ——*———‘———‘—‘w(x) (25)
which can be integrated exactly. The solution for x and y for x between
—1 and 0 can be expressed parametrically as

82_2/‘V+2
X(w) = w+2

1 — x2(w) - w? (26)
yowy = VI X0
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FIGURE 7 Camber line solution for the semicircular airfoil.

The solution from x = 0 to x = 1 can be found by symmetry and the
total solution is shown in Figure 7.

7. PARABOLIC SURFACES

Here we will look at shapes where the upper and lower surfaces are
parabolas.

Symmetric Parabolas

The camber line solution for a symmetric airfoil is trivial, but the
structure of the mathematical problem has some interest. Here we will
look at one example that can be readily extended to the general case of
symmetric airfoils with parabolic surfaces.

Consider two curves given by

12
ywx)=1-x @

yi(x) = x* — 1
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which gives

Ax = :2”—;) (28)

If we restrict the surfaces to be defined in the interval [—1, 1] only, then
solutions for Ax exist in the region where

~2-(x+x%), —-1<x<0
ol < ’ 29
el { 2. (x—x2), 0<x<l (29)
The resulting differential equation for the camber line is:
4 2-x- (4
dy. X - ye(x) (30)

dx  4-x2—4.x%—y(x)
The boundary conditions on this first order differential equation are:
yc(_l)zo’ yc(+1)=0~ (31)

The obvious exact solution to this problem is y. = 0 which means
that the solution must pass through the singularity at the origin. In the
neighborhood of the singularity at the origin, where 4x* is negligible
compared to the other terms, the solutions are

yc(x)z:l:\/K——\/K2—4-K-x2 (32)

which has a slope of £2 if K# 0 and 0 if K= 0. (This form of the
solution is found by first writing x as a function of y, and then
treating the problem as a first order equation of homogeneous type.
The resulting solution can then be inverted by solving a quadratic in
yf.) Given that the boundary on the region where there are solutions
for Ax has slope +2 as the origin is approached, we see that all the
solutions other than the line y.(x) =0 that can pass through the
singularity are attracted to the boundary of the region where camber
lines may exist. Now imagine that this problem is being solved nu-
merically. A small error will cause the solution to enter the singular
point with slope of +2 but there are an infinite number of solutions
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which leave the singular point with exactly the same slope. This type
of behavior will occur whenever the camber line becomes parallel to
both the upper and lower surfaces and the second derivatives of the
upper and lower surfaces are equal in magnitude and of opposite
sign.

Now consider an airfoil shape where there are multiple locations
with the singular behavior exhibited at the origin in this example. Now
it is possible to join the singular points both smoothly and non-un-
iquely giving rise to non-unique solutions to the camber line problem.

In this particular case the parallel surfaces camber line locus reduces
to a single point which is the origin.

Non-symmetric Parabolas

The non-symmetric parabola case is important as it highlights the
behavior of the solution in the vicinity of the point on the parallel
surfaces camber line locus where the slope of the camber line matches
the slope of the surfaces.

Consider the case of non-symmetric (with respect to the x-axis)
parabolas:

wx)=a-(1- xz)

3
n(x) =b-(1-x%) .

where a # —b and a > b.
In this case there are two solutions for Ax given by

b—a

—b\? 2y,
Ax = x| (8 Y A 4
Y a+b VR [(a—!—b) } * a+b (34)

The curve where the radicand vanishes separates regions with solutions
for Ax from regions where there are no solutions. It is also the locus of
points for the parallel surfaces camber line locus. In order for the
camber line to go smoothly from (—1,0) to (1,0), the solution must
pass through (0, (a + b)/2). An example with a = 2 and b = 1 is shown
in Figure 8. The curve terminates at 4 and B because continuing the
curve beyond those points requires continuation of the lower surface
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- 0 1

FIGURE 8 Parabolic upper and lower surfaces with parallel surfaces camber line locus
ACB.

outside the range of definition for the lower surface. The fact that the
parallel surfaces camber line locus is also a curve that separates regions
where solutions exist is not surprising given that if two solutions for Ax
merge, it must happen at a place where the surfaces become parallel.

The camber line solution can be found numerically, but such solu-
tions must be started at each end and joined at point C. Numerical
integration beyond point C in either direction is doomed to failure for
the reasons given earlier.

Now we are in a position to discuss uniqueness of solutions. If there
is only one point on the parallel surfaces camber line locus where the
camber line would be parallel to the surfaces and its behavior is of the
nonsymmetric parabola type, and if there is only one solution for Ax
in the neighborhood of both the leading and trailing edges, and if
multiple solutions are distinct (with the exception of the parallel sur-
faces camber line locus where solutions can merge), then if a smooth
solution exists it is unique. Having a single solution for Ax at the
leading and trailing edges guarantees that a unique solution leaves
both the leading and trailing edges along the local bisectors. Distinct
solutions for Ax requires that any smooth solutions can only use in-
cremental changes in the solution for Ax and so the uniqueness is still
maintained. Having a single point on the parallel surfaces camber line
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locus where the solution can pass requires that the solutions from
cither end must meet at that single point and each solution is unique
from their respective ends to the parallel surfaces camber line locus.
We therefore know that the solution for the semi-circular airfoil found
in Section 5 is the unique solution to that problem. Most commonly
encountered airfoil shapes would also satisfy these requirements.

8. CONCLUDING REMARKS

Here we have looked at a system of differential-algebraic equations
(DAE) derived from a physical problem that is subject to boundary
conditions. DAEs have been employed extensively in the study of
constrained rigid body dynamics or chemically reacting systems where
initial conditions are usually encountered instead..

Some important properties of the solution to this particular problem
have been demonstrated. In particular, the intrinsic instability of the
solution when integration is performed in the direction of converging
surfaces shows that any numerical approach to this problem cannot
start at one end and march across the domain. Also the a priori iden-
tification of points within the airfoil shape through which the solution
must pass is of great utility in the discussion of existence and unique-
ness of solutions. Furthermore, such points must be locations where
numerical integrations must terminate since they mark locations where
the surfaces change from diverging to converging as this is where the
stability of the solution changes. Finally, simple smooth shapes that
have no smooth camber line solution and a method for constructing
smooth shapes with multiple camber line solutions have been identified.
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